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Electronic Structure of Disordered Alloys —Iteration Scheme Converging to the
Coherent-Potential Approximation
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An iteration scheme (referred to as IATA) that repeatedly uses the average-t-matrix approximatioh
(ATA) will be examined. The objective of this work is to devise a computational method which will permit
the coherent-potential approximation (CPA) to be applied with realistic alloy potentials, A numerical com-
parison is made between the IATA and two other schemes which are based on well-known self-energy ex-
pressions in a single-band model. The results indicate that among the three methods, the IATA is the only
one which converges from the virtual-crystal limit toward CPA for all alloy parameters and for all energies
inside the CPA band. However, in concentrated and strong-scattering alloys, especially for minority subbands
where ATA is not at all trustworthy, IATA does not converge particularly fast and may produce unphysical
structures in the intermediate iterations. A combination of IATA with the extrapolation methods speeds
convergence, provides an easy way to achieve the CPA result, and is believed to be useful for calculations on
realistic alloys. Finally, an IATA technique for muffin-tin potentials is developed.

I. INTRODUCTION

The application of the coherent-potential approx-
imation'z (CPA) to more realistic potentials is
one of the most urgent tasks today in the alloy the-
ory. Although it has been a while since Soven
proposed his formal CPA method for random muf-
fin-tin potentials, to date there still exists no pub-
lished computation using these more realistic po-
tentials. This is due to the complicated nature of
the CPA self-consistent solution (for transition-
metal alloys with only the first three angular mo-
mentum phase shifts taken as nonvanishing, the
CPA equation becomes a complicated 9&&9 matrix
equation with the unknown matrix appearing in a
sum over the Brillouin zone). To circumvent this
difficulty, Schwartz, Brouers, Vedyayev, and
Ehrenreich (to be referred to as SBVE) reexam-
ined the non-self-consistent average-t-matrix ap-
proximation' (ATA) and compared ATA with CPA.
They pointed out that in many cases ATA is almost
identical to CPA, and is at least a good first ap-
proximation in an iteration scheme leading to the
self-consistent CPA solution. Therefore, their
work implies that an iteration of ATA (referred to
as IATA) would provide a means of solving the CPA
self-consistent problem. This work is intended to
examine the applicability of IATA, and then to de-
velop a formalism to apply it to muffin-tin poten-
tials.

The paper begins with a description of IATA.
We then examine the numerical results of IATA in
a single-band model. It will be seen that a direct
IATA starting with the virtual crystal will finally
lead to the CPA solution for all energies in the CPA
band. For comparison, two other iteration methods
are given based on two well-known self-energy ex-
pressions which are consistent with the CPA equa-
tion but are shown not to converge to CPA for many

cases. In many cases where ATA is not at all
trustworthy, a number of iterations are required
by IATA to converge to the CPA result, and in the
intermediate iterations very unphysical structures
are produced in the density of states. Thus, a
direct IATA scheme starting from the virtual crys-
tal for all energies in the band may not be practical
for a realistic calculation.

However, when a simple extrapolation method is
incorporated in the ATA iteration, the speed of con-
vergence is greatly improved so that it should make
the method practical. Besides, since the ATA
iteration converges at all energy points of interest
and for all alloy parameters, it can be used to gen-
erate the correct CPA self-energies at a few ener-
gy points. These self-energies can then be used to
extrapolate to the initial self-energies for a ATA
iteration at neighboring energies in the band. In
this way, the ATA iterations may be used to obtain
the CPA result throughout the band.

Since our primary goal is to work with more
realistic potentials, an ATA iteration scheme for
muffin-tin potentials is presented in Sec. IV.

II. SINGLE-SITE APPROXIMATION
AND ITERATION SCHEME

The single-site approximation (SSA) in the Green's
function formalism for disordered alloys has been
discussed many times in the literature. ' In this
section we will briefly define the quantities em-
ployed in the formalism and quote some of the SSA
results that are to be used in the present work.

Let the one-electron Hamiltonian K be composed
of a periodic part W and a random part U. The

'Green's function G(z) is defined in terms of H by
G(z)=—(z —H) '. We are interested in the ensemble-
averaged Green's function (G(z)). This quantity de-
termines many of the static electronic properties
such as the density of states. For the present pur-
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pose the operation ( ) is taken to be the so-called
configurational average which is an average over
all the possible arrangements of atoms on the lat-
tice sites. Since (G(z)) has the crystal translation-
al symmetry, a periodic self-energy operator o
can be defined such that

(G (z)) = (z —W- o) '. (2. 1)

It is useful to write down the exact expression for
cr in terms of a periodic reference Green's function
G = (z —W-5')

(r=o+ (T)(1+G (T)) ',

where the T operator is defined as

T=(U —&r)[1 —G(U —o)] '.

(2. 2)

(2. 3)

The problem is then reduced to the determination
of (T) or &.

