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We report calculations of the E edges in Li and Be and the L~ edges in Na, Mg, Al, and Si. The
calculations use self-consistent core and valence-electron densities for both the ground and excited
configurations; corrections for the host ionic fields are incorporated, using pseudopotential methods. It is

found that the calculated edge energies are in close agreement with experiment when Schneider's values of
the bulk chemical potential are used for the excited electron, In further studies of inhomogeneous systems,
we show that the core threshold is highly insensitive to atomic environment, so that amorphous materials
can be discussed. The case of dilute alloys is treated and core recombination in AlMg alloys is analyzed in

detail. The effects studied here indicate that the surface barriers caused by the dipole moments of surface
atoms are small, most probably ~& 0.1 Ry, in all the materials treated here.

I. INTRODUCTION

Considerable theoretical and experimental in-
terest has recently been focused on the nature of
core holes in solids. 3 The use of the synchrotron
radiation continuum as a soft-x-ray source has al-
lowed access to the excitation spectra of deep lev-
els and provided data that complement and augment
spectra obtained by the traditional approach of
soft-x-ray emission. Deep levels in metals, salts,
semiconductors, and, in several cases, alloys have
now been accurately probed and the results are
available for theoretical analysis. It turns out that
photons provide results that are in some respects
less complicated than those obtained by methods of
electron spectroscopy for chemical analysis
(ESCA). 4

The theory of core holes in solids has been de-
veloped in two directions concerned, respectively,
with the threshold energy and with the structure
of additional excitations. When an electron is ex-
cited from a core level to the band continuum there
ensue in general many-body effects that originate
in the recoil of the solid under the influence of the
freshly created electron-hole pair. The sluggish
lattice motion is of no consequence in optical tran-
sitions and it is the electronic recoil to which we

refer here. These processes are sensitive to the
electronic structure of the host lattice and to the
nature of the excited orbital. Of course, whatever
the nature of the crystal may be, there exists a
threshold for optical absorption that corresponds
in energy to the difference between the electroni-
cally relaxed ground and excited configurations.
This energy is simultaneously the minimum absorp-
tion energy from the relaxed ground state and the
maximum emission energy from the electronically
relaxed excited state. It is on this threshold energy
in metals, semiconductors, and alloys that the the-
oretical discussion in the present paper is princi-
pally centered.

It has been shown by Friedels and by Hopfield, ~

following Mahan, ~ that the threshold in metals has
a characteristic absorption-edge singularity that
depends on details of the ground- and excited-state
orbitals. At threshold, the oscillator strength for
transitions to any specific excited configuration is
vanishingly small but the large multiplicity of low-
lying excited states causes the edge to become sin-
gular with an absorption coefficient

1(GJ)
~
(0 Mo

~
~

Here ~ %s the photon energy and ~0 the threshold;
~ depends in sign and magnitude on the excited
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configuration through the phase shifts that describe
screening. Combescot and Nozieres have ana-
lyzed a model system that clearly reveals the sa-
lient features. The edge characteristics show
qualitative differences when the hole attraction be-
comes strong enough to bind the excited electron
and when the conduction electron density becomes
so small that the bound relaxed excited state be-
comes typical of insulating crystals.

These interesting general features of the core-
excitation problem are, however, mainly periph-
eral to our present discussion of the threshold
energy in metals, semiconductors, and alloys. In
these cases the excited orbital is certainly not
bound (metals) or else is so weakly bound as to in-
troduce negligible effects. The only property of
the spectrum that may influence the measured ~0
appreciably is a broadening originating in the
limited lifetime of the excited state. Direct recom-
bination can hardly cause the observed short life-
times, -10 '6 sec. It appears likely, then, that the
broadening arises from the large multiplicity of
Auger processes in which the recombination tran-
sition leaves other electrons excited. Despite the
edge broadening, the attainable resolution, ™0.1
eV for I,~ transitions with I~ -100 eV, '3 allows
the spin-orbit splitting of the core hole to be re-
solved with great clarity. The threshold energy
can therefore be determined with an accuracy much
better than i%%uo, whatever interpretation be placed
on the edge structure. For this reason, the edge
energies in the soft-x-ray region provide accurate
structural information with the energy resolution
& 1 eV of typical interest in the band structure and
surface barrier properties of metals and semicon-
ductors. The excessive broadening of deeper lev-
els makes them less useful in this respect. It was
with the aim of clarifying the relationship between
the soft-x-ray edge energies and the core and va-
lence-band properties of the host lattice that the
present work was undertaken.

Two previous detailed theoretical analyses of
soft-x-ray edge energies have been published.
One, due to Kunz, 9 treats the rather different prob-

lems encountered in salts and does not concern
the types of band structure of interest here. The
second, by Hedin and co-workers, '0 which deals
with the edge energy in metallic crystals, relates
most closely to the present work. A calculation of
the edge energy ~0 necessarily involves a com-
parison of the crystal energy in the ground state
and in the relaxed excited state in which the core
hole is screened by the electron gas containing one
extra electron. In Hedin's work the ionization
energy E~' to the core with charge 8 I eI is taken
from experiments on free ions. The core-hole
energy in the solid is obtained by means of a cor-
rection V„'= 3Z/y; (rydbergs), with r, in atomic
units, for the Hartree field of a uniform electron
gas at the cell center. A second correction Z' for
exchange and polarization in the electron gas is a
composite of contributions associated with electron-
gas screening and core-to-valence exchange, the
latter contribution being small. For the energy
associated with the extra conduction state, Hedin
takes the chemical potential obtained from band-
structure calculations and corrects this, using the
Hartree potential 2. 41VZ/y, of a:uniform electron
gas and the self-energy term Z' for exchange and
correlation in the electron gas. Z' and Z are al-
most equal and of opposing sign. The summed con-
tribution for the Li ls core hole, the Na and Al 2g
core holes, and the K Ss core hole are reproduced
in Table I as values of ~0~. They lead to agree-
ment with experiment that is generally well within
0. 1 By.

There are, however, several features of this
calculation that give cause for concern. They are
as follows. (a) The effect of electron-gas inhomo-
geneity on ~0 is neglected. We show in Sec. ID
that this effect can amount to 0. 5 Ry. (b) The elec-
tron-gas polarization by the core hole is treated in
a simplified fashion. (c) The effect of conduction
states on the core functions is taken into account
only to first order, although the energy involved is
several rydbergs. (d) The bulk chemical potential
employed in the calculation disagrees, for higher
valence materials, with the results of a careful

TABLE I. Contributions to the theoretical excitation threshold S~pH, calculated by Hedin, compared with the observed
energy Amp. The p, are alternative values of the bulk chemical potential calculated by Schneider. All numerical values
are given in rydbergs.

Solid

Li

Na

Al

Edge

5.560

L, 5. 887

12.089

Mg 3.529

-0.924

—0, 763

-3.010

—0. 617

—0.448

—0.396

-0.661
—0.304

—0. 157

—0. 148

0. 049

-0.153

—0.152

—0.169

-0.120

-0.149

4. 03

4.58

8.47

2.46

Scc)p

4. 03

8.48

2. 51

These results are tabulated in Ref. 1.
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study by Schneider, ~' also shown as values of ps
in Table I. It therefore appeared appropriate to
undertake a systematic investigation of core-ex-
citation energies, including the effects of electron-
gas inhomogeneity and core-orbital distortions, in
these and other similar materials.

