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We have calculated thermodynamic properties of the ha'1f-filled-band Hubbard model for a
ring of K=4 atoms. Our results resolve serious discrepancies between similar calculations
which have appeared. For weak interactions, a new kind of smooth magnetic transition (non-
antiferromagneti. c) is found at low temperature. For strong interactions, properties are ap-
proximately independent of N when the grand canonical ensemble is used, enabling contact to
be made with recent experimental work on X-methyl phenazinium tetracyanoquinodimethan
(NMP) (TCNQ); the comparison suggests strongly that the Hubbard model is seriously deficient
as a means of des cription of thes e experiments.

There has been considerable interest recently' 3

in the Hubbard model for electrons in a ha1f-filled
band. Since exact results are extremely limited,
particularly in the intermediate temperature range
and for bandwidth b of the order of the' Coulomb in-
teraction. U, we began a study of exact numerical
solutions for small numbers of atoms„Since that
time three papers have appeared giving results
of similar calculations, Their results disagree
with each other in several important qualitative
respects: in the region ot large b/U one group
(SP) found one peak in the specit'ic-heat-vs-temper-
ature curve, the other group' (HM) finding three
peaks; for b/U= 1, the groups again disagree as
to the number oi peaks found. (These statements
concern. the four-atom ring, the only case common
to hoth groups. )

Here we resolve these important theoretical dis-
crepancies. We agree with the number of specific-
heat peaks found by HM; however, numerical com-

parison is not possible because of inconsistencies
in their results. We also disagree with their inter-
pretation of these peaks and find instead a new
kind of smooth magnetic transition. Further, the
extrapolation to large systems as to the existence
ot the low-temperature peaks for large b/U is
shown to be not possible on the basis of the four-
atom results in disagreement with HM: whenever
one-half the number of atoms is even, we show that
there is a tow-T peak for large b/U which does not
scale with the size of the system. The behavior
for small b/U does not appear to he spurious in
relation to macroscopic systems, and we there-
fore carefully examined the susceptibility to com-
pare with recent experimental results. Whereas
the previ. ous calculations were made using the
canonical ensemble, we have also made calcula-
tions in the grand canonical ensemble, as moti-
vated below.

We consider a system of four atoms at the cor-
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TABLE I. Comparison of results with high-temperature
expansion.

P U- gX)

25 x 10& 0.199875 12
25 x 10+ 0.019999 88
25 x 10 5 0.002 000 00

—,'O' P- U+ (Il)

1.2 x 10-4

1.2x 10 7

1.2x10"

II-& I/P'

0.127 003 20
0. 125 207 55
0.125 02078

ners of a square. As usual the Hubbard Hamil-
tonian is written

Troe ~
job= Tre- g(H- If'~) (2)

where P = 1/kT, p = chemical potential. The trace
runs over all states in the GCE, and only over
states with fixed number of particles N, in the CE.
It turns out thatfor the half-filled band ((N, ) = num-
ber of atoms) p= —,'Uindependent of T.

The motivation for calculating in both the GCE
and the CE is twofold. One point is that in the

H = Z b(~ c)~c;~+ UZ N), Ni(i
jje

We include only nearest-neighbor hoppings (k, ~
= k when i andj are nearest neighbors). Unless
specified otherwise, b=-1. All energy eigenvalues
and eigenfunctions are calculated numerically for
several values of U,' from these the statistical
average of any operator 0 (expressed as a function
of the creation and destruction operators e&~, and

c&,), can be calculated either in the grand canoni-
cal or canonical ensemble (GCE or CE) according
to the equation

atomic limit (b/U- 0), any intensive parameter
(e. g. , the free energy per atom) is independent of
the number of atoms N when calculated in the GCE.
Therefore the GCE for small N can be expected to
give results close to those for N- ~ for small k/U.
The other point is that, since all results for CE and
GCE become the same for N- ~, any qualitative
feature that we may discover for small N will be
considered suggestive as to the large-N behavior
only if such a feature occurs both in CE and in
GCE.