In order to employ the SSA the random potential
is assumed to be decomposable into localized site
contributions, i. e. , U=g„U„. With this the T
operator of Eq. (2. 3) can be expanded in series of
the products of the atomic t operators, the so-
called multiple-scattering expansion. The SSA con-
sists of the neglect of the statistical correlations
between the atomic t operator at a given site and
the effective wave coming to that site. ' ' As a
consequence of the SSA, & can be decomposed into
site contributions, 8=/„8„, with~

o„=g„+(T„)(1+G„(T„))', (2 4)

where o„ is the reference self-energy at site n, 6„
is the projection of G onto the local region of U„,
and T„ is the atomic t operator associated with the
site n. The operator T„ is given by the same equa-
tion as for T, i. e. , Eq. (2. 3) with U and o re-

. placed by U„and 5„, respectively. Equation (2. 4)
serves as thy starting point for the present work.

As has already been pointed out in SBVE, Eq.
(2. 4) can be used in two ways. First, as a self-
consistent version, the reference self-energy can
be adjusted such that there is no further self-en-
ergy correction in the SSA, i. e. ,

(T„)=0, (2. 5)

which is the coherent-potential approximation and
is considered as the best single-site approxima-
tion. 8 Second, the non-self-consistent version of
Eq. (2.4), the ATA, gives a correction to the ref-
erence self-energy.

There is a further use of Eq. (2.4). Since CPA
is computationally much more difficult than ATA,
Eq. (2. 4) can be used as an iteration scheme to
find a succession of self-energy corrections in the
hope that the CPA self-consistency will be achieved.
I shall refer to this iteration scheme as IATA,
which stands for the iterative average-t-matrix ap-
proximation. Explicitly, IATA takes the form

In this section, we shall numerically examine the
TATA in a single-band model, ' where the CPA
equation is easy to solve, and the CPA results are
well known. 3' ' In spite of the mathematical sim-
plicity of this model, it does contain some features
of an alloy band. A detailed investigation of the
numerical results from this simple model will give
us insight into the more complicated realistic sys-
tems. In what follows, we mill first consider the
IATA starting with the virtual-crystal approxima-
tion and will compare the result with that for the
CPA. The IATA will then be compared with two
other iteration schemes that are trivially deduced
from the CPA equation. Lastly, we shall discuss
a combination of IATA and an extrapolation method
which converges to the CPA result with less itera-
tions.

The single-band-model Hamiltonian for a disor-
dered substitutional alloy A„B„(x+y= 1) has the
form

ff = W + U =Q
~

g) f) ()))
~

+Q (
s)4 „(p

~

n, m
(3. 1)

where W, off-diagonal in the Wannier basis (In)},
is assumed to be periodic and U is site diagonal
but is random. q„ takes on values q„or & ~ depend-
ing on whether an A atom or a J3 atom is at site
n. For convenience, we shall use the half-band-
width ce associated with the periodic band as the
energy unit, i.e. , au= 1, and define a scattering
.«trength 5 such that &„=—&~ = 25.

As is well known, for a single-band CPA calcu-
lation the only input needed from the pure crystal
is the density of states, which we shall assume to
be elliptical, i. e. ,

zpo(E) = 2(1 E)'i 3. - (3.2)

The CPA self-energy o&~„ then satisfies a cubic
equation from which the correct roots can be de-
termined easily. The alloy density of states per
atom p(E) is then calculated by taking the imagi-

(i+1) (i) + [1+(T(())G(()] 1-(T(i))

~(&(i )) (2. 6)

where o„"refers to the nth-site self-energy ob-
tained in the ith iteration, with similar interpreta-
tions for T„"' and G„"'.

We note that in Eq. (2. 6) all the quantities in-
volved, cr„"', T„", and G„', are all confined to the
local region of U„. They are also functions of the
same energy. Thus, in all stages of iteration, the
self-energy computed at a site, for a given energy,
is independent of the behavior of cr„"', T„", and G„",
belonging to other sites or other energies. In
Sec. IQ the numerical results of the IATA for a
single-band model will be discussed.

III. NUMERICAL RESULTS FOR A SINGLE-BAND MODEL
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p(Z)=~(1/v)1m'(E+fo, o„„),
where

F(z, o) -=(Oi (z —W-o)-'io)
= 2(z —o) —2[(z —o) —1] '~ .

(3 3)

(3.4)

The IATA equation (2. 6) in the present model al-
so becomes a scalar iteration,

(j+ & ($&+ f(f &(I+@(f&f(k&)-& (3. 5)

where the averaged atomic-t-matrix element t"'
is explicitly given by

(~& s —&"'+I 5'/4 —
(&

"')'1F"' . ( 5)(f&F(&& [5z/4 ( &f&)z](FEi&)2

Here F"' is F(z, o ") defined in Eq. (3.4), and
e =—xe„+ye~ is the averaged potential strength.