Point (d) above bears on a second area of inter-
est in the present work. This is the difficult and
still troublesome question of the bulk chemical po-
tential p, in crystals. The work function S' mea-
sures the difference between p, and the surface di-
pole potential change d Q associated with the de-
tailed structure of the electron wave functions at
the crystal surface. When the dipole moments of
surface atoms cause the electrostatic potential Q
to increase by 4P in passing outwards through the
surface, the observed

W=-&P~ e~ —p (l)

does not serve to specify g and r Q separately, and
quoted values of these important quantities may
vary from one source to the next by several eV in
higher-valence crystals. This uncertainty is of
profound concern in this and previous calculations
of ~0, as errors in the values of p, employed in-
troduce similar errors into the predicted ~0. The
importance of this point is illustrated by the dif-
ference between the values of p, for Al employed by
Hedin and calculated by Schneider, both given in
Table I.

There have recently appeared attractive model
calculations by Lang and Kohn ' 3 in which both
the surface energies and the work functions of
many simple metals (including polyvalent crystals)
are rather accurately reproduced. As a starting
point, these studies employ a model in which the
ionic charge is smoothed into a uniform background
charge. A large surface dipole potential appears
in the self-consistent charge distribution of this
model because the Hartree potential is otherwise
zero and electrons near E~ are not bound. Elec-
trons therefore spill out of the solid surface and
the resulting dipole layer stabilizes all band states.
The model is then improved~2~'3 by a first-order
calculation of the change in 5' caused by the true
ionic field as simulated by Ashcroft pseudopoten-
tials. The first-order eorreetion proves to be

0. 5 eV in most cases and is weakly dependent on
surface orientation. The calculated values of 8'
are in very good accord with the experimental evi-
dence in most cases.

When corrected for dissimilar definitions of ~P,
the calculations of Lang and Kohn, and of Schneider
give a consistent account of the way the potential
change at the crystal surface is divided between
surface terms and bulk terms. In this respect, the
later calculations therefore support Schneider's
contention that the surface barrier is small. It

has, of course, long been realized that electrons
bound into solids by strong Hartree fields do give
rise only to small surface barriers, typically & 1
eV. ~5 However, there remain added complications.
The early work of Smoluchowski' established thai
the normal atomic surface irregularity of crystal
faces creates a dipole layer that opposes the part
caused by the tendency of electrons to penetrate
the surface field, thereby reducing b, Q further.
Model calculations by Bennett and Duke 7 have re-
vealed added effects of the periodic potential.
Each of these theoretical contributions therefore
adds weight to the view that surface atoms have
only a small average dipole moment, although the
detailed numerical results may contain residual
uncertainties. This in turn suggests that the sim-
plified procedures by which p was obtained in
earlier calculations of core-excitation energies
may, as remarked above, be much less accurate
than is apparent from the final computed values of
S(d .

The present calculations provide a more system-
atic evaluation of 5~d, including band effects, and
also cast light on these important questions con-
cerning p and hQ in real materials. The method
outlined in Sec. II. and detai. led in Sec. III proceeds
by an examination of the energy changes that en-
sue when a core electron is annihilated. Since the
core hole experiences the interior field, the energy
is sensitive to b, Q. The neutral excited solid is
obtained by adding an electron in the lowest avail-

. able level. Vfe can obtain the energy change in this
step either by using Schneider's value of p, , in
which case b Q is eliminated, or by assuming that
b.P is small and subtracting the work function from
the total energy. It turns out that results obtained
by these two methods have a comparable degree of
agreement with the observed 5~0. Our results,
therefore, support Schneider's contention that the
surface barrier caused by surface atom dipole mo-
ments is small.

H. GENERAL APPROACH

We shall calculate the transition energy in an
approximation substantially better than Hartree-
Fock theory for the cores and for the electron gas
separately. To do so, we first write the Hamil-
tonian of the electrons of the solid in the form

in which
Ze 1 'e

x, =Z —v'. -Z — +-Z—
u 2~

O, A +eA 2 ng &O.g
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ex„=Z-
+Ol f',

Here, Greek subscripts denote core electrons,
italic lower-case subscripts denote valence elec-
trons, and italic upper-case subscripts denote
nuclei of charge Z. The core-band wave functions
we denote by 4 and the valence-band wave functions
by +, so that the total wave function is

X=CO (6)

and the total energy is obtained from Eqs. (2)»d
(V) as

E, = &c I&.lo&+ &+l&J+&+ &xl& Ix&

By writing the wave function in terms of spe-
cific core electrons and valence electrons in this
way, we acknowledge that exchange between core
and valence states will be ignored, although it will
become apparent later that intracore and intrava-
lence effects are to be included fully. The neglect
of core-to-valence exchanges is justified for deep-
core levels by the small overlap of core orbitals
with valence levels that are, in any event, largely
excluded from the core volume.

We shall represent by primed symbols 4, 4,
y, 3C, ete. , properties of the lowest excited
state of the entire system in which one core elec-
tron is removed to a stationary state of zero en-
ergy at infinity. The excitation energy @cop ls
thus obtained as

kv =E, —E, +p, =BI".,+BE +BE, +p.

in which

~E,=E,'- E,=&e'Ix,'I o'&- &e Ix, l
c»,

5E,=E, —E =(0 lx, l
0 ) —(4IK,

I
&)

«..=E.'.—E.,=&x'l~.'.
I

x'&- &xl&. l x&, (»)

and with po the energy increase when the removed
electron is returned to the lowest orbital available
for occupation in the conduction band. In these ex-
pression E', and E, are core energies of the excited
and ground state configurations, respectively, in
the presence of the electron gas. The energies in-
clude all interactions between core electrons but
exclude, except in the determination of 4 and 4,
the Coulombic interaction between valence and
core electrons. The latter contribution appears
in 5E„, which gives the change in core-to-valence
coupling energy associated with the transition.
Finally, 5E, represents the difference in energy
of the electron gas, including interactions among
valence electrons, betweenthe excited- andground-
state configurations. In summary then, OE, and

5E~ are, respectively, the changes in self-energy
of the self-consistent core and electron-gas dis-

tributions, and 6E„ is the change in core-to-va-
lence coupling energy.

It is convenient to keep 5E, in the form given by
Eq. (9), since this contains the major part of h&uo

in a tractable form, and to rewrite the two re-
maining terms 5E and 5E„ofI~, in a form that
has had notable success in problems related to the
band structure of solids. We shall regard both
the excited-state and the ground-state electron-gas
configurations as derived from the uniform back-
ground charge model by the replacement of theuni-
form background by the correct ionic fields. Sup-
pose that the initial model electron gas has an en-
ergy Eo. Keeping the electron gas rigid, we now
replace the uniform background by the true ionic
potential with an accompanying energy change E„
which resembles a Madelung energy. The electron
gas is next released and there results an energy
change E„by relaxation. Similarly, for the excited
state one obtains energies E, and E„ for the electro-
static and relaxation contributions. Clearly,

E() + E„+E~ = E~+ Ecg

provided only that the core distributions used in the
calculations of the E, and E„are precisely the self-
consistent functions that describe the core- electron
motion in the presence of the relaxed electron gas.
With

(14)

we now obtain, from Eqs. (8), (12)„and (13), thp rp
suit

k coo = 5Ec+ 5E»+ 5E~ + JLt, p

The energy Eo of the uniform background charge
model is not relevant to the excitation energy and
has disappeared from Eq. (16).

In summary, then, the evaluation of ~0 may use-
fully be partitioned into the following steps: (a) An
evaluation of the self-energies of the cores as dis-
torted by the presence of the final self-consistent
electron-gas distributions; (b) a, determination of
the electrostatic self-energies of a uniform elec-
tron gas together with the rigid (deformed) cores;
(c) a calculation of the electron-gas relaxation en-
ergy when it is exposed to the field of the full core
band and the excited core band; and (d) an evalua-
tion of the energy change ILt, o when the annihilated
core electron is returned to the lowest unoccupied
valence orbital of the solid.

