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A discussion of the symmetry properties of tensors describing the transport properties of
magnetic crystals, or of nonmagnetic crystals in applied magnetic fields, is given both from
the macroscopic and microscopic points of view. A prescription for the simplification of the
form of such a tensor is derived (prescription C) which is based on the use of Onsager's theo-
rem and of Neumann's principle both for the unitary symmetry operations and also, in a
modified form, for the antiunitary symmetry operations. This is different from the methods
used previously by Birss (prescription A) and by Kleiner (prescription B). While prescrip-
tion A ignores the antiunitary symmetry operations, the use of these operations is included in
both prescriptions B and C. However, prescriptions B and C often lead to different results
and it is suggested that experiments based on the Hall effect could be used to determine
which of these two prescriptions is correct.

I. INTRODUCTION

The reader is assumed to be familiar with the
general outlines of the classic book by Nye on the
use of symmetry to simplify the forms of tensors
describing various physical properties of nonmag-
netic crystals.

The first writings in English on the extension of
these ideas to the case of crystals exhibiting mag-
netic ordering are those of Birss, ' based on the
quite considerable amount of scattered work of
several Russian workers. As far as tensors that
describe macroscopic static, or equilibrium, prop-
erties are concerned, the treatment given by Birss
has found complete acceptance. However, when it
comes to the case of transport properties, which
describe only quasiequilibrium states or dynamic
equilibrium states of a crystal, the tensors in-
volved (the transport coefficients) depend on time,
implicitly at least, and there has been some crit-
icism of the treatment given by Birss.

In the present paper we shall try to identify the
exact nature of the disagreement which has arisen,
to establish to what extent it is a matter of seman-
tics or a matter of physics, and to offer some fur-
ther suggestions on the matter of the symmetry
properties of transport coefficients and of any
microscopic description of physical phenomena in
magnetic crystals.

II. SYMMETRY PROPERTIES OF TENSORS FOR MAGNETIC
CRYSTALS-MACROSCOPIC APPROACH

For a nonmagnetic crystal, in the absence of any
external magnetic field, there are two separate
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and also to obtain a relation between the Peltier
tensor 71;& and the Seebeck tensor eij'.

(1/&)v(, = n, ( . (2)

The conditions expressed in Eqs. (1) and (2) apply
to any crystal regardless of any crystallographic
symmetry that it may possess. The use of Neu-
mann's principle enables one to make use of any
crystallographic symmetry to impose further re-
strictions on the transport coefficients in addition
to those given in Egs. (1) and (2). For any second-
rank tensor di&, Neumann's principle leads to

In this equation, R;& is the orthogonal matrix that
represents the action of a point-group symmetry
operation 8 of the crystal on a vector x~[= (x, , xa,
x,)], that is,

arguments that can be used to simplify the forms
of the tensors representing the transport proper-
ties of the crystal (see, for example, Ref. 1). The
first is based on the use of Onsager's theorem and
the second is based on the use of Neumann's prin-
ciple. From the use of Onsager's theorem it is
possible to show that a;& and K;&, the electrical-
and thermal-conductivity tensors, are symmetric;
that is,

Oiy=ogi ~
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(1/r)~, ,(H) = ~„.(- H) . (6)

In general, the symmetry of a magnetically or-
dered crystal or of a nonmagnetic crystal in an

applied magnetic field H will have to be described
by some magnetic point group M which can be
written in the form

M = G+AG,

where G is the subgroup of the point-group opera-
tions that do not involve 8 and AG is the coset of
point-group operations that do involve 8 (see, for
example, Ref. 10). The set AG may be null, in
which case M will be a classical point group; that
is, a type-I Shubnikov point group. If AG is not
null, it will contain the same number of elements
as group G and none of the elements of AG will be
8 on its own; that is, M will Ioe a type-III Shubnikov
point group. If M is a type-I Shubnikov point
group, Eq. (3) can be used for all the elements of
M just as before.

So far it is agreed by all that the procedure out-
lined in the previous paragraph is correct. The
difficulty arises when M is a type-III Shubnikov

group. Although M contains antiunitary opera-
tions that involve 8, it does not contain the ele-
ment 8 on its own. The disputation between Klein-
er and Birss is concerned with the problem of how

to treat the antiunitary elements, which comprise
the set AG, in an equation like Eq. (3). The pro-
cedure adopted by Birss and referred to as pre-
scription A" by Kleiner consists of the following:
(i) Use Eqs. (5) and (6) based on Onsager's the-
orem, (ii) use Eq. (3), based on Neumann's prin-
ciple, only for the unitary elements of M, and

(iii) ignore the antiunitary elements of M, i. e. ,
the elements in AG.