Now, let us discuss the IAIDO starting with the
virtual crystal, i. e. , 0 ~'=e. In SBVE, the ATA
(the first iteration in IATA) and the CPA density
of states for some alloys were compared. It was
found that for the weak-scattering (5«1) and low-
concentration (x«1) cases, ATA and CPA are al-
most identical. We find that in one or two itera-
tions the IATA converges very well to the CPA.
However, it should be emphasized that ATA is not
adequate for many cases, especially for concen-
trated, strong-scattering alloys. Figure 1(a)
shows that the ATA density of states for an alloy
with x = 0. 5 and g= 0. 8 is quite different from the
CPA result. But a single further iteration brings
IATA very close to CPA, and excellent visual con-

nary part of the site-diagonal Green's-function ma-
trix element F,

vergence is achieved in less than ten iterations
[a more precise convergence criterion for this
case will be discussed later; see Fig. 2(a)]. Fig-
ure 1(b) is the case of a concentrated (x = 0. 5) and
very-strong-scattering (5 = 2. 0) alloy. ATA is
least trustworthy for this case. Further iterations
show that IATA gradually converges to CPA. The
cusps of the bare Green's functionpersist in the in-
termediate iterations but gradually disappear.
Figure 1(c) is the density of states for an alloy in
the split-band case (5 = 1.5) with a minority sub-
band (x= 0. 15). Since ATA is very similar to CPA
in the majority subband, only a few iterations
are needed to achieve convergence in this subband.
But caution must be exercised for the minority
subband. In the intermediate steps of the iteration,
IATA may produce very unphysical structures in
the density of states, e. g. , there are wiggles in
the density of states in the tenth iteration as shown
in the figure. Similarly, in the second iteration
which is not shown in the figure the IATA density
of states has two sharp spikes for the minority
subband. Note also that although final convergence
is achieved, the convergence is not rapid in this
subband (60 iterations are needed for visual con-
vergence).

In SBVE, ATA and CPA are also compared in
a two-band model. They pointed out that ATA is
a good approximation to CPA in all dilute alloys
with parameters appropriate to transition- and
noble-metal alloys. But in concentrated alloys,
ATA fails in the energy regions between the two
d subbands. In a modified two-band-model cal-
culation, ' a direct IATA from the virtual crystal
has been employed to obtain the self-energy. The

X = 0.5
6 = o.s

2

N=l IATA
—-- CPA

X =0.5
6 = 2.O

N= I I ATA

———CPA

I

X =0.15

6=I.5
2

I

N-"I IATA--- CPA

2

N=2 N=5

2

N =Io

N»-S
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P
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FIG. 1. Comparison of the density of states calculated in the IATA and the CPA for three alloys: (a) z =0.5, 6 =0. 8;
(b) @=0.5, 4=2. 0; (c) @=0.15, 6=1.5. In each graph, N indicates the number of iterations in IATA. Note that energies
are normalized to the half-bandwidth m, and hence are in dimensionless units.



ELECTRONIC STRUCTURE OF DISORDERED ALI OYS —ITERATION. . .

o„=U„- (U"„-o „)G (U„—o„),

and the self-energy for the dilute scatters,

&n = &n + (Tn)

(3. 7)

(3.8)

In Eq. (3.8) the correction to the self-energy is
just the averaged atomic t operator. This equation
can be obtained if in the average of the total T

speed of convergence to CPA is found to be very
fast for all cases with parameters appropriate to
transition- and noble-metal alloys. The reason
for the improvement of ATA and for the fast con-
vergence in IATA in the two-band models is that,
in these models, the d bands are hybridized mith

the conduction band. This produces a very broad
base in the pure constitutent d-band density of
states. Thus, the energy separation between the
d-band centers of the two alloy constitutents is
never large enough to produce a split d band in the
alloy. The most severe cases in the two-band
models are only equivalent to the moderately-
strong-scattering cases (0. 5 & 5 & 1.0) of the sin-
gle-band model [see Fig. 1(a)].

Some conclusions can be drawn from the above
result. For meak-scattering alloys, ATA is an
excellent approximation to CPA. For concen-
trated alloys with moderately-strong-scattering
strengths, ATA is not adequate, but IATA con-
verges easily to CPA. In concentrated, strong-
scattering alloys, or in a split minority subband,
where ATA is not trustworthy, a direct IATA from
the virtual crystal is not fast and furthermore,
unphysical structures may appear in the density
of states in the intermediate iterations.

The densities of states of real noble and transi-
tion metals are quite complex. For an alloy com-
posed of these metals, the important energy widths
are those of the spikes in the density of states.
Therefore, one tends to think of noble- and tran-
sition-~etal alloys as strong-scattering alloys.
Thus, ATA will not give accurate structures in the
density of states for those alloys when they are
concentrated. Also, a direct IATA from the vir-
tual crystal may not be practical, since many
iterations are required and in each iteration, as
we shall see, there are lengthy mathematical ma-
nipulations involved.