These steps are treated separately in the detailed
discussion that follows in Sec. III.
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III. DETAILED EVALUATION OF CORE-EXCITATION
ENERGIES

We now present a detailed description of the
evaluation of the several terms contained in Eq.
(16) for the core-excitation energy fichu, .

A. Core Self-Energy

Complex and precise methods are now available
that allow the accurate calculation of the total en-

ergy of atomic systems. These methods can ac-
count accurately for correlation effects in valence
orbitals and for correlation and relativistic effects
in core states. ~ However, even nonrelativistic
Hartree-Fock calculations in the absence of ex-
ternal fields remain time consuming for heavy
atoms and are much too demanding for use in sur-
veys having the breadth of the present work.

It is therefore fortunate that the complexity of
these procedures is entirely unnecessary in cal-
culations of the quantities of interest here. The
point is that the core self-energy enters as a dif-
ference between the core ground state and the
ionized core. Relativistic effects important for
deep states enter only as a negligible difference
into the calculations of Scop. It has also been known

for some time that correlation corrections to the
one-electron Hartree-Fock scheme take a simple
and reproducible form for core orbitals. To the
desired accuracy of - 0.01 Ry, the correlation en;
ergy turns out to be an additive property of the
particular orbital occupied that is highly insensi-
tive to the charge state of the ion (provided that
the core shell remains full) and to the particular
atom in which the core orbital is embedded.
These points are demonstrated again in the Appen-
dix for several cases involving the free ions of
light elements. For these reasons correlation cor-
rections to the Hartree-Fock scheme can be added
with high accuracy and a minimum of effort even
for core orbitals distorted by the crystal field of
valence states and other ions. This does not, of
course, lessen interest in the precise calculation
of the corrections themselves; it merely indicates
that, for the purpose of our present study of core
excitations, questions of core correlation can be
dealt with to all necessary precision.

There is a final simplification that is of greatest
importance to the present investigation. It is not
widely recognized that full Hartree-Fock procedures
dures are unnecessary for accurate calculations of
the ionization potentials of outer core electrons.
We show in the Appendix that Hartree-Fock pro-
cedures using the Slater ~ exchange approximation
reproduce to -0.02 Ry the Hartree-Fock transi-
tion energies of free ions. It should be emphasized
that Koopman's theorem is of no utility whatever
in these studies. The self-consistent wave func-
tions of the ground state and ionized cores must be

calculated completely and independently. When
these wave functions are then employed with the
Fock Hamiltonian to calculate the energy, the ex-
citation energy Sup agrees with the full Hartree-
Fock value to high accuracy. Presumably this oc-
curs because the energy is stationary for the true
Hartree- Fock wave functions. For this reason,
the correlation correction we apply to the ioniza-
tion energy calculated using the Slater exchange
approximation has the status of a true correlation
energy rather than merely representing a systemat-
ic error in the calculations procedure. Since rel-
ativistic effects in @gp are negligible, our method
provides core contributions to the excitation energy
that are reliable to -0.02 Ry.

The procedure we have employed to calculate
5Ep is therefore as follows. Different cores in the
solid are assumed to be independent and are cou-
pled only through 3C„. We calculate, using a mod-
ified Hermann-Skillman routine, the core wave
function of an ion in the presence of an assumed
field from the electron gas. The field is then re-
calculated for the deduced distribution of core
charge, using methods discussed in Sec. III C, and
the core structure redetermined for this new va-
lence field. The process is found to converge after
some 25 iterations to final values of the core wave
functions and the associated electron-gas potential.
Using these Hartree-Fock Slater wave functions,
we then calculate the core self-energy using the
full Hartree-Fock expression for the core energy '
to obtain the core energy E„=E,—5„with 5, the
correlation energy of the ground-state core. Simi-
lar procedures yield E„=E,—5„ the energy, less
correlation, of the ionized core in the presence of
its self-consistent electron-gas field. The core
contribution to the excitation energy follows as

5E =E —E =BE +5 —5, (»)
with 5E, =E,', —E . The correlation contribution
6p —5 to 5E, is obtained from subsidiary calcula-
tions for free ions, as explained in the Appendix.

Values of 5E, computed in this way for the 1s
ionization potential of Li' and Be ' and the 2p ion-
ization potentials of Na", Mg ', Al, and Si, all
in the solid state, are given in column 1 of Table
II. Also shown in Table II are values of the cor-
relation correction 5,—5,. The resulting values of
6E, are believed to be accurate to - G. 02 Ry. They
also differ only to this extent from the correspond-
ing ionic excitation energies, but the influence of
the dissimilar orbitals for the ground-state and ex-
cited cores have more significant effects on the
electron-gas contributions, as described below.

B. Electrostatic Energy

We now turn to a calculation of the electrostatic
energies E„E„and 5E, defined in Sec. II.
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TABLE D, Contributions to the core excitation energy Scop in various solids. All numerical results are given in
rydbergs.

1 2 3 4 5 6 8

Al

Si

L23

L23

~ See Ref. 2.

Solid Edge

Li

gEO

5.407 0.15

11.152 0.16

3.344 0.12

5.771 0. 12

8.711 0.12

gEO

-0.824

—2.326

—0.682

—1.644

-2. 800

12.148 0. 12 -3.593

—0. 080

0. 107

0. 014

0. 080

0.098

—0.382

-0.560

—0.330

—0.434

-0.518

—0. 152

SMO

4. 12

-0, 529

"See H,ef. 3.

-0.198 2. 27

-0.208 3.68

—0. 120 5.49

A(uo

0. 194 4. 08

0.242 8. 29

0. 169 2. 29

0.229 3, 66

0, 262 5.35

0.330 7.22

Schmo

4 02

8. 24~

2. 26'

3.65

5.36~

7. 29b

If the ions were simply point charges of magnitude
Sl el, then the energy required to establish the
ions in place of the uniform background charge in
the uniform electron gas would simply be the neg-
ative of the EwaM energy E~ of the la,ttice. This
follows from the fact that the electrostatic energy
of the uniform charge model is zero, neglecting
surface effects, while that of the point-ion lattice
is the Ewald energy by definition. It should be re-
marked that the surface energy of the solid is neg-
ligibly changed by the annihilation of a core elec-
tron and we can neglect all surface contributions
to &~0, other than the part that arises from the
uniform potential in the bu]k material from the
surface dipole layer.

In practice the ionic potential deviates strongly
from the point-ion form inside the atomic cell, so
the Ewald energy requires correction. However,
the core functions terminate inside the atomic cell
so the correction arises only from the interaction
of the uniform electron gas with the deviation of
the core potential from the point-ion form &&side

the cell. If the ionic potential is V(r) and the point-
ion is Zl e I/r, then the electrostatic energy of the
solid containing N ions may be written

E,=E,+~fn[V(r) Zlel/r] d'r—, (18)

in which n is the density of the uniform electron
gas. The integrand is nonzero only within the
cell, as remarked above.

