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The results for the solvable Baker-Essam model of a compressible Ising lattice are re-
derived by utilizing the equivalence of the system to a set of linear chains each described by
the Mattis-Schultz one-dimensional magnetostriction model.

The long-standing controversial question as to
the effects of lattice compressibility on magnetic
phase transitions has attracted especially wide
interest in the last two years following the publi-
cation of a paper by Baker and Essam' (BE). These
authors displayed an exactly solvable model of a
compressible harmonic lattice of spins interacting
via a spatially dependent ferromagnetic Ising cou-
pling. They found that when the system is con-
strained to constant volume or constant positive
pressure the magnetic phase transition is second
order with renormalized critical exponents. Sub-

sequently, Gunther, Bergman, and Imrys (GBI)
showed that when this system is constrained to
constant negative pressure the system undergoes
a first-order transition.

In view of the wide interest in this subject it is
worthwhile to display an alternate derivation of
the results for the BE model which is considerably
more transparent both physically and algebraically.
BE evaluate the partition function directly, treating
the lattice vibrations classically and constraining
the surface atoms to their appropriate crystal
faces. By contrast, I first transform the model
Hamiltonian to describe two independent systems.
The first system is a set of independent harmonic
linear chains and the second is a three-dimensional
Ising system of rigid spins interacting via an ef-
fective exchange coupling. Evaluation of the parti-
tion function then follows trivially. The trans-
formed Hamiltonian is obtained utilizing the equiva-
lence of the BE model to a set of linear chains,
each described by the one-dimensional magneto-
striction model of Mattis and Schultz. A canonical
transformation removes the spin-phonon interac-
tion terms for each linear chain. In contrast to
BE, the lattice vibrations are treated quantum

mechanically and terms are included in the Hamil-
tonian to describe the action of a constant and equal
compressional or tensile force applied to each
surface atom, rather than to constrain these atoms
to their crystal faces.

The BE model is characterized by the following
three features: (i) The crystal lattice is simple
cubic (lattice spacing a); (ii) the interatomic poten-
tial links nearest neighbors only and is chosen as
V;&- V(a)+e, y (u& —uy) V'(a)+ 2[eu (u& —ug)] V",
where u& „u& denote the vector displacements of
the nearest-neighbor atoms i, j from their thermal
equilibrium positions, e&& is a unit vector pointing
from the equilibrium position of j to i, and V" is a
constant independent of a. The shear-term qua-
dratic in atomic displacements V'(a) [e&& && (u& —u&)] j
2a of a central interatomic potential is specifically
excluded by BE. (iii) The Ising spin interaction
links nearest neighbors only, and its spatial de-
pendence is chosen as Zq& J(a) +e,&

-(u& —u&) J',
where J' is a constant.

It is convenient to take the crystal as a cube of
N atoms whereby each surface atom is subjected
to a constant and equal compressional or tensile
force applied normal to the crystal faces. Thus
we add to the Hamiltonian a term, —Eu, n, for
each atom s lying in a crystal face characterized
by the unit vector g, the outwardly directed normal
to that face. Positive (negative) values of the force
I'6 on the surface atom correspond to tension
(compression). For the simple cubic lattice, one
has the identity —F g„",u, ~ n= —E g&&,.& (u, —u;) ~

e&&,
where (i, j) means that the summation includes all
distinct nearest-neighbor pairs of atoms compris-
ing the crystal. Including the above term leads
to the model Hamiltonian

3
H= 3N' V(a)+Hz +P ' + Z([V'(a) —E —J' o;g~]e,~

~ (u, —u~)+ -', P'[e,
&

~ (u,. —u, )]Q,2M
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where

H, = —J(a) Z o;a,

is:he Ising Hamiltonian for spins situated on the
rigid version of the lattice. For the simple cubic
lattice the equilibrium sites can be imagined as
defining a grid of three sets of mutually perpendicu-
lar rows lying parallel to the edges of the cube.

Three intersecting cube edges are chosen as x, y,
and g axes. Thus, the three sets of rows are
parallel to these axes and they will be referred to
as x, y, and z rows, respectively. Note that each
lattice site is situated at the intersection of an x,
a y, and a z row. It is then easy to show that
H —3N V(a) —Hz reduces to a sum of 3N one-di-
mensional row Hamiltonians each of the form

g y

Z = Z — " + (V' —E —J'o„o,)(u, -u„)+-V"(u„„-u„)' + (2)

Note carefully that all commutators of these rom
Hamiltonians vanish. (This follows from the fact
that for any given atom i the dynamical variables
P", and z",. appear only in the Hamiltonian for the x
rom in which its lattice site is situated, and simi-
larly for the variables p', , u',. and p', , u', , respec-
tively. Thus, this x-row Hamiltonian commutes
with all other x-row Hamiltonians, since they do
not contain p& and g &, and also commutes mith all
y-rom and z-row Hamiltonians as they involve
p';, u'; and p', , u', , respectively. ) The Hamiltonian
in (2) has the same form as the exactly solvable
Mattis -Schultz magnetostriction model for a linear
chain. The equivalence of the BE model to a set
of 3%2 commuting Hamiltonians of the Mattis-

Schultz form was noted briefly by BE in a subse-
quent paper.

