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We have examined the low-temperature properties of the cubic-planar Heisenberg ferro-
magnet with nearest-neighbor exchange which is defined by the Hamiltonian X=—g;, J;&S; S,.
+g;, (Z, , -K;;) P S",, where —/~K~ J (J positive). We find that as the exchange-anisotropy
parameter 8= (J—g/J ranges over the planar ferromagnetic stability limits 0 ~ 0&2, the be-
havior of the system changes from that of the isotropic ferromagnet at 0= 0 into that of the
isotropic antiferromagnet at 6 =2. The system's noninteracting-spin-wave frequency, ground-
state energy, zero-point spin deviation, and lowest-order renormalized frequency scale be-
tween isotropic ferromagnetic and antiferromagnetic values as g goes from zero to two. Over
most of the system's stability range, the planar ferromagnet exhibits a mixture of properties
combining characteristics of its intrinsic ferromagnetism with those of the antiferromagnet.
This behavior is discussed in terms of an isomorphic mapping symmetry for nearest-neighbor
exchange in loose-packed lattices which requires that in the limit g= 2 the planar ferromagnet
be unitarily equivalent to the isotropic antiferromagnet.

I. INTRODUCTION

The planar Heisenberg ferromagnet was first
introduced and studied as a, magnetic analog to the
lattice-liquid model for the superfluid transition
in He. ' More recently, however, there has been
increased interest in its behavior as a purely mag-

netic system. 3 In this paper, we study the prop-
erties of the planar ferromagnet in the low-temper-
ature spin-wave regime. We shall be concerned
with the Hamiltonian
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where the sums run over the X lattice sites of a
crystal with cubic symmetry and nearest-neighbor
interactions. When the exchange constants satisfy
the condition —J & K& Z (J positive), the system
possesses an easy plane of magnetization perpen-
dicular to the g axis. 4

Although it is ferromagnetic at low tempera-
tures, the planar ferromagnet exhibits a spin-wave
dispersion curve linear in the wave vector at long
wavelengths, a depression of the ground-state en-
ergy below that calculated in the molecular-field
approximation, and a finite zero-point spin devia-
tion. These typically antiferzomagnetic properties
are related to a well known isomorphism for loose-
packed lattices between the planar ferromagnet and
the planar antiferromagnet. In particular, for
J= —K, the system becomes unitarily equivalent to
the isotropic antiferromagnet. The consequence
of this symmetry is discussed in Sec. D.

In Sec. III we diagonalize the spin-wave equation
of motion neglecting interactions. The ground-
state energy and spin deviation as a function of the
anisotropy parameter 8 = (J- K)/8 are evaluated
in Sec. IV in the noninteracting-spin-wave approxi-
mation. In Sec. V, the renormalized spin-wave
spectrum is obtained through a random-phase-ap-
proximation (RPA) linea. rization of the magnon in-
teractions. In each case, we show that when

(J —K)/J = 0 and 2, the results for the planar sys-
tem reduce to the corresponding results for the
isotropic Heisenberg ferromagnets and antiferro-
magnets, respectively. Thus, in the planar ferro-
magnet, one has the opportunity to examine the
mixed ferromagnetic and antiferromagnetic behav-
ior of a magnetic system as it changes from the
isotropic Heisenberg ferromagnet in one limit
(8 = 0) into a, system equivalent to the isotropic
Heisenberg antiferromagnet in the other limit (8
=2). In Sec. Vi, we conclude with a brief discus-
sion of our results.