For the excited state we may similarly write the
electrostatic energy

E,'=z, + le I [V,(0) -n.y]

+ J n[ (rV) —(Z I)+I l/ e]dr' r
+(lv- I)fn[V(r) zI el/r]d-'r . (19)

This is the EwaM energy E~ of the point-ion lattice,
together with the work I el V, (e) required to place
an additional charge on the ion to be excited, with

V, (0) the potential at the point-ion from the elec-

tron gas and the surrounding ions, and- lelh(IF)

the work against the surface potential hQ. The
remaining terms in Eq. (19) correct the point-ion
expression for the interaction of the uniform elec-
tron density n with the differences [V'(r)
—(&+ 1) I e I /r] and [ V(r) —8 I e I/r] between the
true potentials and the point-ion potential of the
excited core and the N-1 unexcited cores, as in
Eg. (18). We thus find

=
I el V.(0) +

I el ~~

+ fn[V'(r) —V(r)l el/r]d'r . (20)

We defer a discussion of the surface term t e l 4Q
until See. HID and here focus attention on the elec-
trostatic energy

~zo=liz, —Iel~y (21)

given by the remainder of Eq. (20). The core-
electron density vanishes outside the excited cell
and therefore so also does the integrand of Eq.
(20). For spherical core fields we can transform
this to a, radial integral with any desired upper limit
that lies outside the cores, and as this limit we
choose the Wigner-Seitz cell radius r,. Then

5EO=
I el V, (0)+4m Jo

' n[V'(r) —V(r) —
I el/r ]dr

(22)
Now to the accura, cy of the Wigner-Seitz approxi-
mation, ~ the potential from the entire lattice at
the point-ion core is just the potential of the sphere
of electronic charge in the ceQ, so that

V, (0) = 4~ f, '[nl el/r-]r'dr . (23)

To this approximation we therefore find from Eqs.
(22) and (23)

fZ, =4~n f"'[V'(r) V(r)] r dr— (24)

It may be noted that the sphere approximation is
accurate to 0. 5% in simple lattices. ~4

7.'he electrostatic energy has been expressed in
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the convenient form of Eq. (24) to bring out an
important feature of the present work. All details
of the crystal structure are erased from Eq. (24);
it contains only the electron density and the atomic
cell radius. We shall find that the relaxation ef-
fects discussed below in Sec. IIIC introduce the
lattice into the energy only through the pseudoatom
charge density in the atomic cell, which again is
only weakly dependent on the host lattice. These
are the first signs of a central point that emerges
from this work: the core-excitation energy is very
insensitive to the environment of the excited atom.

We have evaluated the energies 5E, given in
column 3 of Table II for the host lattices listed
there. In each case the potentials V'(y) and V(r)
were obtained from the self-consistent core-elec-
tron densities evaluated in Sec. HI A above. Note
that the nuclear potential is eliminated from Eq.
(24) and that for the main part the integrand rep-
resents the smooth potential of a single (iso-
tropic) core hole. The values given in Table II
vary up to several rydbergs and should have the
accuracy of the Wigner-Seitz sphere approxima-
tion for the uniform electron gas. ~ Corrections
to these results arising from the inhomogeneous
electron-gas distribution are treated in Sec. DIC.

C. Relaxation Energy

In this section we examine the inhomogeneity
of the electron gas caused by the interaction be-
tween core and valence electrons. The precise
configuration of the electron gas influences the
core-excitation energy in three distinct ways.
First, the inhomogeneous electron gas creates a
potential at the core that differs from Vo(0) and the
excited ion is left in a different potential which
therefore modifies 5~0. Second, the excited ion
has an extra positive charge that perturbs the elec-
tron gas. The screening response of the host lat-
tice causes a large energy reduction that again has
a major effect on 5~&0. Last, the electric fields
arising from the inhomogeneous electron gas in the
ground and excited configurations distort the core
functions in a way that must be accurately incorpo-
rated into the calculations of Sec. QIA to obtain
accurate core self-energies. For these reasons
it is of importance in calculations of ~0 that the
mutually self-consistent forms of the core- and
valence-electron distributions be accurately in-
corporated into the total energy calculations.

Many recent studies have focused on questions
related to the way in which the atomic cores in-
fluence the valence-electron distribution. Diverse
properties such as band structure, transport phe-
nomena, and cohesion-related areas concerned
with total energy, elastic constants, defect forma-
tion energies and electronic surface properties

have in turn come under close scrutiny. While it
cannot be asserted that complex phenomena con-
cerned with cohesion have thereby become well
understood for multivalent solids, it is neverthe-
less true that those investigations employing
pseudopotential or model potential methods have
on average played by far the most important part
in the recent elucidation of crystal properties.
This applies not only to the semiquantitative tracing
of related properties in particular crystals but also
to the accurate and relatively simple evaluation of
specific model predictions for a wide variety of
solid types. The field of model potential calcula-
tions up to 1970 is reviewed by Heine and co-
workers. ~~ It is on the foundation of these earlier
studies that we shall treat the relaxation energy
using pseudopotential methods.

An application of pseudopotential methods to the
present problem cannot go completely unquestioned.
While other investigators have found that the struc-
tural dependence of the energy in metals and semi-
conductors (not the total energy) can be estimated '

by these means to -0.01 By, 4 the present problem
provides a more severe test of this elegant method.
The point is that the core-hole potential appears in
the sensitive region in which the true core potential
is judiciously parameterized by the pseudopotential
structure. There is at present no clear answer
to the questions posed by the possible nonadditivity
of the pseudopotential and any additional fields
arising from core holes. A second difficulty
stands quite apart from the merits of the pseudo-
potential representation itself; it concerns rather
the almost mandatory use of linear-response
theory in conjunction with model potentials to de-
duce the self-consistent valence-electron distri-
bution. For Al with g= 3 the electron gas screening
the hole suffers a fractional density disturbance
6n/n- s, but for Na the electron density increases
by a factor -2 in the cell containing the excited
core. Now the dielectric (linear response) ap-
proximation can only be expected to apply satisfac-
torily for small fractional changes in n so the
very basis of the procedure comes into question
for monovalent metals. Fortunately, it is for pre-
cisely these cases that the relaxation energy con-
tributes least to lr,go and fractional errors assume
a lesser significance in the final result. In addi-
tion, the surface fields are best understood for
the monovalent metals, so that the accuracy of the
procedures employed becomes subject to clear
inspection. In what follows we therefore study
from a pseudopotential approach the relaxation
energy contribution to the core-hole excitation en-
ergy.

Consider then the energy change as the uniform
electron gas relaxes in response to the fields V(r)
of the rigid-ion cores. There are two contribu-
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I

E, =- —,
' ~g'Iv(g)l' 1- '

Here, V(k) is a Fourier component

(25)

tions: a decrease in the core-to-valence coupling
energy is partly offset by an increase in the self-
energy of the valence electrons. It is well known

that in a linear dielectric the latter term is just
half the magnitude of the former term. The total
energy change, typica, l of all linear dielectrics,
is then

excitation. Therefore,

5&„=~v, (g) &p(g) (34)

simply gives the interaction of inhomogeneities in
the electron-gas distribution with the change in
core charge distribution.

This latter contribution to 5E„may be brought
into the most convenient form by observing that the
total potential V in the crystal is the sum of the
core and valence potentials:

)'(k) fZ vj(r)e'"'d'~ v..(g) = v(i) + v, (g) =v(g)/~(i) .
From E(l. (31) we thus obtain

(s5)

5E„=E„' —E„=g E~+ 5E

in which

6Z = ——Zg'[V(g) 6V(g)+c c 1 1—
sw; ' '

&(g)

(29)

(so)

5z„=-—z u'l5V(k)l' 1-
Z ~(k)

(31)

We emphasize that 5E„and 5E„each have a
transparent significance. 5E„ is just the relaxa-
tion energy of a unifonrg electron gas screening the
core hole in the excited configuration. The struc-
ture of 5E„ is made obvious by noting first that

V, (k) = —V(k) [1—1/~(k)] (32)

is the potential due to the final self-consistent elec-
tron-gas distribution of the ground state and, sec-
ond, that from Poisson's equation

5P(g) = (g'/«) «(i) (33)

is the change in core charge density caused by the

of the potential (summed over all ions i) experi-
enced by the valence electrons for their proximity
to the cores, and the summation extends over all
non-zero reciprocal lattice vectors g. The quan-
tity &(g) is the dielectric constant of the electron
gas for that value of g.