One point should be emphasized. For the cases
tested, IATA converges to CPA for all energies of
interest and for all alloy parameters. This con-
vergence is important since there are numbers of
trivial iteration schemes that can be set up from
the CPA equation with, however, no theory to
guarantee their convergence.

Next, we shall compare the IATA with the other
two iteration schemes which are based on the tmo

well-known self-energy expressions, namely, the
Soven's CPA equation, "

operator in Eq. (2. 3) each atomic f operator is re-
placed by its averaged (T„), and "exclusions" in
the summation are neglected in every term of the
multiple-scattering series for T of Eq. (2. 3). '
If we treat Eqs. (3.7), (8.8), and the ATA equation
(2. 4) as self-consistent equations, they are con-
sistent with the CPA equation (T„)= 0. In particu-
lar, the self-consistent version of the ATA equa-
tion in the single-band model reduces to Ondera
and Toyozawa's'3 equation,

(F = s + Ãy 5 E [1+ (s +0)E]' (8. 9)

However, considered as iteration equations, Eqs.
(3.7) and (3.8) are, in fact, different from the
IATA. We shall refer to the iterations of Eqs.
(3. 7) and (3.8) as ICPS and ICPT, respectively.
All of the three iterations can be put into the same
form o„""= (((o"'), but with different functional
forms for K. Explicitly, for ICPS,

x( (()) U (UA (())g(()(UB (())

and for ICPT,

&( (()) ((&+ (T((&) (3.11)

For IATA, (((o„"&) is given by the right-hand side
of Eq. (2. 8).

Now, let us compare the numerical results of
the three schemes. Figure 2(a) is a plot of the
number of iterations needed as a function of energy
for the self-energy to converge to CPA to a part
in 10 of the half-bandmidth, i.e. , lo'" —oqpgI
&10, for an alloy with x=0. 5 and 5=0.8. The
starting self-energy in each of the three cases is
the virtual-crystal self-energy, i.e. , 0~ '=g. We
see that all three methods are convergent in this alloy,
The more interesting and important point we mant
to stress is not the speed of the convergence with
IATA but the fact that it does so for a wide range
of the parameters 5 and x. We found that IATA
always converges for all significant energies. We
must, of course, exclude those energies for which
the CPA self-energy has a pole, but at those en-
ergies the density of states is zero, so that they
are physically insignificant. In contrast, ICPT
and ICPS fail to converge to CPA for ~any cases,
especially for those cases where the CPA results
are really important. For example, in the alloy
x=0. 5, 5=2.0, both the ICPT and ICPS self-en-
ergies diverge at all energy points inside the band.
For the alloy with x = 0. 15 and 5= 1.5 [see the den-
sity of states in Fig 1(c)], ICP. T fails to converge
for the energy region inside the minority subband
and ICPS, although it converges in the minority
subband, strangely fails to converge in the major-
ity subband. This kind of behavior occurs even in
the dilute and non-split-band case. For example,
in Fig. 2(b), we show that for the alloy with. @=0.1
and 5= 0. 8, IATA is always convergent, while
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ICPT and ICPS may fail in some energy ranges.
Thus, among the three iteration schemes we

have investigated, only IATA is completely reli-
able. Although we cannot prove analytically that
this iteration of a non-self-consistent approxima-
tion converges to the corresponding self-consis-
tent result, the evidence we have supports this
conclusion. Recall that what we have done in each
iteration of the IATA is to make the single-site
approximation (SSA) and then sum up the multiple-
scattering series exactly to obtain the self-energy
correction. By contrast in ICPS and ICPT
schemes, further approximations in the summation
of the multiple-scattering series in addition to the
SSA are required to obtain the x's given in Eqs.
(3. 10) and (3.11). A similar conclusion would
hold for any other possible iteration schemes that
could be trivially derived from the CPA equation

As more severe tests of the IATA, some very
inaccurate initial self-energies were deliberately
used in the iteration f'or several cases. The in-
teresting result of this study is that IATA con-
verges for these choices roughly at the same speed
as when one starts with the virtual crystal. Qn
the other hand, the ICPS and ICPT fail to converge
in all the drastic tests.

The above suggests that the IATA can be used in
two ways. For those cases in which a direct ap-
plication of the IATA from the virtual crystal eon-
verges sufficiently rayidly, it can be used to obtain
the CPA results throughout the band. For those
cases where a direct application of the scheme is
imyractically slow, it ean be used to generate a
few CPA results for several energies in the band.
Then an extrapolation method combined with the
XA,TA can be employed to obtain the results fox the
remainder of the band.