Folloming Mattis and Schultz we remove the
mixed terms in (2) involving both the spin and
atomic coordinates with the aid of a canonical
transformation

n-].

urr qn + ric + P + Omarrrsi

with p„ left unchanged. For the choice of constants,
c = (E —V')/V" and ii= J'/V", the transformed
Hamiltonian is free of terms of the form
(q„+, -q„)o„o„+,as well as terms linear in q„„-q„.
Specifically, the row Hamiltonian (2) transforms
to

(Vr E) ~ Jr Jr -i p2

n=f tl

which describes a harmonic linear chain and an
independent spin contribution. The total Hamil-
tonian (1) of the system is now given by

symbol () denotes the thermodynamic average
taken with respect to the Hamiltonian (5). Equation
(8) constitutes the equation of state of the system.
With the aid of (8) we can rewrite (8) and (7) as

and

3 s (V'-E) +J'
yI I + 3N V(a) . (7)

Finally, to ensure that the calculated lattice
spacing a+ @„„—u„) equals the actual spacing a,
we require that c+ li(o„o,) =0 or, equivalently,

where H~ is the Hamiltonian of 3N independent
harmonic linear chains, HI is the Ising Hamiltoni-
an for a three-dimensional system of rigid spins
interacting via the effective coupling

(8)

2

+3N'V( ).
2 @II

Because of the commutativity of Hl, and 8~, the
quantity (o,cr&) appearing in (8)-(10) is the nearest-
ne ighbor spin-co r relation function for the rigid
three -dimensional Ising system with the effective
exchange coupling J. Furthermore, the free en-
ergy 7 of the system is given by

7= U+3N fz, +fr,

E = V'(a) -J'(o,o)
for a pair of nearest-neighbor spins i, j. The

(8)
where fl is the free energy of a harmonic linear
chain of N atoms and Fl is the free energy associ-
ated with Hz. Equations (8)-(11)are the basic
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equations appearing in the papers of BE and GBI.
In summary, we have presented a new method

of solution for the BE model. Our method has not
only the important advantage of mathematical
simplicity, but it also provides a transparent
physical picture of the model system. We utilize
the equivalence of the BE model to a set of 3N
linear chains of the Mattis-Schultz type. This
equivalence exists as a consequence of the very

special form of the BE model. In particular, it
is essential that the lattice be chosen as simple
cubic and that the interatomic shear terms are ex-
cluded from consideration. If either of these fea-
tures are altered, the correspondence no longer
holds and the altered model cannot be diagonalized
by any available method.

I wish to acknowledge valuable comments made
by C. Domb, P. Gluck, and N. Wiser.
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T&«ills result, that the magnetic order at the surface of a semi-infinite crystal appears in a temperature
above the Curie point of the infinite crystal, is considered. In the light of this not~ it is evident that as the
Curie point is approached from above the long-range order occurs at one temperature in the whole sample.

Surface effects discussed in one of Mills's re-
cent papers' are interesting not only from the point
of view of semi-infinite magnetic crystals, but also,
and we may even say, first of all, from the point
of view of thin-film properties. In the theory of
thin films the surface effects and their special role
have been known for many years and widely dis-
cussed in literature. The equations —based on the
effective -molecular-field methods-for magnetiza, -
tion of thin films were introduced by Valenta3 and
developed by Pearson and Wojtczak . From Refs.
2-5 it follows that the spontaneous magnetization
of the whole sample disappears inone temperature—
contrary to intuitive suggestions givenby Brodkorb.
A similar situation occurs in the case discussedby
Sukiennicki~ where the spontaneous magnetization
of double films coupled by exchange interactions
does not vanish locally, but at one temperature cor-
responding to the Curie temperature of the film with
a greater exchange integral.

Since a semi-infinite crystal may be considered
as a particular ca,se of a thin film, the results ob-
tained in the thin-film theory refer also to the be-
havior of spontaneous magnetization at the surface
of a semi-infinite crystal. From this point of view
we can state that the spontaneous magnetization of
a, semi-infinite crystal disappears at one tempera. -
ture. However, Mills reports' that from the mo-
lecular-field theory it follows that the magnetic or-
der —defined as the average spontaneous magnetiza-
tion at a lattice site-in a surface layer will appear
within the interval of temperatures Tc & T & Tc if
the exchange integral in a surface layer is suffi-
ciently greater than inside a crystal. T~ denotes
here a temperature in which the denominator in the
formula of the response of the spins in the surface
layer to the external field becomes singular and Tc
is the Curie temperature of the infinite crystal. A

contradiction between the above results inclined us
to present this paper.