II. MAPPING SYMMETRY

Some insight can be gained into the relationship
between the planar ferromagnet and the isotropic
antiferromagnet through an examination of the sub-
lattice rotational properties of the Hamiltonian
(1.1). If it is assumed that there are only nearest-
neighbor interactions and a loose-packed lattice
structure which can be separated into two equiva-
lent interpenetrating sublattices such that all near-
est neighbors of a site on sublatiice A belong to
sublattice B (and vice versa), then it is well known
that a. Hamiltonian of the form (1.1) can be trans-
formed into one in which J- —J, K- K.3'5 Thus,
if U„ is the unitary operator which rotates all spins
of sublattice A by an angle m about the x axis in
(1.1), then a spin S,. =(S",, S,'. , S',.) at site j on either
sublattice transforms according to U+R,. U~z ——(S~&,
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FIG. 1. Relationship between the easy-axis, easy-
plane, and isotropic systems defined by Hamiltonian (1.1).
The system represented by the point (J, Z) maps isomor-
phically into the system represented by (-J,K) for near-
est-neighbor interactions in loose-packed lattices.

7i&S,', ri, S',.), where q,. = —1 if site j is on sublattice
A. and g,. =+1 if site j is on sublattice E. The
Hamiltonian (1.1) then becomes

U~ UR—= 3C' = —Zrqqq~J(q(S~)S~+ Sf S~)+K()S(S~~] .
(2. 1)

The effect of the unitary transformation is to map
the original Hamiltonian as a function of the ex-
change para, meters (8,, , K„.) into a Hamiltonian
with the parameters (7i, q,J„,K,. ~) = (-J„,K„.)
when i and j are nearest-neighbor sites.

A convenient way to give the above discussion a
simple pictorial representation is to plot the cou-
pling parameters J and K (see Fig. 1). The line
J= —K divides the J, K plane into ferromagnetic
and antiferromagnetic half-planes, with the right-
upper half-plane representing ferromagnetic sys-
tems and the left-lower half-plane representing
antiferromagnetic systems. The regions (Kl & l J~
and IK) &

I Jl correspond, respectively, to easy-
axis or easy-plane systems. The line J=K cor-
responds to the isotropic Heisenberg ferromagnet
or antiferromagnet for positive or negative cou-
pling constants, respectively, while the J and K
axes similarly represent the Ising or y-z mag-
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nets. As previously pointed out, the net effect of
the transformation (2. 1) is to establish an isomor-
phic mapping which holds for all temperatures be-
tween every system represented by the point (J, K)
in the right half of the J, %plane in Fig. 1 and its
image system [represented by the point (- J, K) in
the left half-plane]. Of special interest to this
work is the isomorphism between the isotropic
antiferromagnet and the J= —K limit of the planar
ferromagnet. As the value of the exchange param-
eter J approaches -E, the planar ferromagnet,
constrained by the isomorphism, exhibits a mix-
ture of properties combining characteristics of
its intrinsic ferromagnetism with those of the anti-
ferromagnet. In particular, when J= -K, all
properties of the planar ferromagnet determined
by the equilibrium thermodynamics are exactly
identical with the corresponding staggered proper-
ties of the isotropic antiferromagnet since thermo-
dynamic averages remain unchanged under a uni-
tary transformation.

III. NONINTERACTING SPIN WAVES

Fourier transforming Hamiltonian (1.1) gives

IZ=- —Z J(k)S „- S„-+—Z n(k) S"„-S"-, (S. l)
k k

where

(s. 8)

where

r;=2S[J(0, q)+ -,'n(q)],

s;= —sn(q), (s. 8)

3'- = t —Z J(k, q —k) b' „- b'- b= g, -
«
k, y

2 l
+—Z —n(k) (b„-+ b'„-) b;- b;;.;, (S.9)

k, p

(3. 10)

J(q, k) = J(q) - J(k) .
It should be noted that in obtaining Eq. (3.8), the
spin-wave approximation is inserted into the exact
equation of motion for S';. This particular ap-
proach is chosen for the sake of consistency with
the low-temperature calculations of the spin-wave
damping where it has been shown~ that this method,
coupled with the RPA, reproduces Dyson's dynami-
cal interaction in the first Born approximation for
the isotropic ferromagnet.

