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Spin polarization of an interacting electron gas due to a random distribution of magnetic im-
purities is discussed by going beyond the ordinary linear approximation. The effect of the
nonlinearity is obtained in the form of modifying the @rave-number-dependent magnetic sus-
ceptibility so as to include a change inthe spinsplitting of the electron energy bands proportional
to the impurity concentration.

I. INTRODUCTION

Recently, motivated by the elastic diffuse neu-
tron-scattering experiments which give us de-
tailed information on the spatial behavior of the
host-metal spin polarization around an impurity,
we discussed the charge and spin susceptibilities
of an electron gas at the ferromagnetic state. '3

In actual analysis of the neutron data, for instance,
Fe in Pd, however, we encounter a kind of non-
linear problem. Namely, the observed conduction-
electron spin polarization of Pd due to a finite con-
centration of Fe impurities is not reproduced sim-
ply by the product of the spin susceptibility of the
pure paramagnetic Pd and the molecular magnetic
field due to the impurities. Thus, we argued that
the susceptibility to be used in calculating the con-
duction-electron spin polarization in Pd is not the
susceptibility of the pure Pdbut the susceptibility of
the Pd spin split by the impurities.

The purpose of the present paper is to reformu-
late our earlier discussion of Ref. 5 along the line
of Ref. 3 (referred to as I). In the process of this
reformulation we make some important improve-
ments on the earlier work summarized in Sec. III.

II. INTERACTING ELECTRON GAS WITH MANY IMPURITIES

The Hamiltonian of an interacting electron gas is
the same as I and it is the sum of the kinetic energy
and the Coulomb repulsion:

0 1X = E s»c»~c», + ~ (»»)c»~c»'o'c» ~ ~~c» +~,~ )

(2. I)
where c,', is the creation operator of an electron
with energy &» and spin o =+, V(»») is the Fourier
transform of the Coulomb interaction, 47)(. /»»,
and we assume the unit volume for the system.

The electron gas described by the Hamiltonian equa-
tion (2.1)can be either ferromagnetic or paramag-
netic depending upon the temperature and the val-
ues of the parameters appearing in the Hamiltonian.
As in I, this part of the problem is handled by the

Hartree- Fock or random-phase-approximation
(RPA) procedure. e In either case, ferromagnetic
or paramagnetic, the conduction-electron spin
density is uniform in the unperturbed state. Our
problem is to see how the conduction-electron
spin polarization is disturbed if we introduce a
finite number, say, N0, of magnetic impurities
into the electron gas.

The actual interaction between the conduction
electrons and impurities can be complicated but
here we consider the impurities only as sources of
molecular magnetic field. Namely, in using the s-d
exchange interaction model we retain only the long-
itudinal or z component. This seems to be justi-
fied, since in this paper we assume always that the
impurity spins are ferromagnetically ordered.
Under these assumptions the effective magnetic
field H(x), or its Fourier transform H(»»), is given
as

q, H(~) = (Z(~)/X) (S') Z e'""», (2. 2)

where (S') is the magnitude of a ferromagnetical-
ly ordered impurity spin, J(»») is the s-d exchange
integral, N is the total number of lattice points in
the system, and 8, is the site of the impurity. The
Zeeman energy of the conduction electrons, which
is nothing but the longitudinal component of the s-d
exchange interaction, is given in terms of H(g) as

X' = —»», Z H(»») (c', .c, „.—c', c, „). (2.2)

Our problem is to calculate the conduction-elec-
tron number density for each spin,

n, (q)=(z e'„c...,), (2.4)

under the Hamiltonian K +K' using the double-time
Green's function. The necessary Green's func-
tions are of the form of (c„„,l ct, )„, from which
the electron number density defined in E»I. (2.4)
is obtained by the following well-known procedure:

»»»(q) = + ——Im f„(c)».q, + I c~ )~.»0'f((d) d~ )

(2 5)
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where f(((() is the Fermi distribution function. The
important thing to note is that the thermal average
( ~ ) is to be taken for a certain given spatial
distribution of impurities and that we do not aver-
age over the random distribution of impurities.
%e take this attitude since we want to use our re-
sult in discussing the cross section of magnetic

diffuse scattering of neutrons in dilute ferromag-
netic alloys where the average over the impurity
distribution is to be taken in [n, (q)] and not in
n, (q).'

The equation of motion for the Green's function
under the Hamiltonian X +X' is easily obtained,
as inI:

(2. 6)

where we take the chemical potential as the origin of measuring energy. The first approximation is to intro-
duce the RPA to the last Coulomb interaction terms of Eq. (2. 6). By the procedure shown in Eqs. (2. 20)-
(2. 23) of I, Eq. (2. 6) is reduced to

[~- sa ..—V(0)n, (0)j (ca.„.l ct„&.=6., o+ ~ &olf(&) &ca..-.„l ca,.&. + V(q) ln(q)+n (q)] &c~l cl, &. (I -6 o)

- V(q)n. (q) (c„l"~&.(I -6„o), (2.7)

where V(q) is the effective exchange interaction de-
fined as

Q V((() (ct „,c„,„,&-=V(q)Z (c, „,c„„„,) .
(2. 8)

Note that, as discussed in I, V(q) does not diverge
for q-o, unlike the Coulomb interaction V(q).