The justification of this procedure is discussed
in considerable detail in the book by Birss. In

In the conventional treatment, the symmetry oper-
ations A belong to the classical point group G of
the crystal, rather than the "gray" point group,
and therefore do not include operations involving

8, the operation of time inversion.
If one now considers either a crystal that exhib-

its spontaneous magnetic ordering or a nonmagnetic
crystal that is subjected to an external magnetic
field, the details of the application of Onsager's
theorem and Neumann's principle have to be re-
examined. If a crystal is subjected to a magnetic
field H, one that may be an external field or may
arise as an internal field in the crystal, it is then

possible to show"' ' that Eqs. (1) and (2) have to
be replaced by

o;,(H) = o„(-H),
(5)

z;g(H) = xg;(- H),

where E is the electric field and j is the electric
current density. 8 will reverse the sign of j, but
will leave E unaltered; that is, j; is a c tensor of
rank one and E& is an i tensor of rank one. There-
fore, from Eq. (8) we must have

8o.&= —0
& (9)

It is important to understand precisely what this
equation means; it is concerned with the applica-
tion of the operation 8 to the complete configuration
of our material specimen, together with the exter-
nal influence E and the response j. Since 8 is ob-
viously not a symmetry operation of the complete
configuration of specimen + j + E, there is no ques-
tion of any clash between Eq. (9) and Neumann's
principle. Equation (9) simply tells us that if one
wishes to produce the situation in Fig. 1(b) as a
result of applying 8 to the situation in Fig. 1(a),

particular, it should be noted that (iii) means tha. t
one is only using part of the symmetry information
that one ha, s available for the crysta, l (see Ref. 3,
pp. 111 and 149).

Kleiner' objected to the procedure described in

prescription A on the grounds that by ignoring the
antiunitary elements, it does not exploit the full
symmetry of the situation; we would agree with this
criticism, although there is more to Birss's dis-
cussion of transport properties than just consider-
ing the symmetry properties of the conductivity
tensor (see Sec. 5.4 of Ref. 3). However, it was
also alleged by Kleiner (Ref. 5, p. 326; Ref. 6)
that prescription A is inconsistent with the exis-
tence of the extraordinary Hall effect in ferromag-
nets"; this is not the case, as will be seen from the
example of ferromagnetic Co which will be con-
sidered in Sec. V [see, in particular, Eq. (34)].
Kleiner proposed an alternative procedure, which

he called prescription B," which states that while

Eq. (3) is used for the unitary elements, a similar,
but not identical, equation is used for the anti-
unitary elements [see Eq. (2. 28) of Ref. 5]. By
choosing a new group which is not just M but also
includes operations that send H into —li, Kleiner
avoids having to use Onsager's theorem explicitly
and is able to regard it as a consequence of the ele-
ments of this larger group. Since Kleiner's argu-
ments involve some considerable discussion of
microscopic theor'. es, we shall postpone any fur-
ther discussion of prescription B until Sec. III and

continue to concentrate for the moment on the
macroscopic approach.

To prevent our discussion from becoming too
abstract, let us consider the particular example of
the electrical-conductivity tensor 0;& which is de-
fined by

(8)
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(a)

I qpj'- -j

I

Equation (12) is not in conflict with Eq. (9).
Equation (12) applies if we are given that 8 is a
symmetry operation of the black box, i.e. , the
symmetry of the specimen is described by one of
the gray groups, and if we assume that Neumann's
principle still holds for 8. Equation (9) refers to
the application of 8 to a larger system of which 8

is not a symmetry operation, and tells us the con-
dition that must be satisfied by a&& if Fig. 1(b) is
to be produced as a result of the application of 8

to Fig. 1(a). If Eq. (12) holds, then Eq. (9) can-
not hold, because 0&& would then be null.

If H ~ 0, i.e. , when our black box consists of a
magnetically ordered crystal or consists of a non-
magnetic crystal situated in an applied magnetic
field, we have a situation in which 8, by itself, is
not a symmetry operation of our black box. How-

ever, there are certain antiunitary operations of
the form 8S, where S is a point-group operation,
which are symmetry operations of the black box.
Let us suppose that Neumann's principle still holds
for these operations 8S. We should then have

(8S)o;,(H) = o;,(H) . (13)

FIG. 1. The relation bebveen j', the electric current
density, and E, the electric field, in a crystal (a} before
and (b} after the appbcation of g, the operation of time
inversion.

one must have chosen a specimen for which Eq.
(9) happens to be valid; that is, a specimen for
which 0;& happens to be a c tensor. Whether this
can ever happen in practice remains to be seen.