Similar expressions hold for the excited configu-
ration. Suppose that the core hole exposes the
conduction electron gas to an additional potential

& v(r) = v'(r) —v(r) , (27)

with Fourier components 6V(k) that extend through-
out the entire reciprocal space. Then, for the ex-
cited configuration we find in place of E(l (25),

~g'(I v(i) I'+[V(g) «(g)+ c c ])
77 g

P»- ' ——'Zu l5V(k)l
a(g) 8)T „- q(k)

(23)
The difference between the ground- and excited-

state relaxation energies may therefore be written

5Z,.=- —Z g'[~(g) -1][v„(g)5V(g)+c.c.] .
(35)

We have calculated values of &E„from the em-
pirical pseudopotentials V„(g) tabulated by Cohn
and Heine 8 and obtained principally from de Haas-
van Alphen-effect measurements. These results
are presented in column 4 of Table D. Various
correlation corrections to the random-phase ap-
proximation for e(k) were employed in prelimi-
nary calculations. It transpires that the transition
energy h~~o is extremely insensitive to correlation
in the electron gas and, while the various contri-
butions to hi,go varied somewhat more, different
approximations for &(k) caused hrdo itself to change
only by -0.01 Hy. The values quoted in Table II
were obtained using the Sham ~ correlation correc-
tion.

Two exceptions to the procedure outlined above
must be noted. First, in the case of Si, the di-
electric function was modified to an isotropic form
which tended to the Si static dielectric constant at
k-0, following the model of Srinivasan, 8 which
rests on earlier work of Penn and Nara. Sec-
ond, in the case of Li, the sign of the pseudopo-
tential is not well determined. Cohen and Heine
express the opinion that V„(1,1, 0) is positive
but our calculations are highly sensitive to the
pseudopotential in this case and strongly indicate
that V„(1,1, 0) is in fact negative. An incorrect
sign here would throw 1~0 off by several eV.

Values of the remaining relaxation contribution
6Z„have been calculated from Eq. (31) using the
dielectric function specified above; these results
are presented in column 5 of Table II. As men-
tioned earlier, minor changes in dielectric func-
tion cause small compensating effects on gE„, 5E„,
and 6E, that have no significant influence on the
resulting @~,.

The preceding analysis yields also the electron-
gas fields experienced by the ground and excited-
core configurations. In the ground state the core
experiences a field obtained from E(ls. (32) and (35)
as
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V, (r) =Z V„(g) [I - &(g)] e«' .
Similarly, in the excited configuration the field
from the electron gas is

V,'(r) = - Z[~(k) V,.(k) 6(k-g)+6 V(k)]

(SV)

(39)

with p, the bulk contribution and 4Q tel the barrier
due to surface dipoles. We thus obtain, from Eqs.
(16), (1V), (21), (29), and (39),

@u0=6E,+(6,' —6,)+6E,+6E„+6E„+p . (40)

x[1 —I/e(lt)]e'f' . (38)

These fields were included as static perturbations
in the iterative procedures employed in the calcu-
lation of 5E, by methods explained in Sec. GIA.

Two interesting features of these results bear
explicit comment. First, the structure of the solid
has very little influence on the value of pE„. It is„
after all, only the local electron density in the cell
that perturbs the core transition, as demonstrated
by Eci. (84), and the electron gas is well known to
reproduce approximately from one solid to the next
in the form of a sensibly invariant pseudoatom
charge distribution. Therefore the excitation
energy ~0 should exhibit a marked insensitivity
to the atomic environment. Second, the form of
the relaxation energy tends to alleviate serious
doubts as to the applicability of pseudopotential
methods. The pseudopotential term is, after all,
just the energy change expected if the electron gas
were held rigid during the excitation, and the ef-
fect on the transition energy is in any event & 0. 1
By. The screening contribution pE„ is much more
important as it rises to -0. 5 By. For attractive
potentials, linear-response theory may underes-
timate the relaxation energy, but this should not
be too serious for Al with 6n/n-1/S. Although a
precise estimate of the likely error in the calcu-
lated 5E„ is very difficult to establish, we think
that the quoted values should be accurate to -0.1
By. It should further be borne in mind that the
clear separation of &E„ into &E„and 5E„occurs
only in linear-response theory.

D. Excited Electron

The various terms in the energy considered so
far sum (apart from the contribution ~ e ~ &/) to
give the work required for the annihilation of a core
electron. To obtain values of the core-hole-exci-
tation threshold ~0, we must include the energy p,

of the excited electron when introduced into the
lowest available valence orbital. As indicated in
the Introduction, this energy remains imperfectly
understood. We may certainly write the energy

Values of p,, of p, calculated by Schneider'~ are re-
produced in column 6 of Table G. It should be re-
marked that the p,, are not fully consistent with the
present calculations as Schneider calculates p. to
second order in the crystal potential, whereas our
present results include first-order terms only.
However, the second-order effect is at most -0.05
By and is often -0.01 By, so no attempt has been
made to modify this inconsistency.

A second approach takes us by way of Eq. (1).
If we assume that the surface barrier due to the
dipole moments of surface atoms is negligible, then
p, = —8" and we have

@go= 6E~+ (6~ —6~)+ 6E,+ 6E~, + 6Eq —W . (41)

The present calculations therefore allow us to ex-
amine the assumption b Q = 0 in many cases of in-
terest. These results are discussed in Sec. HIE,
in terms of the observed values of 8'presented in
column 8 of Table G.

E. Discussion of Results for Simple Solids

Column 7 of Table G gives the va, lues ~0~ of the
theoretical core-excitation energy obtained from
Eq. (40) using Schneider's values of the bulk
chemical potential p, . These results presumably
represent the most complete theoretical predictions
for comparison with the observed edge energies
given in column 10 of Table G. The agreement is
rather satisfactory, with the observed transition
energy falling -0.1 By below the calculated values
for the Li E edge and the Al L&3 edge, and being es-
sentially indistinguishable from the theoretical
predictions for the L&3 edges of Na and Mg. It ap-
pears therefore that the analysis presented here is
capable of providing good accuracy in calculations
of core excitation energies in a variety of solids.

Some comparison of the present results with pre-
vious calculations by Hedin' of the Li K edge and
the Al I.n, edge energies i.s possible. In the case
of Li, 5EO+&,' —p, agrees very closely with free-ion
excitation energy and 6d,'+6E„=—0.904 Ry agrees,
fortuitously, with the value SZ/r, = —0.924 Ry used
by Hedin. The hole relaxation energy of gE„
= —0. 382 By is also in fair accord with Z, = —0.448
By obtained by Hedin. For Al, however, larger
differences arise, although a precise comparison
is not possible because our present results pertain
to the L2~ edge, whereas Hedin studied the L& edge.
In our case 5E, again closely approximates the
free-ion excitation energy, which Hedin uses.
However, the Hartree contribution, SZ/r, =3.010
By, is in very poor accord with 5EO+ gE„=—2.702
By obtained here, and the value p, = 0.049 By em-
ployed by Hedin differs markedly from Schneider's
result p,, = -0.120 By. We feel that the correct
value of p, may be still more negative, for reasons
discussed below. Thus, for polyvalent materials,
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there appear discrepancies which amount to several
tenths of a rydberg. It may be noted that the ap-
proximation 3Z/r, is inaccurate both because the
core functions contract on ionization, thus changing
F0,, and because the electron-gas inhomogeneity
introduces an added term 5E„. For monovalent
metals these discrepancies are much reduced and
the alternative calculations are in generally better
agreement.