The equations of the form of Eq. (2. 7) for dif-
ferent q's form a closed set of equations which,
in principle, can be solved exactly. The actual
solution of Eq. (2.7), however, is not simple.
Thus, as the second approximation, we retain
only the term proportional to H(q) in the second
term on the right-hand side of Eq. (2. 7). It is
clear other terms with «q are of the higher or-
ders. In this approximation Eq. (2.7) is reduced
to

(~ —s.„.) & c"„.I c'„&„=6, o+ p, a(q) (c„lc„&„

+ V(q) [n,(q)+n (q)] (c„,I
c'„)„(1-6, o)

—V(q)n, (q) (ct, l c„)„(1—5, o), (2.9)
where we introduced

By inserting Eqs. (2. 11) and (2. 12) into Eq. (2. 5)
the electron density for each spin is obtained as

n, (0)=~ f(c„+V ff(0)), (2. 18)

( )
F,(q)+2V(q)P, (q)P (q) ~( ) (2 14)1+V(q)(P, (q)+P (q)]

F,(q) = &,(q)/[I —V(q)F,(q)],

F ( ) g f(~~, ) -f(s~....)

6~ —
Ky+q *

(2. 16)

(2. 16)

The result of Eq. (2. 14) can be rewritten by in-
troducing a susceptibility g (q) as

p,,[n,(q)-n (q)j=-M(q)

=P (q)II(q)

=x (q( —&(q((&')r~'"'),1 1
N

(2. 17)
V(O)n, (O-) . (2. Io) where

1
&e c'& ="" &-~„+p,jf(o)+so' ' (2. 11)

1 1
CO $~+20 CO

—
Qy q ~+20

+ V(q) [n.(q)+n (q)j
1

(d —
gyp + 20 4) —$y ~~ g + 20

Note &„„,depends on the impurity concentration
through the term n, (0), as will be seen below.

We solve Eq. (2. 9) exactly, not by the linear
approximation of I, a,s

„o F.(q)+F (q)+4V(q)F.(q)F (q)
1+V(q) [S',(q)+ I' (q)]

(2. 18)
Formally the result contained in Eqs. (2. 14)-

(2. 18) is very similar to the corresponding result
of I, but the present result is different from I in a
very essential point. The difference comes from
the difference between g~ of I and the present
paper [Eq. (2. 26) of I and Eq. (2. 10) of the present
paper]. This difference causes the differences in
f(c„,), E,(q), F, (q), and g™(q)of I and the present
paper. For instance, p (q) appearing in Eq.
(2. 17) is not the susceptibility of the pure electron
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gas as obtained in I but the susceptibility of the
electron gas which includes the effect of the impuri-
ties, as we discuss below.

Thus, the prescription to calculate the conduc-
tion-electron spin polarization is summarized as
follows: (i) From a self-consistent treatment of
Eg. (2. 13) we determine n, (0) as a function of the
impurity concentration. (ii) We calculate P (q)
for the bands whose spin splitting is given by the

n, (0) through Eg. (2. 10), and this is the suscep-
tibility to be used in Eci. (2. 17).

Let us se how P (q) of Eq. (2. 17) depends on
the impurity concentration. According to pre-
scription (ii) the susceptibility should be calculated
for bands spin split by an amount of V(0)[n (0)
—g, (0)] and this splitting can be rewritten as

V(0)(«(0) —«, (0)]=V(D)(« —«,)+V(0)(l(' (0) )(ua

= V(0)(n'-~,') -~~ J(O)(S') V(O)g (0),

(2. 19)
where go (0) is the uniform susceptibility of the
pure electron gas with spin splitting V(0) (no —no)

[Eq. (3.3) of I] and no are the number of electrons
with + spins in the unperturbed state. Note that
in the strongly magnetic electron gas, such as Pd
metals, V(0)go (0) is close to 1. Generally
V(0)l(0 (0) is not much less than 1. Anyway, Eg
(2. 19) shows that in calculating y (q) to be used
in E(l. (2. 17) an additional spin splitting propor-

tional to the impurity concentration must be taken
into account. This is the procedure we used in
analyzing the neutron data on PdFe alloys.

III. MSCUSSION

The earlier result of Ref. 5 and the present re-
sult are essentially the same in emphasizing the
necessity of considering the additional spin split-
ting of the bands due to the presence of impurities.
But there are two differences between these works.
One is the difference in the models. In this paper
we took into account the long-range nature of the
Coulomb interaction for the reason discussed in I.
In Ref. 5 we used the Hubbard-type model, which is
now known to be inappropriate in calculating
x-(q)

Another difference is the way of approximating
the second term on the right-hand side of Eq.
(2. 7). In this paper we retained only one term
proportional to &(q) for all q including the case of q
= 0, whereas in Ref. 5 we retained one more term
which is proportional to H(0) for the case of qW0.
Either one of these procedures is an approxima-
tion, and it is not easy to say which is better.
However, with the earlier approximation of Ref. 5

we had the difficulty of lim, OM(q) oM(0). This
difficulty is removed in the present paper.
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