The checks of our computer program are: (i) At
high temperatures for all U we expanded the expo-
nentials in (2) in powers of P retaining only terms
of the first few orders in p. We compare the nu-
merical results with the expansion coefficients.
For instance we have computed the following quan-
tities for U=4 in the GCE:

(3)

(4)

where L„=((N„+N„) (N;, „, —N, ,„,) ). (Because of
symmetry, L,„ is independent of i. ) The numerical
results are given in Table I. We see that U- (H)
is about BP and that —,'O'P —U+ (H) is of order P
or higher; similarly I L& I/P is about —,

' and —
I L, I/

p~+-,' is of order P, in agreement with (3) and (4).
(ii) In the two cases U= 0 and U= ~, the various

(0) were again calculated analyticallye in GCE and
compared with the numerical results. There is
agreement in at least the first eight figures.

(iii) In the case of large U and low T we checked
the magnetic susceptibility against the results of
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FIG. l. Specific heat C
and spin-spin correlation
functions L„vs temperature
in the GCE. (a) U=8; (b)
U= 0.7.
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FIG. 2. Temperature at which the specific-heat maxi-
ma occur vs U are shown bythecontinuous lines. The
dashed lines labeled by numbers n show the temperatures
near which anomalies in I„occur.

)(=(uT)-'(L, +2L, +L,) . (6)

Bonner and Fisher for the Heisenberg model which
is expected to reproduce the behavior of the Hub-

bard model under these conditions when the ex-
change constant 8= —2b /U. We find convergence
with increasing U of our peak location and height
to within about 12 and 6/0, respectively, by the time
U= 15.

The specific-heat vs T is shown in Fig. 1 for
U=8 and 0.7 for the GCE. In qualitative agree-
ment with HM we find three peaks in the specific
heat at least for 0& U&6 both in CE and GCE. For
U=8 there is rough agreement with SP's results,
but disagreement for lower U. Quantitative com-
parison with the work of HM is not possible be-
cause of inconsistencies in their results. (Figures
1 and 2 of Ref. 5 give appreciably different peak
locations. ) In Fig. 2 we summarize the tempera-
tures at which the peaks in the specific heat occur.

To understand the physics of these peaks, we
studied the spin-spin correlation function —,'L» n
= 0, 1, 2. We note that the zero-field spin-suscep-
tibility X is related to this by

As shown in Fig. 1, Lo, -L» and L~ undergo a
more or less sudden change in correspondence to
one or another of the peaks in the specific heat.
For clarity, we discuss separately the two regions,
U& 6 and U & 6 (where there are two and three spe-
cific-heat peaks, respectively).

For U& 6 we see from Fig. (la) that i L, i and L,
simultaneously decrease sharply at temperatures
near T& = Tz» the low-T peak in the specific heat,
while Lo remains essentially constant through this
temperature region. Aside from the lack of any
mathematical singularity in these functions, this
behavior is very similar to the well-known anti-
ferromagnetic transition in large three-dimension-
al systems. We will therefore adopt the terminol-
ogy, used in the literature, which calls T,= T&z

the NOel temperature. We note that this tempera-
ture = 2b /U, as expected from the relation between
the Hubbard and the Heisenberg model mentioned
above.

In the small-U region, we note a remarkable
fact. Although X has a peak near the lowest tem-
perature peak (T~) in C, L~ is seen in Fig. 1(b) to
have an essentially constant value different from
zero up to the temperature (Tzz) at which the middle
peak in C occurs, and above this temperature it
goes rapidly to zero. l L, I, on the other hand, is
seen to start to decrease sharply near T,. The
fact that j L, ) and L~ do not start to decrease
sharply near the same temperature is in marked
contrast to typical behavior at a magnetic transi-
tion. Hence the characterization' of T, as a
Neel temperature is misleading and unacceptable.

We also note that Lo is essentially constant near
T» and decreases rapidly near Tz» for U small.

The relation of the high-T C peak (at T»&) to a
characteristic change in Lo has already been
noted. ~ ~'o We see [Fig. 1(b)] an additional effect
at small U, namely, L, also shows an anomaly near
T&~» which somewhat surprisingly disappears at
a value of 0 roughly equal to one. This plus the
other anomalies in L„are indicated by the numbers
accompanying the curves in Fig. 2.