The results described above pertain to calcula-
tions in which each step is undertaken from first
principles, except for the underlying empiricism
of pseudopotentials which have only a limited in-
fluence on the value of ~0. There remains the
question of how well the bulk chemical potentials
of crystals, particularly those formed from multi-
valent atoms, can at present be specified. As
mentioned above, there exists at present no ex-
perimental procedure by which p, can be deter-
mined, and theoretical estimates vary. To inves-
tigate this aspect of the problem we have adopted.
the hypothesis that the surface barrier 6P is neg-
ligibly small and employed value of —8' in Eq.
(42) to obtain additional estimates ~0 of A~0.
For this purpose the observed work functions tab-
ulated by Lang and Kohn'3 were employed except in
the case of Si, for which a carefully established
electron affinity is available. 3~ The resulting ~0,
given in column 9 of Table II, are in startling
agreement with the observed ~0 listed in column
10.

There are, of course, two alternative conclusions
that could be drawn from these results. It may be
that the surface barrier in a wide variety of solids
are indeed small. Certainly, the high accuracy ob-
tained by calculating 5~0 from the best theoretical
values of p, makes it appear unlikely that the sev-
eral contributions calculated here have a summed
error ~ 0. 1 By. The alternative possibility, that
the theoretical contributions contain errors that
precisely cancel the surface-atom dipole potential
hQ from the observed W, undoubtedly merits con-
sideration, but appears rather remote in view of
the wide diversity of materials studied in this
work. On the whole, we are inclined toward the
view that the surface barrier caused by the dipole
moments of surface atoms must in general be quite
small, say -0. 1 By, as indicated also by the trend
of estimates leading to the most recent results of
Schneider. Further brief remarks concerning this
interesting question will be found in the following
discussion of alloys and amorphous materials.

IV. ALLOYS AND AMORPHOUS MATERIALS

A. General Features of Inhomogeneous Systems

We now turn to a brief discussion of inhomoge-
neous materials, for which the experimental evi-

dence is at present less perfectly assembled. The
materials of current experimental interest include
amorphous solids (vacuum deposited as thin films)
and alloys in which two atomic species are inter-
mixed. Our principal interest lies in the striking
insensitivity of the core excitation and absorption
threshold to the crystalline environment of the ex-
cited atom.

As emphasized above, the contributions 5E„
gE„gE'„, and &E„contain little or no reference
to the crystal structure. Only &E„contains recip-
rocal-lattice parameters, and this relatively
small term depends on the host lattice only to the
extent that the pseudoatom concept is invalid. The
present analysis therefore provides a direct ex-
planation from first principles of the observed
minor effect of host environment on the core ex-
citation energy. The degree to which this charac-
teristic reproduces in nature is made evident by
recent comparative studies of soft-x-ray absorp-
tion in amorphous and crystalline Si films. 33 It
is found that the edge structure changes on anneal-
ing but that the threshold energy remains invariant
to -0.01 Ry. Since we may reasonably suppose
that neither the electron affinity nor the surface
barrier are changed significantly by disorder in
which the short-range bonding remains largely
intact, this result is reproduced to high precision
by Eg. (41).

Certain data are now available for alloys contain-
ing two atomic species. These concern the soft-
x-ray recombination spectra of CuNi, CuAg, AgAu,
CuAu, and AlMg alloys. 34 36 For the main part,
these spectra also exhibit the insensitivity to alloy
composition discussed above. In the classic case
of CuNi, for example, the recombination spectra
of Cu and Ni core holes can be synthesized quite
adequately from an appropriate superposition of
the recombination spectra of the two pure metals,
even though the spectra overlap in the alloys. 3~

Some merging of the recombination spectra of the
d bands is observed in the remaining noble-metal
alloys, but the threshold remains almost unper-
turbed throughout the range of composition.

Despite the factual simplicity of the experimental
results, there exist underlying complexities in the
theory for inhomogeneous systems. In what fol-
lows, we investigate the theory of the recombina-
tion edge for the case of A1Mg alloys. Neither the
Al nor the Mg recombination edges exhibit large
shifts in passing from the pure metals to alloys of
compositon Al, Mg, and Al»Mg». The separate re-
combination spectra of the two cores do show dis-
tortion of conduction-band width and shape which

. point to band-structure changes in the alloys, but
the thresholds are not strongly affected. Since
Mg and Al can be represented quite well by avail-
able pseudopotentials, we might expect that the



SOFT-X- RAY ABSORPTION THRESHOLD IN METALS. . .

edge characteristics can be reproduced with rea-
sonable accuracy by an extension of our previous
analysis. It is to a discussion of this case that
we now turn.

8. Recombination Threshold in Alloys

The theory takes its simplest form when foreign
atoms are present at infinite dilution in the host
lattice because interactions among solutes then be-
comes negligible. We shall therefore consider the
iwo cases of (a) recombination at Mg impurities at
infinite dilution in an Al host and (b) the opposite
limit of Al solutes isolated in the Mg lattice. Nei-
ther limit has been studied experimentally, pre-
sumably because intensity problems limit the avail-
able sensitivity, but ihe smooth trends of existing
data over two-thirds of the phase diagram suggest
that abrupt shifts of 5&0 in the dilute region are un-

likely.
Of the two major changes in the theory introduced

by questions of the threshold for solutes in a for-
eign host material, one may be treated accurately
and conveniently inside the framework of Sec. III,
while the other requires additional model assump-
tions. First, the impurity in its ground state pre-
sents a substantial perturbation on the host electron
gas and the valence redistribution in the ground
state must be incorporated into the calculation of
the recombination edge energy of the solute. How-

ever, this can be accomplished by methods directly
analogous to those employed for the excited state
of the pure metal in Sec. IG. The second aspect
of this problem is less simple but has a clear phys-
ical importance. Impurities disturb the geometry
of the surrounding host lattice in a way that modi-
fies h(do and must be included in an accurate cal-
culation of the edge energy. The point is that large
solutes occupy a large volume in the host lattice,
and the volume is linked to the screening charge
distribution by the requirement for local electrical
neutrality.

The charge shift caused by misfit can, in princi-
ple, be calculated from the positions of the solvent
atoms. Suppose that the solvent atom occupies the
site r„. The change in lattice potential at r due to
a displacement 5r„ is, in the absence of electronic
redistribution, just

5V„(r) = —V V(r- r„) ' Br„ (42)

By summing over all solvent atoms we therefore
find that the total change in potential due to the de-
formation is

V,(r)=Z f V„(r)=-Z Z il fr„V(k)8'"'"-"&,
(43)

in which V(k) is the Fourier coefficient k of V(r).
The deformation therefore introduces a local po-
tential near the central atoms with Fourier coef-

ficients

V,(k)=-Z Z ni„v(K)e'"' . (44)

V,(k)=-u, V(k)Z =-=~ e
lr, I~

= -WV(k) k'Z; &,(&.),
with N the number of atoms in coordination shell
m and g = ky . It is assumed here that the atoms
in each shell have an isotropic distribution so that
the angular average can be completed analytically.
This corresponds to neglecting the anisotropy of
V~(r), which in any event should not interact with
the spherical core. As a further useful approxima-
tion, we can truncate the summation at some suit-
able radius ro and presume that atoms appear con-
tinuously thereafter. The summation then becomes
an integral which can be evaluated to obtain finally

V~(k) = —A e (k) V~(k)

x k & -i ji(kr„)+ —jo(k~ ) ~,
Fm&t'9 N )

(47)
with Q the atomic volume of the solvent lattice and
with V„(k) replacing V(k) in after the manner of
zq. (s5).