As a first approximation, the interaction terms
S; in Eq. (3.8) are neglected and the resultant
equation of motion is easily diagonalized, giving

sg =Z e'" '~ s,". (n = x, y, z)

n(k) = J(k) -K(k), J(k) = JZy„-, (3.2)

where

(3. 11)

K(k) = KZy„-,
1 «

~ 1«.Q e&v ~ r;
k g j (3. 12)

The prime in (3.2) indicates a summation over the
g nearest neighbors. We take the g axis to lie
along the direction of maximum spin alignment.
The equation of motion for the spin raising and
lowering operators is then given by

= (r-- sg)(0) 2 3 1/3
q q,

(3. 13)

The coefficients of the transformation are given by
the relations

As-=+ —Z [J(k) —J(q —k)] S~fs'k, -
k

2i 1
+—Z —n(k) (S„'-+ S„=)S'„-„-, (S.S)

k

~k
(0) +2

~k 2@ (0)

(3. 14)

(s. 18)

where h~= i[%, A].
We now make use of the spin-wave approxima-

tion

S„=(2') b f, Sg~=.Vsbf 0-Z baby, f, ,+k & l
(s.4)

[b; b'-]=8„--. (s. 5)

Using (3.4), the equation of motion (3.3) can be
written in the form

where the operators bk obey the boson commutation
relations

~k
Nk&k=2@ (0)

Mk«
(s. 18)

where ggk- is chosen to be positive and pk» is nega-
tive.

Using Eqs. (3.7), (3.8), and (3. 13), the nonin-
teracting-spin-wave energy becomes

~.' ~ = 2SJ'(0) [1+(8 —2)y-+(1 —8)y-] ~, (3. 17)

where 8=(J-K)/J. In the limits 8=0 and 8=2, the
frequency ~-' ' reduces to the noninteracting-spin-
wave frequencies of the isotropic ferromagnets and
antiferromagnets, respectively. The dispersion
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the [111]direction in a simple cubic lattice for several
values of the anisotropy e.

The planar-magnetic-ground-state problem for
finite anisotropies is closely analogous to that of
the well-known antiferromagnetic case.8'9 The

curve for several values of the anisotropy 8 is
plotted in Fig. 2 for spin waves traveling in the
[111]direction in a simple cubic lattice. For &~

& 8 & 2, the dispersion curve has a maximum when

y; = (1 ——,'8)/(1 —8) and a. local minimum at the
Brillouin-zone boundary which results from the
compromise that the system is forced to make be-
tween ferromagnetic and antiferromagnetic behav-
ior. For 8&2, the square root in (8. 17) becomes
imaginary at some point in the Brillouin zone, cor-
responding to an instability in the planar ordering
originally postulated. The range of exchange an-
isotropy over which the planar ordering exhibits
spin-wave stability is therefore given by 0 & g & 2.

In the finite anisotropy, long-wavelength limit
the frequency becomes

@o;"'= D qa (, ( qa (

- o (3.18)

for cubic lattices, where a is the lattice constant
and D= 2SJ(0) (8/Z) . Due to the existence of an
easy-ordering plane, the planar system does not
exhibit the energy gap in the uniform mode which
is characteristic of an easy-axis system.

For finite anisotropy 8 and temperatures low
enough so that the bulk of the excited magnons are
linear in the wave vector, the system's internal
energy will vary as T while the heat capa, city and
magnetization varies as T and T, respectively,
just as in the isotropic antiferromagnet.

IV. GROUND-STATE FLUCTUATIONS

finite-exchange anisotropy that gives rise to the
planar ordering simultaneously destroys the rota-
tional symmetry of the system about the z axis,
so that the total magnetization is not an exact con-
stant of the motion. Although this fact does not
invalidate the use of the spin-wave formalism as
a good approximation for low temperatures, it does
mean that for finite 6 the system will be charac-
terized by zero-point fluctuations. The zero-tem-
perature isotropic antiferromagnetic and planar
cases are intrinsically different in this respect
from that of the isotropic ferromagnetic where ro-
tational symmetry rigorously assures that [K,
),&S &]

= 0. The fact that the magnetization is an
exact constant of the motion in the latter case al-
lows for a well-defined labeling of the isotropic-
ferromagnetic ground state (i.e. , all spins ordered
parallel in the s direction).