A simple application of Newton's extrapolation
method to obtain an initial self-energy for IATA
at a given energy from CPA values for two neigh-
boring energies suffices to improve the rate of
convergence dramatically. This kind of extrapola-
tion method has been tested on the single-band
model. With an energy interval of 0.001, a con-
vergence radius of 10 in self-energy, i. e. , )o~'~

-Ocp„j & 10, is obtained in only a few iterations
of IATA for all alloy cases including the difficult
cases of Figs. 1(b) a,nd 1(c). In this extrapolation
method, ICPT gives similar results as IATA, but
ICPS does not always converge to the CPA result.
In other words, although ICPT is likely to break
down with a bad initial self-energy, it works weQ
when the initial self-energy is close to the CPA
result. In contrast, for some eases ICPS may
yield an iterated self-energy further away from
the CPA value than the initial value even when the
initial self-energy is very close to the CPA value.

In the above, a sample iteration technique was
used to solve an equation o =K(o). The conver-
gence for this procedure is at best geometrical.

20-
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~ 20-
I- ICPT

IO-

- I.5 - I.O -0 5 0.0 0.5
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FIG. 2. Comparison of the convergence for three itera-
tion schemes IATA, ICPT, and ICPS. The numbers of
iterations needed to make the self-energy correct to 10
i, e. , l 0 ') —Ocp~ I &10 4, are plotted as a function of
the energy for two alloys. (a) g =0.5 5=0, 8 (b) @=0.1
6 =0.8. On top of each graph is the plot of the CPA den-
sity of states as a function of the energy. Note that the
dashed lines indicate the energy regions where the
methods do not converge. The energies are normalized
to the half-bandwidth ao, and hence are in dimensionless
units.
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In the vicinity of an exact solution, a more rayid
convergence can usually be achieved by using an
extrapolation method. For example, with two es-
timated values 0, and g2, an improved g can be
obtained from the linear extrapolation equation

( )
lf'(o, )-E(o,)

( )
tX3 0'1

(3.12)

With more estimated values for c, Eq. (3.12) can
be further improved by using a higher-order ex-
trapolation method. ' However, if the estimated
values are far from the exact solution, a single
extrapolation usually will not provide an accurate
solution. But if the extrapolation procedure is
iterated, it often exhibits a convergence more
rapid than the simple-iteration technique. A high-
er-order extrapolation method in general exhibits
a more rapid convergence, especially when the
function E is a smooth function. As a test of this
extrapolation-iteration procedure, the linear equa-
tion (3.12) will be applied to the three X(o)'s giv-
en in Eqs. (2. 6), (3. 10), and (3. 11). We shall re-
fer to these three extrapolation-iteration schemes
as EIATA, EICPS, and EICPT, respectively.

A summary of the convergence of the extrapola-
tion-iteration schemes as compared to the simple
iteration schemes is given in Table I. The integer
numbers in the table are the number of iterations
that are required for p to converge to the CPA val-
ue to an accuracy of 10, 4, i.e. , )g"' —g~„)&104.

The alloy parameters are the same as those used
in the previous discussions. For a better under-
standing of the table, the reader should refer to
the corresponding CPA density of states in Figs.
1 or 2 for each case. We see that the convergence
for these extrapolation-iteration schemes is in
general better than that for the simple-iteration
procedures, Among the three extrapolation-itera-
tion schemes, EIA.TA is the only one that converges
at all energies and for all alloy parameters. This
result further supports our confidence in the itera-
tion using the ATA. A more detailed comparison
reveals that except for one case (x = 0. 15, 5 = 1.5,
8= 0. 5), the EIATA is a great improvement over
IATA in convergence. For all energies inside the

TABLE I. Number of iterations required for 0' to con-
verge to I 0 —ocz A I &10 from the virtual-crystal value.

I

Energy IATA EIATA ICPT EICPT ICPS EICPS

CPA band, EIATA requires less than ten iterations
to achieve an excellent convergence. We feel that
with this rate of convergence, realistic calcula. -
tions are feasible. We note that the exceptional
case corresponds to an energy in the gap of a split
CPA band [see Fig. 1(c)]. We also note that the
virtual-crystal and the ATA self-energies deviate
very much from the CPA values in strong-scatter-
ing alloys, especially around the energy" E= -z
= —(xs„+yes) (for the exceptional case, the ener-
gy E=0.5 is close to -g =0. 525; the three self-
energies are g =&=-0.525, o ' =g„~„=—1.2,(0) (1)

and ocr„=—4. 1233). Thus, the slow convergence
of the EIATA for this case is due to the fact that
bad initial values are used in a linear extrapola-
tion scheme which causes some random searches
before reaching the solution. However, in many
cases the self-energy in the band gap has no physi-
cal significance so the calculational difficulties
associated with this energy region can be avoided.
We can also improve the initial self-energies by
energy extrapolation. More precisely, once the
CPA self-energies have been obtained at several
energies inside the band, energy extrapolations
can be employed to obtain better initial self-ener-
gies than the virtual-crystal values for an EIATA
iteration at the neighboring energies. In this way,
the calculation can be extended from the band to
the band gaps. Furthermore, a higher-order ex-
trapolation method can a,iso be incorporated in the
iteration scheme to speed the convergence.