We consider the significance of the unusual re-
sults obtained, namely, the low-T peaks in t" for
small U and their physics. In fact, one cannot ex-
pect these effects to continue to exist as the num-
ber of atoms N-~ because of the following reason.
Consider first the four-atom four-electron system.
For U= 0, the ground state is sixfold degenerate,
including a triplet and three singlets. This de-
generacy is seen by considering the occupancy of
the one-electron levels E~=2bcosk, k=O, + —,'m, m.

The minimum, which occurs either at k=0 or k=g,
accomodates two electrons; but the other two elec-
trons can occupy four one-electron states (k= + —,'v
spin up and down) all with the same energy. The
existence of the triplet among these ground states
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implies, of course, that X will exhibit Curie-law
behavior at low T. Furthermore, C will show a
low-T peak when U increases from zero because
of the splitting induced in this ground level. Clear-
ly, this effect occurs whenever —,'N is even, but it
will become negligible as N ~; e. g. , the Curie-
law term in X will approach zero since the total
magnetic moment is always from a triplet, and
will not increase with ¹

On the other hand, when —,'N is odd, the ground
state for U= 0 is a singlet, so that the above effect
will not occur. Clearly, for N = 2 or 6, the first
excited state lies above the ground state by an en-
ergy of the order of b for U small, so that no low-
T peak (at kT «b) in the specific heat will occur.
Hence, in these very small systems, there is no
"band antiferromagnetism" (for which, by defini-
tion, the Neel temperature —0 with decreasing U).
One cannot conclude from this that such antiferro-
magnetism does not occur for macroscopic sys-
tems, since for large N the separation of the low-
lying states is O(b/N) for U=0. (It might be that
as N increases for small U the peak splits, with
the lower Tpeak -moving to low temperature. )

Although as we have just seen, one clearly can-
not use the four-atom results to guess about large
systems for small U, this is not so for large U.
In fact, when U=~, we have noted above that the
GCE results for small N give the large-N behavior
exactly. Furthermore, the qualitative behavior
that we find (a Neel-like smooth transition at he
= 2b /U, a highly correlated nonmagnetic system
for AT„«k T «U with (N«N, , )«(N, , ) (N, , )= —,',
these correlations decreasing markedly as kT
becomes = U) is what we expected on the basis of
earlier work. " There essentially the same
physical picture was found for large U on the basis
of a variational single-determinant approximation,
in which the best one-electron states were found to
be the Wannier functions for all T.

Therefore we felt that one should look carefully
at g vs T for a sign of the leveling off of X

' found

by Epstein et al. at high T (-200'K). Using their
va, lues b = 0. 021, U/b = 8, we looked closely in the

region of temperature corresponding to the experi-
mental anomaly. We found no such effect. Fur-
thermore, the location of the minimum in y

' (at
kTo= 2b'/U= 60-K for the above values of b and U)
occurs at much higher temperature (by a factor of
about 3) than the temperature at which a. rounding
off occurs in the experiment. We can get a sug-
gestion as to whether To might reduce by the
needed factor when N increases from 4 to ~ from
the results on the Heisenberg chain, and from
comparison with the easily solved N= 2 Hubbard
model. For the Heisenberg chain, To decreases
by about 20/0 when N goes from 4 to ~, and for the
Hubbard model by about 10% when N goes from 2
to 4. Thus it seems unlikely that To for N=~ will
be low enough.

Furthermore, we expect the qualitative behavior
to be similar to that for the Heisenberg model, for
which g shows a minimum and then levels to a
finite nonzero value at T=0. In support of this ex-
trapolation, we note that the minimum value of y

~

in the Heisenberg model is insensitive to N for N
& 4 and that in the Hubbard model the exact value'
of g at T=O lies well above this minimum calcu-
lated for N=4 (for U=8, b=1); this is consistent
with an extrapolated 1(T) ', which is qualitatively
similar to that found for the Heisenberg chain. ~

Such qualitative behavior is very different from the
experimental results. In view of this discrepancy
at low T and the above failure to find the experi-
mentally observed leveling off in y at high T, one
is led to suggest that major modifications of the
Hubbard model are needed to explain essential fea-
tures of the high-T transition (called a "metal-in-
sulator transition" by Epstein et al. ) and the low-
T antiferromagnetic behavior.