Given these considerations, and the behavior of
' as a function of the anisotropy, one might rea-

sonably expect the effects of the planar zero-point
motion, calculated from the noninteracting-spin-
wave frequency, will scale smoothly between those
of the isotropic ferromagnet and the isotropic anti-
ferromagnet as 8 goes from zero to two. Vfe now
show this to be the case for the zero-point energy
and spin deviation.

The ground-state energy Eo is identified with the
thermal-expectation value of the Hamiltonian at T
=0'

E, = &~). . . (4. 1)

where (A) = Tre s A/Tre s", P = (ks T) ', and ks
is Boltzmann's constant. The thermal average of
the Hamiltonian through terms bilinear in the nor-
mal modes is given by

&Z) = —XJ(O)S(S+1)+Z (n„-+ —,')o~P'',
k

where iig-=(Aug) = [exp(p8&d~f~g 11 ~ Passing to the
zero-temperature limit gives

(4. 2)

Zs ———NJ(0)S (1+8/Zs),
where

B=Z-(I/2JiVS)Z ~si" .
ft

(4. 2)

The quantity 8 is a measure of the extent to
which the noninteracting-spin-wave approximation
reduces the energy below the estimate obtained in
the molecular-field approximation from the ground-
state wave function i 0) = II, l S;= S). The value of
8 as a function of 8 was calculated numerically
over the exact Brillouin zone for the three cubic
lattices and the result tabulated in Table I. It is
seen that the ground-state energy is significantly
depressed by the anisotropy below that obtained
from the molecular field approximation. For 9
=2, our result 0. 58 for the sc and bcc lattices
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TABLE I. Effect of the anisotropy (J—K)/J on the
ground-state-energy parameter B IEq. (4.3)] for the
three cubic lattices.

{J-z)/J
0
0.2

0.4
0.6
0.8

1.0
1.2
1.4
1.6
1.8
2.0

sc

0
0.01
0.03
0.06
0.10
0.15
0.21
0.28
0.36
0.46
0.58

B
bcc

0
0.01
0.03
0.06
0.10
0.15
0.21
0.28
0.36
0.46
0.58

fcc

0
0.01
0.04
0.08
0.12
0.18
0.24
0.30
0.38
0.47
0.56

agrees with that found for these lattices in the non-
interacting-spin-wave calculations for the isotropic
antiferromagnet by Anderson and Kubo.

The average ground-state spin deviation per site
is given by

(n S), , = (I/X)Z v„-, (4.4)

V. RENORMALIZATION

In Secs. III and IV, the properties of the planar
system were calculated by ignoring the effects of

where p„- is given by Eq. (3. 15). Although pf di-2 . 2

verges at long wavelengths as Ik~ ', the

dive:cogence

is integrable in three dimensions. Equation (4. 4)
was integrated numerically over the exact Brillouin
zone for the sc and bcc lattices, with the results
tabulated in Table II as a function of anisotropy.
Once again the value of (ns)r 0 scales between that
of the isotropic ferromagnet and the isotropic
antiferromagnet ' in the appropriate anisotropy
limits.

g(g) ~ A VqSq+ Dq ~q

(5. 1)
We shall summarize the linearization of the right-
hand side of Eq. (5. 1). The calculations are given
in greater detail in Appendix A.

In its original form, the interaction term S',» was
given by (3.9) as sums containing terms of third
order in the b'; operators. Using transformation
(3.11) to rewrite S'; in terms of the spin-wave
amplitudes A&, the right-hand side of (5. 1) is ex-
pressed as sums containing terms of third order
in A&. Following Mori and Kawasaki7 and Tani~~

we reduce these third-order terms to first order
in A& by the use of the RPA. For example, opera-
tors of the form A„'-A'-A= are replaced by

A„-A";A:=(A;A,=) A;5f;+ (A;A,:)A~&;;,
and the thermal averages are replaced by the Bose
function (AjA;) = ng.