Let us consider things in a slightly different
manner. We can regard our specimen as a black
box, " which contains some material entities and a
ma. gnetic field H; we apply an electric field E to
this black box and observe the response j. If the
black box has no crystallographic symmetry at all,
then we have, from considerations of irreversible
thermodynamics, the Onsager reciprocal relation

o;;(H) = v;;(- H), (10)

which we have already mentioned. H is the mag-
netic field in our "black-box" system; it may be
an external field applied to a nonmagnetic crystal,
an internal magnetic field in a magnetically or-
dered crystal, or a combination of internal and ex-
ternal fields.

If we have a crystal for which we know that 8 is
a symmetry operation, thismeans H=O, so that

o;~(0) = o~;(0),

and because 8 is a symmetry operation of the
black box, then

To make use of the transformation properties of the
tensor under these antiunitary operations, we
must determine the result of the application of 8 to
o;&(H). The effect of 8 on the motions of all the
particles in the black box will be to reverse the di-
rections of their velocities and, therefore, the
Lorentz forces p, p, oe(v&&H); therefore, the Hamil-
tonian will only remain invariant if H is also re-
versed. Consequently, the current j~ flowing in a
given direction as a result of the application of an
electric field E& will be unaltered if the direction
of H is also reversed; that is

8v(, (H) = o;~(- H) . (14)

Equation (14) is simply a statement of the fact that
the compound operation of time reversal + chang-
ing the sign of H is a symmetry operation of the
system in the black box. " It is related to On-
sager's theorem in the sense that Onsager's the-
orem is a consequence of the use of this compound
symmetry operation in thermodynamic arguments
based on the principle of microscopic reversibility.
There is no thermodynamics involved in Eq. (14).

Equations (12) and (14) only apply when we are
concerned with direct current. If we are con-
cerned with alternating current, the electric field
E and the current density j take the forms Eoe'"
and joe'", respectively, so that 8E = Eoe '"'= E*
and 8 j = joe

'" = j*. By applying 8 to both sides of
Eq. (8), we see that for alternating current we
have to replace Eqs. (12) and (14) by

8o&&= o;& . (12)
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=5~ Q S;~Sg,v~, (H),

l.e. )

v, , (H) =Z 2. S,,S„v,*,(H),
e

{17)

where 8S ig any antiunitary symmetry operation
of our black box, and it does not rnatter whether
H is an internal fi.eld in a ma, gnetically ordered
crystal or an external field applied to a nonmag-
netic crystal or some combination of internal and
external fields. Thus for an antiunitary element
8S in a type-III Shubnikov group we use Eq. (17)
to simplify the form of the tensor v;&(H) in a simi-
lar manner to the use of Eq. (3) for the unitary
elements. If we return for a moment to the cage
of a gray group when 6) by itself is a, symmetry
operation of the crystal, and therefore H=O, we
can use 8E as 8S in Eq. (17) when we obtain v;&(0)
= vf, (0) which implies that, in the absence of a mag-
netic field, the electrical conductivity is real. %'e

therefore arrive at what we shall call "prescrip-
tion C" which we may write as follows: (i) Use
Eqs. (5) and (6) based on Onsager's theorem,
(ii) use Eq. (3), based on Neumann's principle, for
the unitary elements A of M, and (iii) use Eq.
(17), based on a modified form of Neumann's prin-
ciple, for the antiunitary elements, 6)S of M.
Parts (i) and (ii) are identical to prescription A.
Consequently, prescription A and prescription C
will always lead to the same results, except that,
as a result of (iii), prescription C may lead to
some further simplification of the form of O';J be-
yond that achieved by prescription A. The relation
between prescription C and prescription B from
Kleiner is rather more obscure and we postpone
that discussion until Sec. III. Although prescrip-
tion C was developed for the electrical conductivity
0;, , its extension to a. tensor representing any
other transport property is trivial.

III. SYMMETRY PROPERTIES OF TENSORS FOR
MAGNETIC CRYSTALS-MICROSCOPIC APPROACH

Kleiner has objected to the procedure adopted by
Hires (see prescription A described in Sec, II)
on the grounds that no use was being made of the
antiunitary symmetry operations of a magnetic

8v;g(H) = v,*g(- H) .
From now on we shall use Eqs. (15) and (16) rather
than Eqs. (12) and (14) so as to keep the treatment
general.