With the lattice-deformation problem firmly in
hand we can now proceed to treat the core-excita-
tion energy of impurities. The problem falls into
steps entirely analogous to those outlined in Sec.
0 and IG for the perfect lattice. The first step is
to calculate the core self-energy difference 5Z,
in both the ground and excited configurations just
as in Sec. ID A. The only change arises from the
electron-gas field, which contains contributions
thai originate in the difference between the host
and impurity ionic potentials. These are treated
later as part of the relaxation problem. The sec-

To evaluate this field in particular cases we re-
quire displacement 5r„of the host atoms that are
not readily accessible either to theory or experi-
ment. Vfe must therefore rely on model assump-
tions concerning the form of 5r„as a function or r„.

'Since heo is unlikely to be sensitive to the exact de-
tails of the atomic displacements we shall take for
these displacements the values

Vr„=Ar„/~ r„~'

that follow from the continuum limit of the lattice-
deformation problem. " Here, A is a constant that
determines the amplitude of the deformation field.
It can be obtained in practical cases from the
change in lattice parameter caused by alloying,
using methods indicated below.

With this choice of 5r„we obtain the foQowing
Fourier components of the deformation potential:
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E„=—Z u'i v(g)5(k-g)+~v(k) + v, (k)i'

x [1 —1/&(k) j . (»)
In the same way we obtain for the relaxation energy
of the excited impurity configuration

E„'= ——Z A'i v(g) 5 (k-g)+~v'(k)+ v, (k)i'
k

x [1 —1/e(k) j, (51)
in which

6 V'(k) = V((k) —V(k) 5 (k —g) (52)

is the difference between the potentials of the ex-
cited impurity and the grou'nd-state host cores.

We thus obtain for the relaxation contribution to
AQ7 op

5E„=E„' —E„=HEI, —6E~+ 5E .. + BED

in which

(53)

5E„'= —Z n'~~v- '(k)~' 1—
~(k)

(54)

«z, =-
—, S «')«)(«))' )- -,' )

k &k

5E„=——Z g [c(g) —1j [V (g) 5 V, (g) + c.c.j,
g

(56)

(55)

«E = ——Z«()'(l)«v, («) «. «. 1() —
(g )

(57}

ond step, in which the impurity core is inserted
into the host lattice containing the uniform solvent
electron gas, also proceeds as in Sec. IO C.
Equations (21) and (24) still apply for the impurity
ionic potentials V, (r) and VI(z) in the ground and

excited configurations, respectively.
The major difference between the alloy problem

and the theory presented above for pure materials
occurs in the relaxation energy. In the ground
state the electron gas is exposed to a lattice poten-
tial with Fourier components having coefficients

V, (k) = V(g) 5 (k —g)+ a V(k)+ V (k) . (46)

Here, the first term is the perfect-lattice potential
as in Eq. (25}. The second term incorporates the
difference between the potential V, (&) of the im-
purity actually occupying the excited site and the
host atom potential presumed here in V(g). Thus

~v(k)= v, (k)- v(k)5(k-g) . (4g)

Finally, V„(k) is the potential caused by the lattice
dilation around the unexcited impurity, and is
given by Eq. (47). Following the route leading to
Eq. (25), we now find the relaxation energy

5 V((k) = V,'(k) —V((k) (56)

+ 5E„+5E~ —W. (6O)

These are the final expressions by means of which
we shall compare the theory with experiment.

C. Application for AlMg Alloys

The numerical results for alloys follow closely
along the lines established in Sec. IIIE for pure
materials. The potential of the nonuniform elec-
tron gas was employed in iterating the core and
band functions to self- consistency, and the poten-
tials of these cores were then employed in an ac-
curate calculation of E,. In the same way, E„, E„,
and E„follow in a straightforward manner from the
core functions and from the pseudopotentials em-
ployed in Sec. III. Only the contribution 5E„re-
quires further discussion. It is well known that in
elasticity theory the lattice surrounding a spherical
defect is dilated according to Eq. (46) by a fraction
$ = (1+o)/3(1 —o) =two-thirds of the added volume
of the defect. Here 0 is Poisson's ratio. The
outer surface of the lattice expands by the entire
excess defect volume, but the extra part corre-
sponds to a uniform dilation and is of no consequence
here. Now when a concentration c of Mg is added
to Al the lattice parameter is observed to increase
by a fraction 0.35c, using the factor ( given above,
we find that A» = 0. 0190» with 0» the Al atomic
volume. ' Just the reverse happens when Al is

the difference between the excited- and ground-
state impurity potentials. As in Sec. III C, these
contributions each have a simple significance.
&E„' and &E„give the relaxation energy of a uniform
electron gas perturbed by the differences between
the excited core and the host core, and between
the ground-state impurity core and the host core,
respectively. 5E„corrects the difference between
5E,' and 5E, for the inhomogeneity of the electron
gas caused by the host lattice, and 5E~ corrects in
a similar way for the potential caused by the lattice
deformation.

The final contribution to the energy is, as in
See. III C, the energy of the excited electron. We

may employ either Schneider's results for the host
lattice, or alternatively we may presume that AP
= 0 and use —8' for the host lattice. In the first
case we find for the impurity excitation threshold

0

if+0, = 5E, + (5,—5,) + 5EO+ 5E„5E„-
+ 5E„+5E~+ p, (5g)

and in the second ease we find

K~0( = 5E, + (5,—5,) + 5E,'+ 5E„5E„-
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TABLE III. Contributions to the impurity core-excitation energies (in rydbergs) for the I.23 edges of Mg in A1 and
A1 in Mg.

Core gEO 6' —6 &EO 6Ep, 51, 4Eh A~os SEoogr I(d pg

Mg in Al 5.778
Al in Mg 8. 698

'See Ref. 36.

0. 12 —2, 730 0. 094 —0.002 —0.473
0. 12 —1.683 0. 081 —1.763 —0.422

0.360
—0.221

-0.120
-0.208

3.97 0.262
5.45 0.229

3.83 (3.65)
5.43 (S.36)

added to the Mg lattice, ' so AM, = —0.019AM, .
These values have been employed in Eq. (4V) to ob-
tain the deformation potential V~(k) and the results
incorporated into a calculation of 5E~ by means of
Eq. (5V). In each case we have employed the Ash-
croft "empty core" pseudopotential'4 in evaluating
5E~. In initial studies the necessary computations
were carried out for Mg in Al using values of yo
in Eq. (4V) corresponding to summations over
various shells of neighbors up to the fourth. The
results proved highly insensitive to yo and so, for
the more complex geometry of Al in Mg, only the
first neighbors were included in the discrete sum-
mation.

A comparison of Tables II and III shows that the
core self-energy contributions for Mg and Al as
impurities are little different from the values in
the pure metals. The pseudopotential terms are
also sensibly unchanged. However, the electro-
static energies of cores in the uniform host elec-
tron gas are modified by - 1 Ry. These large con-
tributions to kuro, are largely canceled by the
screening terms 5E„and 5E„which contain contri-
butions to@~«of similar size but opposite sign to
the change in the electrostatic contribution. The
way in which screening stabilizes the recombina-
tion edge energy thus emerges clearly from our re-
sults.