It is well known that the RPA is essentially
equivalent to the time-dependent Hartree theory in
that it introduces an effective harmonic potential
and neglects the effects of rapid short-lived fluc-
tuations in the driving terms in the equation of
motion. In Sec. VI, we comment on the effects
not included in the RPA.

Carrying out the linearization (see Appendix A),
Eq. (5. 1) can be written in the form

the magnon-magnon interactions that appear in the
equation of motion (3. 6). In this section we obtain
the leading temperature-dependent correction to
the spin-wave frequency through an RPA lineariza-
tion of the interactions in the equation of motion.

From Eqs. (3.6), (3. 11), and (3.12), the full
equation of motion, including interactions, can be
written

r gag w
q q q q

Aq g 5+» +Ef Q& T

I-F (q, T)l
~. f- e(z; —F,(q, T)J

(5. 2)

~;(T) = ~,'-"(I —e;/2S), (5.4)

where F~(q, T) and F2(q, T) are defined by Eqs.
(A7) and (A8). The off-diagonal elements +F2(q,
T) are of relative order (2S) ~ in comparison with

+F,(q, T). Diagonalizing Eq. (5.2), and calling the
second-order diagonalized eigenmodes E;', we get

(~-,-.l t'-;.,(T) o l t'a;. &

The renormalized frequency r,&;(T), corrected to
first order in (2S) ~, can then be written

e;= e;(O)+ e;(T), (5. 5)

where the temperature-independent and -depen-
dent parts of the correction e; are given by.-(o) =-2sF, (q, o)/e «&»,

e",(T) = —2sfF &(q, T) —F&(q, O)J/8!u

(5.6)

The evaluation of (5. 6) and (5.7) is given in Ap-
pendix B for the simple cubic lattice for which the

q and k behaviors in F,(q, T) can be factored ex-
actly. The results are
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TABLE II. Effect of the anisotropy (J-K)/J on the
zero-point spin deviation (M) p. p [Eq (4 4)] for the
simple cubic and body-centered-cubic lattices.

s (O)=-1+—Z (I+-,'8)~-+(8-2)1 (1 —y g)'
el-k

2 k 2Ek

(5. 12)
(~-~)/~ (~s)~,

bcc c)-, = [1+(8 -2)y -+ (1 —8)y~f]'~' . (5. 13)
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0
0.003
0.007
0.012
0.016
0.022
0.028
0.035
0.043
0.054
0.078

0
0.002
0.005
0.009
0.013
0.017
0.021
0.026
0.032
0.041
0.059

1-1+—~ ck- when 8=2,
(5. 1o)

2
e-(T) = Zm- ~-, —

q ~ k k &

k

6)=0, 2,

where

(5. 11)

~k ~ 3 1/2(1 —y;)
when 0=0
when g=2 .

As is the case in the RPA, the renormalization
corrections are independent of the magnon wave-
length q.

B. 0&0(2

In this anisotropy range it is convenient to pass
to the small q limit in evaluating e-(0), while still
treating the k dependence exactly. This gives

e;(o)=-1+. . . —Z (I+-,'ey;)~„-
1 1

1 + lg - 1 y"

+(8 -2) ' (I y~)'-l, (5.8)

e-(T) =—Z s), 2&)",+
y;(28 8')—

1 1 —y- 1/2
x —Zn~„-((

( i), (5.9)
k

where ef = 8(of(0)/2'(0).
Equations (5.8) and (5.9) are exact results for

the simple cubic lattice within the spin-wave and
random-phase approximations. We examine these
results in two anisotropy regions.

A. 0=0and 2

In the limits 8 =0 and 2, Eqs. (5. 8) and (5.9) re-
duce exactly to the corresponding results for the
isotropic ferromagnet and isotropic antiferromag-
net, respectively. " We get

when 8=0

Equation (5. 12) has been estimated numerically
for 8 = 1 with the result eo(0) = —0.07.