We thank Professor S. D. Mahanti for valuable
discussions.
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The results for the solvable Baker-Essam model of a compressible Ising lattice are re-
derived by utilizing the equivalence of the system to a set of linear chains each described by
the Mattis-Schultz one-dimensional magnetostriction model.

The long-standing controversial question as to
the effects of lattice compressibility on magnetic
phase transitions has attracted especially wide
interest in the last two years following the publi-
cation of a paper by Baker and Essam' (BE). These
authors displayed an exactly solvable model of a
compressible harmonic lattice of spins interacting
via a spatially dependent ferromagnetic Ising cou-
pling. They found that when the system is con-
strained to constant volume or constant positive
pressure the magnetic phase transition is second
order with renormalized critical exponents. Sub-

sequently, Gunther, Bergman, and Imrys (GBI)
showed that when this system is constrained to
constant negative pressure the system undergoes
a first-order transition.

In view of the wide interest in this subject it is
worthwhile to display an alternate derivation of
the results for the BE model which is considerably
more transparent both physically and algebraically.
BE evaluate the partition function directly, treating
the lattice vibrations classically and constraining
the surface atoms to their appropriate crystal
faces. By contrast, I first transform the model
Hamiltonian to describe two independent systems.
The first system is a set of independent harmonic
linear chains and the second is a three-dimensional
Ising system of rigid spins interacting via an ef-
fective exchange coupling. Evaluation of the parti-
tion function then follows trivially. The trans-
formed Hamiltonian is obtained utilizing the equiva-
lence of the BE model to a set of linear chains,
each described by the one-dimensional magneto-
striction model of Mattis and Schultz. A canonical
transformation removes the spin-phonon interac-
tion terms for each linear chain. In contrast to
BE, the lattice vibrations are treated quantum

mechanically and terms are included in the Hamil-
tonian to describe the action of a constant and equal
compressional or tensile force applied to each
surface atom, rather than to constrain these atoms
to their crystal faces.

The BE model is characterized by the following
three features: (i) The crystal lattice is simple
cubic (lattice spacing a); (ii) the interatomic poten-
tial links nearest neighbors only and is chosen as
V;&- V(a)+e, y (u& —uy) V'(a)+ 2[eu (u& —ug)] V",
where u& „u& denote the vector displacements of
the nearest-neighbor atoms i, j from their thermal
equilibrium positions, e&& is a unit vector pointing
from the equilibrium position of j to i, and V" is a
constant independent of a. The shear-term qua-
dratic in atomic displacements V'(a) [e&& && (u& —u&)] j
2a of a central interatomic potential is specifically
excluded by BE. (iii) The Ising spin interaction
links nearest neighbors only, and its spatial de-
pendence is chosen as Zq& J(a) +e,&

-(u& —u&) J',
where J' is a constant.

It is convenient to take the crystal as a cube of
N atoms whereby each surface atom is subjected
to a constant and equal compressional or tensile
force applied normal to the crystal faces. Thus
we add to the Hamiltonian a term, —Eu, n, for
each atom s lying in a crystal face characterized
by the unit vector g, the outwardly directed normal
to that face. Positive (negative) values of the force
I'6 on the surface atom correspond to tension
(compression). For the simple cubic lattice, one
has the identity —F g„",u, ~ n= —E g&&,.& (u, —u;) ~

e&&,
where (i, j) means that the summation includes all
distinct nearest-neighbor pairs of atoms compris-
ing the crystal. Including the above term leads
to the model Hamiltonian

3
H= 3N' V(a)+Hz +P ' + Z([V'(a) —E —J' o;g~]e,~

~ (u, —u~)+ -', P'[e,
&

~ (u,. —u, )]Q,2M