In summary, the numerical results presented
in this section suggest that the ATA iteration along
with the extrapolation methods may provide a
means of calculating the CPA electronic structure
of a realistic alloy. In Sec. IV, an ATA itera-
tion method for muffin-tin potentials mill be dis-
cussed.

IV. APPLICATION OF ITERATION METHOD TO
RANDOM MUFFIN-TIN POTENTIALS

In this section the IATA is applied to random
muffin-tin potentials. It can be seen from Eq.
(2. 4) that by working in coordinate space one could
take advantage of the localization of the potential.
Because of this it is easy to apply the IATA to
Soven's formalism' for muffin-tin potentials. So-
ven transforms the problem from one with the
original muffin-tin potentials to one with spherical-
ly symmetric 5-shell potentials. The density of
states for the muffin-tin potentials can be found in
terms of the solution to the 5-shell-potential prob-
lem. Many of the formulas used in this section
come from Soven's work. For detail derivations
the reader should refer to his paper.

Consider a binary alloy A„B„containing N atoms
in a volume 0 with muffin-tin potentials Vz and V~
randomly distributed on lattice sites. The poten-
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t;ials V„and V~ are characterized by a common
muffin-tin radius R and their logarithmic deriva-
tives y, ' (E) at R for angular momentum l and en-
ergy E. The 5-shell potentials V„and V~ that
Soven used can be defined by the following coordi-
nate matrix element of these potentials at site
zero (8.9), '6

W„,(r, r') = Z r, ( ~)
—„f—W,g,
6(x —R)

JL»

. 6(r-R)
& -- —E-= F .(i') (4. 1)L

where the set (Fz] are orthonormalized real spher-
ical harmonics and I. includes the principal angu-
lar momentum quantum number k and other de-
generacy indices of /. ' The potential strength pa-
rameters W»» are chosen such that each 5-shell
potential has the same phase shifts as its cor-
responding muffin-tin potential. The 8'~g» are
given by (S. 10)

where x =—E, j, is the regular spherical Bessel
function, and j', its derivative. Since the potentials
in E(I. (4. 1) are localized on spherical shells, the
single-site self-energies according to E(I. (2. 4)
are also localized on spherical shells. Thus, the
coordinate matrix element of the CPA self-energy
oo for the lattice site located at the origin. takes the
form (8. 21)

o,(F, F') = Z Yz(f) '--g — Wzz. — —, Fz.(P)
6(~-R) 6(r' R)-

LL»

(4. 3)
Then Soven was able to obtain the CPA density of
states associated with the random muffin-tin po-
tentials in terms of the parameters characterizing
the 6-shell potentials. The formal result is (S. 41),

vp(E) = —Im P Q —,z [W(1 —P W) ']z,zi
a I.J.»

Bessel function. In E(1. (4.4), P~, W, G, etc. ,
are matrices whose matrix elements are indexed

by the quantum numbers I, e. g. , PL,I,. is the II'
matrix element of I' . The matrix element 5'LL,

has been defined in E(l. (4. 3) and G is closely re-
lated to the CPA Green's function [see Appendix A,
E(1. (A7)] and is totally determined by P" and W

[also see (S.34)],

G =—2 P"(I- WP')-'. (4. 6)

Thus, once the CPA self-energy or W is deter-
mined, the alloy density of states is obtained from
E(1. (4.4). The matrix W satisfies the following
e(luation (S.24):

w= w-(w" —w)G (w'- w), (4. 7)

where 9'=xR""+yS" . Note that with only the first
three angular momentum phase shifts taken to be
nonvanishing, one needs to solve a 9&&9 matrix
equation for 5". The unknown matrix 5' is con-
tained in |", which involves a Brillouin sum as in-
dicated in E(1. (4. 6). ' Therefore, a formal solu-
tion of E(ls. (4. 6) and (4. 7) is possible but by no

means trivial. If we want to use E(I. (4. V) as the
basis for an iteration scheme, we would, presum-
ably, encounter the same difficulties exhibited by
ICPS in the single-band model. Since we have
learned from the single-band model that IATA
along with the extrapolation method is capable of
obtaining the CPA result, we have reason to be-
lieve that this method may also work for this more
complicated case.