In evaluating eo(T), we note that for finite an-
isotropy, (5. 13) is linear in k for k values which
satisfy the condition

~~e-l~rV«e. (5. 14)

We are interested in the lowest-order temperature-
correction term to the frequency spectrum where
it is predominantly the low-energy long-wavelength
magnons that comprise the bulk of the excitatioris
in the system. In this very-low-temperature re-
gion, owing to the nature of the Boltzmann factor,
the summands in (5.9) will be sharply peaked near
lkl =0. Thus condition (5. 14) will hold, and we
evaluate (5.9) for both small q and k, keeping
terms quadratic in the wave vector in yk-. The
result is

9+2 1
eo(T)

8 p ~+)( ek
k

(5. 15)

where the frequency &k- is linear in k and is given
by the long-wavelength limit of (5. 13). Equation
(5.15) is proportional to the internal energy
K)", n)", hzp' which varies as T for very low temper-
atures and finite anisotropy. When the anisotropy
is not too close to zero but small compared to two,
Eq. (5. 15) reduces to

1 -W(0) 0&8«2
S[J(0)—K(0)]N

(5. 16)

a result published previously. '3

When 0 is very close to zero, the system ac-
quires ma, ny of the characteristics of an isotropic
ferromagnet, and condition (5, 14) begins to break
down. This is exhibited in the apparent 8 ~ diver-
gence of (5.16) as the system attempts to change
the T variation of e(T) in order to agree with the
T' behavior in the isotropic ferromagnetic limit.
The behavior of eo(T) in this small anisotropy re-
gion becomes quite complicated; for its eva. luation,
one must return to expression (5.9) and retain
terms of at least fourth order in the wave vector
in yg.

As a, function of temperature, Eq. (5. 15) can be

expected' to hold for low enough temperatures such
that A~T & 0 Ik~ l a, where k* is the wave vector
where the linear approximation to the magnon spec-
trum begins to break down and D is given in
(3.18). For temperatures higher than D lk" l a/ks,
the renormalization for small anisotropies resem-
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bles that of the isotropic ferromagnet.
In the Keffer and Loudon'4 theory of renormal-

ization, for the isotropic ferromagnets and anti-
ferromagnets the correction factor e;(T) is equal
to twice the internal energy per spin of the two
respective systems. This is the exact result for
the planar system [Eqs. (5. 10)] in the 8 = 0 and 2

limits. For anisotropies intermediate between
these two extremes, eo(T) scales as the internal
energy [Eq. (5. 15)] but with a proportionality fac-
tor that depends on the anisotropy.

The term e;(0) gives rise to a temperature-in-
dependent frequency shift and represents a correc-
tion to the ground-state energy calculated in Sec.
IV. Due to the rotational symmetry considerations
discussed in Sec. IV, the correction factor e;(0)
vanishes for the isotropic ferromagnet but re-
mains finite for the isotropic antiferromagnet.
This fact is reflected in Eqs. (5.10).

, VI. DISCUSSION

Perhaps the most interesting feature of our re-
sults is the close relationship exhibited between
the planar ferromagnet and the antiferromagnet.
This relationship arises from the constraint im-
posed on the planar system by the isomorphic map-
ping symmetry discussed in Sec. II. Indeed, from
the viewpoint of quantum mechanics, for the loose-
packed lattices and nearest-neighbor exchange,
the planar ferromagnet in the limit J= —K is com-
p/etely equivalent to the isotropic antiferromagnet.
Thus, in a certain sense, the planar ferromagnet
might be viewed as an intermediate system which
transforms smoothly as a function of anisotropy
from the isotropic ferromagnet into the isotropic
antiferromagnet, and which at intermediate points
possesses characteristics of both systems.