A further important shift arises from the dilation
terms which contribute - 0.3 Ry to k~0, in these
alloys. The final predicted 5~«containing these
results are compared in Table III with experimen-
tal results for the Pgze metals using both Sch-
neider's values of p, and the hypothesis p, = —5"
(i. e. , b, $= 0). As for the case of pure materials,
reported above, results obtained with p. = —W lead
to a somewhat better account of the data. The be-
lief that the surface dipole moment is small there-
by gains further independent support. For Al in
Mg the predicted edge energy of 5. 43 Ry falls with-
in 0. 0'7 Ry of the observed recombination energy
for pure Al. For Mg in Al the predicted energy of
3. 83 Ry lies 0. 18 By above the edge at 3.65 Ry of
pure Mg, but the experimental results for concen-
trated alloys also appear to contain a mild trend to
higher energies with decreasing Mg content. '
While these studies require more detailed experi-
mental information before a full assessment be-
comes possible, it seems clear that existing data

confirm the theoretical conclusions within a small
fraction of the important dilation term, which has
been treated here in a rather rudimentary fashion.
The incorporation of a more refined lattice model,
where required, would appear to allow calculations
for the impurity problem to attain a precision com-
parable to that obtained in Sec. III for pure host
lattices.

V. SUMMARY

We have presented a compact and flexible theory
of core excitation energies in metals and semicon-
ductors. The theory neglects core-to-valence ex-
change but otherwise provides a mutually consis-
tent description of core orbitals within the Hartree-
Fock approximation and of valence orbitals within
the random-phase approximation. It is cast in a
form which exposes the insensitivity of the core
edge energy to core environment in these materials.

In applications to diverse cases, including met-
als having various valences, semiconductors, and

alloys, the theory reproduces observed edge en-
ergies to - I/o or - I eV. Its accuracy over the
spectrum of parameters studied indicates that the
theory is comfortably within the range of its valid-
ity. There emerges a strong indication from the
excitation energies that the surface dipole moment
is small (l eb PI ~ 0. I Ry) in all the solids studied
here. In its present form the theory provides a
clear and quantitative insight into the roles of va-
lence screening and atomic size in stabilizing the
core-excitation energies. It is our opinion that any
substantial improvement in accuracy to reproduce
structure reliably on a much finer scale (say, 0. I
eV) will require a radical reformulation of the
theory.

APPENDIX: CALCULATION OF CORE EXCITATION

ENERGIES

It is well known that many-body calculations for
atoms and crystals can only be carried through ap-
proximately, and even then remain difficult and
tedious. Exchange is correctly incorporated into
the one-electron approximation by Hartree-Fock
methods, but the nonlocality of the exchange poten-
ti81 mekes calculations exceedingly complicated,
particularly when the problem includes a crystal
potential. Many local potentials that approximate
the nonlocal exchange potential have been suggested
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since Slater first introduced the idea. 39'40 Recent
studies show that the local potential proposed by
Kohn and Sham4' yieMs enexgies that are in good
agreement with the results of true Hartree-Pock
calculations. This scheme has therefore been
employed in the present work as a txactable method
of obtalDlng the ground- and excited-state cox'e
wave functions required in the calculation of the
absorption edges of interest here. It is particularly
gratifying that the comparison of energies is found
to become still more favorable when excitation en-
ergies, rather than total energies, are compared.

The ground- and excited-state energies were
therefore obtained in the one-electxon approximation
as follows. The one-electron energies and wave
functions were first calculated, using the Kohn and
Sham local exchange potential, by means of a modi-
ified Hermann-Skillman program. ~ The total en-
ergy E, of the ion was then calculated from the re-
sulting wave functions using the fuB Hartree- Fock
expx ession for the one-electron energy, namely, -43

A one-electron approximation to the excitation en-
ergy was then obtained as the difference between
values of E~ fox' the excited- and gx'ound-state con-
figurations.

The results of calculations for 2p core-ionization
energies of free ions of Na, Mg, Al, and Si are
presented in Table IV in rows labeled "Calc." In
order, the three columns of data xefex' to Is 2s32pe- Is'2s'2p', Is'2s'2p'3s'- Is'2s'2p'3s„and
Is 28 2p Sp Is 2s 2p Sp tx'ansitlons, Ionic asym-
metry is, of course, ignored in these calculations
and the results are calculated for spherically aver-
aged wave functions, as is customary in the Hex-
mann-Skillman method. Relativistic corrections

are neglected (and are probably negligibly small
for outer-shell excitations); spin-orbit coupling
in the unfilled sheQS is also ignored. For this lat-
ter reason the experimental transition energies
presented in the rows labeled "Expt." in Table DIr

are weighted averages over the appropriate multi-
plets of exyerimentally obsex'ved transition en-
ergies. For the Si Is 2s 2p 3p'- Is 2s 2p 3p'
transitions are required information is, apparently,
not yet available.

The calculated one-electron energies compare
very satisfactorily with the experimental results.
This is best seen from the columns marked (in an
obvious notation) b~, L„A~, for the three series of
transitions, which give the differences between the
expex'lIDental and theoretical transition energi, es,
For any transition the d for the few elements are
seen to lie within a range of + 0, 005 Ry, and the en-
tire series of results are spanned by the assign-
ment 6= 0. I24+ 0.OIV Ry. This excel.lent repro-
ducibility of the calculation takes on an added valu-
able significance when it is xealized that the values
of 6 obtained here have precisely the magnitude
expected fx'om correlation in the full 2p shell,
namely, 0. 126+ 0.008 Ry. l The correlation,
which is neglected in the Hartree-Fock scheme
and cannot possibly be rectified by the local ex-
change approximation, serves to lower the energy
of the full 2p sheO and so raises the observed tran-;.
sition enexgy. But it has been observed that the
correlation energy is closely represented by a
sum over pairs of electxons occupying common
orbitals. l Qux calculations conform to this ex-
pectation by yieMing values of 6 that are affected
very little by the presence of an extra valence elec-
tron outside the core shell. The small differences
among go, ~„and 6& may well be in part caused
by residual coxrelation effects between shells and
a smaQ lowering of the excited-state energy as-
sociated with these effect.

To whatever cause the residual scatter in 6 may
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be ascribed, it is evident that the predicted tran-
sition energies obtained from wave functions calcu-
lated using the local exchange approximation are
very close to true Hartree- Fock transition energies.
Furthermore, the reproducibility of the differences
6, which we believe to be associated almost wholly
mith correlations neglected in the one-electron
scheme, allows us to predict with an accuracy of- 0. 02 Ry the exact change in core self-energy that
accompanies a core excitation. One simply adds to
the calculated one-electron transition energy the
correlation error of 0. 12 Ry.

For the crystal calculations described in Sec.
IIIA the wave functions mere calculated using pre-
cisely analogous procedures, apart from an added
self-consistent valence field derived by methods
described in Sec. IIIC. The self-energy changes

are little different from the free-ion self-energy
differences and, in view of the insensitivity of the
4 in Table IV to ionic charge, it seems very un-
likely that the core correlation energy could differ
markedly from the values for free ions. The cor-
relation energy

5c = 0. 12 Ry

is therefore employed for Na, Mg, Al, and Si in
Tables II and III in the belief that the self-energy
differences calculated in this way are accurate to
within a few hundredths of a rydberg. This lies
satisfactorily within the limits of accuracy we have
set for the calculation of the core edge energy in
this paper. The slightly different correlation en-
ergies for the 1s shell of Li and Be were obtained
by similar methods.
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