To apply the IATA to Soven's formalism is a
straightforward matter. I.et o„", (T„'"), and G„"'
denote, respectively, the self-energy, the aver-
aged atomic t operator, and the averaged single-
site Green's function at site n in the ith iteration of
IATA. As in E(I. (4. 3) the matrix element of &go~'

can be written

(l) (y f(1) g y (/)
( ) W&f)

S-L,»

—Rim Z Gzez x [1 (W W)G]zzs.dZ

+) —~@' [( —((F' —R')0],'x), (4 4)

where the sum over the wave vector k extends over
the first Brillouin zone and P' [referred to as the
Korringa-Kohn-Bostoker (KKR) Green's function ma-
trix] is defined by (S.43)

Pzz, —= sj g(xR)n, (sR) 5zze+i' ' j, (KR)j,.(sR) Szz. ,
(4. 6)

with B». being the structure factor in the KKR'
Green's function and n, being an irregular spherical

A(s proved in Appendix A, we can write

G,'"(-, -)= PI,(-)G„,I,. ( ), ( ~=( ~ (=R
LL»

(4. 10)
where t L'L» and TL,'~», or their corresponding ma-
trices Q'" and T"', are totally determined by the
KKH Green's-function matrix P and the self-energy
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matrix W", i. e. ,

G(l& P P [I W((& P&&]-1
N

T((4) ~y(g) + y(f )
A. + B

with r~~ ' and r~~') being

T&(& = (Wr(lr& W((&) [1 G&(' (Wr(Ir& - W&(&)]-

(4. 13)
Finally, the iterated self-energy matrix is ob-
tained by the IATA expression,

(4. 11)

(4. 12)

W '+"=W"'+ Z' "[I+G"'Z'"]-' (4. 14)

&& (W z(z,"—Wir, ."), (4. 15)

where the matrix K(W"') is just the expression on
the right-hand side of Eq. (4. 14).

Of course, there are still many problems to be
overcome in a realistic calculation. For example,
the Green function of a real system is not a smooth
function of energy but, in fact, has singularities
as is reflected in the sharp structures in the densi-
ty of states of the pure crystal. This may cause
some difficulty in using the energy extrapolation.
However, since the sharp structures that appear
in the Green's function of the pure crystal tendtobe
smeared out in the alloys, this difficulty may be
overcome by adjusting the energy increment in the
extrapolation. Of course the calculation of the
structure constants appearing in the KKR Green-
function matrix [see Eq. (4. 5)] and of the Bril-
louin sum in Eqs. (4. 4) and (4. 11) are by no means
easy, but they are unavoidable. Once those dif-
ficulties are overcome, the calculation of the elec-
tronic structure in the CPA can be accomplished.
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APPENDIX A

(a) We want to show that for any operator 0
whose matrix element has the form

The IATA iteration for muffin-tin potentials is
thus a straightforward though nontrivial numerical
problem. The inputs of the calculation are the
scattering phase shifts (or, equivalently, the y,

"
and y&s). The transition from the IATA to the EIATA
is made by generalizing Eq. (3.12) to the following
equation:

W&(+(& K,W«», Krri (W'")-Krz. (W '
)

VVI,gt VV I L,t

(,) p ( )
5( ft) 5(&' J-t) (-,)

(A1)
A A A

the matrix element of the product operator OAO
takes the form

(F~oAo~F)= Zr, (.-) "„," (oAo)„.

r„(Y), (A2)
5(r'-H)

where the matrix 0 has its matrix element Oz,»
defined implicitly in Eq. (A1), and the matrix A
has its matrix element A»t defined implicitly by

A(F, r')= Q rz(r)Azz. (R) rz. (P),

The proof is straightforward. Putting the unit
operator f dr IF) (r [ between the operators OAO,
carrying out the integrations, and using the prop-
erties of the 5 functions and the orthonormal prop-
erties of rz, we obtain the expression in Eq. (A2).

(b) For 0 defined in Eq. (Al), the expression

(F~AOi~r~)= Q r, (~)(AOH)„, r„(P)
l, r,t

(A4)

(G) =P + P&P e PoPoP+ ~ ~ ~

=2 (P"+P'&P '+P'&rP'&~'+ ~" ), (A5)

where I' is the outgoing KKR Green's function in
operator form and the sum is over the first Bril-
louin zone. Explicitly, we have

P„(,) & p exp[i(k+g) (r —r')]
Q @+~0 )k~g )2 (A6)

where g is a reciprocal-lattice vector. Note that
in Eq. (A5) only the self-energy at site zero oo is
involved. Note also that 60 has the property of
Eq. (Al). If we take the matrix element in Eq.
(A5) in coordinate space with [Fl = irr ( =8, we get

is also true for )r t =
(
r'

) =R. Here J3 is defined
similarly to A in Eq. (AS). The proof is also simi.
lar to that for Eq. (A2).