Finally, two points deserve comment in regard
to our normal modes. First, the steps leading
from (5. 2) to (5. 3) mean that the off-diagonal ele-

ment F2(q, T) in the equation of motion (5.2) can be
neglected to order (2S) in the renormalization
factor (1 —e;/2S), i.e. , setting F2(q, T) =0 reduces
(5.2) to (5. 3). In other words, in the first-order
renormalization correction, the modes B;'are
identical with 2',», although we have retained the
difference in notation in order to avoid confusing
the B,'» modes, whose frequencies are temperature
dependent, with the operators A'; used in the non-
interacting-spin-wave calculations.

The second point is more important. The modes

B,'- were obtained as the result of a two-step diago-
nalization procedure beginning with the original
equation of motion (3.5). The most important lim-
iting step in this process is the random-phase ap-
proximation, which, as previously stated, replaces
the true potential by an average which leads to a
purely harmonic equation of motion, Eq. (5. 3).
This harmonicity is destroyed by including the ef-
fects of the fluctuating interactions left out of the
RPA, and the modes B;'will then be characterized
by finite lifetimes. %'e would, however, expect
these corrections to be small. We have estimated
the damping of the renormalized modes and find
that, in agreement with this assumptionof well-de-
fined spin waves (in the temperature-frequency re-
gimes exa.mined), the magnitude of the imaginary
part of the magnon frequency is very much smaller
than that of the real part. '
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APPENDIX A: RPA LINEARIZATION

In this Appendix we derive Eq. (5. 2). Using
(3.9) for S';, the right-hand side of (5. 1) can he
rewritten, giving

+ $(s) A„

Q {[gg;J(k, q —k) —(N-+ v-) —,
' n(k)] bjb,'- b,= f,;

k, y

+ [v;J(k, q —k) —(u„-+ v;) —,
' a (k)] b' gb,"- b; f, d,

Z f[-v; J(k, q —k) + (u" + v-) —,
' n(k)] bj b'; b; f,

k;y

+ [-u; J(k, q —k) + (u„-+ v;) —,
' n(k)] b '

„-b
'-b; „;g

(Al )

Using Eqs. (3. 11) and (3. 12), and applying the
RPA as outlined in Sec. V, then for the sum con-
taining the operators b„»b;b,= g„- in the top line of
the right-hand side of Eq. (Al), we get

—Z[~ J(k, q-k) -—(u-+v-) —,'~(k)]b;b'-b- „--
W

k, y

= F (Q~ gp v~ f)A~+ F '(Mq p, v~, k)A. '-, (A2)
where
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F (x- [-„y- f) = —Z (x-[x-Z(q, 0) —(u-+ v-) —,'n(q)] [n;(u~f+ vf')+ v~f] + v;[x;Z(k, q-k) —(u;+ v;) —,
' n(k)]

k

&&[nf(x]",vf+ yawp)+ x~w]] u;[x;J$, q-k) —(u +"v ) —' o(k)] [n](xkuf+y]", vf)+ xfu ]], (A3)

F'(x"„ f, y; ],) =—+ fy„"[x,"&(q, 0) —(u,"+v ) —', n(q)][n~&u~g+ vk)+ v~g] + u, [x;Z$, q .—k) —(u,"+v ) 2 o.(k)]

&&[n]-, (xf vf+ y]u])+ xf v]] + v;[x;J(k, q —k) —(u;+ v;)-,' n(%)][nf(xf up +yf vg) + x„u-]] . (A4)

The notation F'(u," f, v; f) means x;=u;, x„-=u„-, y;
= v,", y]-, = v]-, in (A3) and (A4).

The corresponding expression for the sum con-
taining the product 5'k 5',» b,= ~„- in the equation for
A; in (Al) is given by

—Z [v;Z(k, q —k) —(u; + v~)
—,'(y(k)] b'g b;'b; f.;

k, p

= F (v~ ]., 2 u~ g)A~+ F '(v~ ]-, 2
u. f)A'- . (A5)

Thereiore equation of motion (Al) becomes

+ Z4)"

ZQ) ~

where

2;(2) =~ & &(2)I 21~'2 ~ 2y;
k

—1+—y k ek»+ eu„"e„» y„-, B3

1 K
Q;(0)=—Z J(0) 2y," f- I+—yf ufv]-,

k

+2(y;+y;)v'„-I, ())2)

]I);(T)= Z~(j)) —Z(0) (') +2y; fN g

where

F,(q, T)=F-(u;„-, v;„-)+F-(v;„-,u;„-),

F,(q, T) = F '(u; g, v; g) + F '(v; „-, u; g) .