(c) Most matrix equations used in Sec. IV are
direct consequences of Eqs. (A2) and (A4). One
example is Eq. (4. 6). The averaged Green func-
tion (G) is defined as (z -Ho —&) ', where Ho is the
empty lattice Hamiltonian, and the self-energy o
can be decomposed into site contributions, & =/„o„.
Define P=(z -Ho) ' and z=E+io; then
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(G(r, r')) =Z 2 F,(f)(P"+P"WP" =- Z Y ~(f) G~~. r~.(f"),
Szs

(A7)

+P WP WP +''')zl, ~ &I,~ (& )

Z F (f') [P (1 —WP ) '] ~ F .(P)

where P~ has matrix elements defined in Eq. (4. 5).
Tiie last step in Eq. (A7) serves to define the ma-
trix G that appears in Eq. (4. 6).

~Present address: Department of Physics, Case Western
Reserve University, Cleveland, Ohio 44106.

'Paul Soven, Phys. Rev. 156, 809 (1967).
'B, Velicky, S, Kirkpatrick, and H. Ehrenreich, Phys. Rev.

i/5, 747 (1968).
'Paul Soven, Phys. Rev. B 2, 4715 (1970).
~L Schwardz, F. Brouers, A. V. Vedyayev, and H.

Ehrenreich, Phys. Rev. B 4, 3383 (1971).
'J. L. Beeby, Phys. Rev. 135, A130 (1964);Paul Soven,

Phys. Rev. 151, 539 (1966).
A.-B. Chen, G. Weisz, and A. Sher, Phys. Rev. B 5, 2897

(1972).
'Equations (2.2) and (2.4) correspond to Eqs. (2.7) and (2.22)

of Ref. 2, respectively. Note that Eq. (2.4) holds for general
localized potentials.

A comparison of the CPA and other single-site
approximations in terms of moments and other relevant alloy
parameters is summarized by L. Schwartz and E. Sigga, Phys.
Rev. B 5, 283 (1972).

'Equation (4.30) of Ref. 2.
' A.-B. Chen, Bull. Am. Phys. Soc. 17, 325 (1972).
"Equation (13) of Ref. 1, or Eq, (16) of Ref. 3.
"For the discusssion of the effect of the excluded terms of

the multiple scattering series, see R. M, More, in Electronic

Density ofStates, edited by L. H. Bennett, U. S. Natl. Bur. Std.
Spec. Publ. No. 323 (U. S. GPO, Washington, D, C., 1972), p. 515.

"Y. Onodera and Y. Toyozawa, J. Phys. Soc. Jap. 24, 341
(1968), especially Eq. (2.11A).

"For example, the simple interpolation formula of Lagrange
can be used. See H. Margenau and G. M. Murphy, in The
Mathematics af Physics and Chemistry {Van Nostrand,
Princeton, N.J., 1961), Sec. 13.3. Note that Eq. (3.12)
corresponds to a linear Lagrange formula.

"The CPA self-energy has a pole at E =& for the case
x =0.15 and 8=1.5. The behavior of the self-energy as a
function of E is very similar to that shown in pig, 5(c) of
Ref. 2.

' (S.9) means Soven's Eq. {9) in Ref. 3. The same notation
will be used throughout.

"The Yl is the same as YI& in F. G. Ham and B. Segall,
Phys. Rev. 124, 1786 (1961).

"The structure factors in Eq. (4.5) are the ones that
appeared in Ref, 17,

' This type of sum in Eq. (4.5) is an essential task in all the
CPA procedures. It also appeared in the other CPA formalism
for muAin-tin potentials; for example, B. L. Gyorffy, Phys. Rev.
B 5, 2382 (1972), Eq. (16).

PHYSICAL REVIEW B VOLUME 7, NUMBER 6 15 MARCH

Interpolation-Scheme Calculation of Electron-Phonon Interaction in Noble and Transition
Metals: Copper*

Shashikala G. Das
Argonne National I.abaratory, Argonne, Illinois 60439

and University of Chicago, Chicago, Illinois 60637
(Received 14 July 1972)

A simple method for evaluating the electron-phonon interaction matrix elements, and hence the
point-mass enhancement and the relaxation time of quasiparticles, is proposed for the transition metals.

The method is based essentially on the Bloch model of the electron-phonon interactions and is similar

to a pseudopotential formulation with modification to account for the presence of d electrons in the
conduction bands and the resulting anisotropy of the above quantities. The results obtained by applying
our theory to copper, based on the combined interpolation scheme with explicit inclusion of the
screening effects based on Lindhard's formulation and of the contributions from transverse and

longitudinal phonons and from umklapp processes, are in fair quantitative agreement with those
obtained from a phenomenological interpretation of the experimental cyclotron-mass data of Lee and
with the calculations of Nowak based on an empirical phase-shift formulation.

I. INTRODUCTION

Although the importance of the electron-phonon
interaction has been well demonstrated in super-
conductivity, very little work has been done to
demonstrate explicitly the nature and anisotropy

of the electron-phonon interaction in transition
metals. This is primarily due to the great com-
plexity that the presence of the d bands near the
conduction bands in such metals leads to. In sim-
ple metals the conduction bands, consisting es-
sentially of s bands, are separated from the well-