(A6)

(AV)

(A8)

—1+—y- r-+HSkyk
K

y-(T)= Z,'„Z(—0) 2y- -- I+—y- s-
I

+2(y;+y)y,'I. (B2)

For the simple cubic lattice, the q and k behav-
ior contained in y,» „- can be factored exactly swithin

a sum over the Brillouin zone. It is useful to
write the resulting identity in the form

Since Hermitian conjugation and the replacement
q- -q transforms the equation of motion of A;
into that for A';, and since both F)(q, T) and

F2(q, T) are even functions of q, in (A6) we must
have

F,(qy T)= —F,(q, T) 2 F4(q, T)= —F,(q, T) . (A9)

Hence, using (A6) and (A9), we get the result
(5.2) used in Sec. V with the quantities F)(q, T)
and F2(q, T) given by (A3), (A4), (AV), and (A8).

Q y,- ff(k) =E [-. I+ r;+ y„-+(I —y;) (I —yf)]f(k)

where f(k) is an even function of k.

Temperature-Independent Correction

Using (») and the defi.nitions of r;, v~g, and

ugvf given in Sec. III, g;(0) and (1);(0) can be sim-
plified to give

APPENDIX 8: RENORMALIZATION CORRECTION TERMS

The renormalization correction terms, Eqs.
(5.6) and (5.V), are evaluated exactly in this AI)-
pendix for the case of the simple cubic lattice.

Combining Eqs. (AS), (A4), (AV), and (AS), Eqs.
(5.6) and (5.7) become

[[;(0)= —&(0)[I+ (ke —l)r,"]+0";(0),

Q;(0) = —,' J(0)8y;+P;(0)—,

where

2";(2)=—E Z(O)(v„- ~ ' [1~ (-,'2 —1)y]

(B6)

(B9)

e;(0) = 2S(n~;"))-' [r;y;(0) + s;y;(0)],
e-(T) = 2S(kd,'- ') [r,"g"(T) + s-2t) "(T)],

(Bl)

(B2)
x[(2 —2)+2y;]), (810)
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0";(o)= —~ ~(o) [y;+ y;(1+ (l~ —1)y- —y'-)] .
(B11)

The quantity &k is a dimensionless energy defined
by &„-=r, „-"'/2Sr(0) = (1 —y„-)"'[1+(8 —l)y„-] ~ .
Finally, inserting Eqs. (B8)-(B11)into (Bl), col-
lecting terms, and simplifying, we get

c;(0)= - I+ —2 (I+-,'ey;)e„-
1 1

yq k

+ (8 —2) (1 —y") . (B12)

This is the result (5.8) for the temperature-inde-
pendent cor rectio n.

Temperature-Dependent Correction

The derivation of the temperature-dependent
correction term is similar to that leading to (B12).
Again y; k can be factored within the k summation

in expressions (B5) and (B6). Simplifying the re-
sulting expressions leads to

This is the result given in (5.9). (B15)

g-(r)= —Z "' Z'(0)S([2+(8 —2)y;][Hy-+Hy;
p (~|-,(0) k q

2(I - y;) (I y;-)] ~'-y';), (»3)

y;(Z) = —Z "" Z'(O)S{[2+(S—2)y„-][ey;+ Sy„-]

+2~y;(I- y;) -8'y;}. (»4)
Inserting these two expressions into (B2), rear-
ranging terms, and simplifying, we get

1
e-(T) = —Z n 2e-

g ~ „k k
k

(2e- e')y- I ~ I -
yk'i. (e-u~; ~; ""'"

~ (~-~)~;)
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