We can use Eq. (16) in Eq. (13) to give

o;q(H) = 8S v;, (H) = S8 v;g(H)

= So ~& (- H)

=Z ZS,S,,v;, ts-'(-H)]

crystal. Towards the end of See. II we discussed
the transformation of a tensor under these symme-
try operations from a macr os copic point of view.
The approach adopted by Kleiner was based on
gtudying the effect of the antiunitary symmetry
operations from a. microscopic point of view. This
led to a procedure described by Kleiner as pre-
scription B." We now examine the relationship be-
tween pres cription B and pres cription C.

In the ordinary a.pplication of group theory to
the quantum-mechanical treatment of the micro-
scopic description of a physical system that is not
magnetically ordered, it is usual to construct the
group 0 of the symmetry operations of the Hamil-
tonian K of the system. 6 is sometimes called the
Schrodinger group of the system. For a crystal,
one would usually expect 0 to be the same as the
classical point group or space group of the crys-
tal, although sometimes one may happen to choose,
for reasons based on a knowledge of the physics
of the situation, " a Hamiltonian with more abut not
with less) symmetry than G. That is, physical
arguments may be used to justify neglecting cer-
tain terms in K, and this may accidentally increase
the symmetry of 'K. Having chosen a Hamiltonian
with symmetry of G. it follows from the well-known
theorem of signer' that the eigenfunctions of K
belong to, i.e. , transform according to, the irre-
ducible representations of G. The degeneracies of
the corresponding eigenvalues of X will be deter-
mined by the degeneracies of irreducible represen-
tations of G. Abundant evidence of the validity of
signer's theorem has been provided over several
decades from large amounts of work on atomic,
molecular, and crystal physics.

Now consider a system with magnetic ordering
and let us suppose that the form of the magnetic
ordering is such that the group M of the symmetry
operations of the crystal is one of the type-IG Shubni-
kov point groups. To obtain a quantum-mechanical
description of this system, we construct a Hamil-
tonia, n LCM that has the symmetry of the crystal.
M contains antiunitary operations of the form 95,
where 8 is the operation of time inversion and S is
a crystallographic point-group operation. It is
shown in signer's book on group theory' that the
eigenfunctions of K- belong to, i.e. , transform
according to, the irreducible eorepresentations of
M. There is experimental evidence of this in the
fact that the degeneracies of the spin-wave disper-
sion relations, at various points in the Brillouin
zone, have now been predicted correctly by the
use of corepresentation theory for a number of dif-
ferent magnetically ordered crystals. In passing
we should note that for a given crystal we are still
free to choose, on physical grounds, a, Hamiltonian
with more (but not with less) symmetry than M, in
which case extra degeneracies may occur in the
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spin-wave dispersion relations (see the papers by
Brinkman and Elliott 3 on "spin space groups").

Kleiner's approach is based on starting with a
particular expression for a transport coefficient,
due to Kubo,

rs, „(a&,H)= f dte '" f dXTrp(H)A„B, (t+i&; H).
(18)

We leave aside for the moment any discussion of
the question of the validity of the Kubo formalism
(see, for example, Ref. 15). The effect of the uni-
tary operations in M onthe coefficient rs „(r))H)
was determined by transforming the right-hand
side of Eq. (18). Then Kleiner obtained

„(m, H) =Z Z r „„((,)„H)D' '(u)„,D'"'(u),„
(19)

[see Eq. (2. 1V) of Ref. 5], where the notation is
fully defined by Kleiner. ' The matrices D's)(u)„,
and D'")(u)~„correspond to R,.~ and R,, in Eq. (8).
Equation (19) is the commonly accepted equation
based on the definition of a tensor of rank two and
the use of Neumann's principle, and is identical,
apart from the notation, to Eq. (8), thereby con-
firming that the coefficients defined by Eq. (18)
do form a tensor.

The effect of the antiunitary elements in M on
the coefficients rs„„„(u,H) was also determined by
Kleiner in a similar manner by transforming the
right-hand side of Eq. (18). If 88 is one of these
antiunitary operations (= a in Kleiner's notation)
the result of this transformation is given by Eq.
(2. 2&) of Ref. 5:

r, „(~,H) =2 Z r„),t (&, H, )D ")(eS)+„D'")(eg),*, .
(20)

Equation (20) differs from Eq. (1V) in that the
transformation matrices on the right-hand side of
Eq. (20) are the complex conjugates of those in Eq.
(1V). This does not matter, because these ma-
trices are all real orthogonal matrices. The
transposition of the suffixes on the right-hand side
of Eq. (20) is an important feature that does not
occur when one considers unitary symmetry [see
Eq. (19)]. This transposition leads, for example,
in Kleiner's treatment, to the relations between ihe
Seebeck and Peltier coefficients.

In Kleiner's treatment, relations among trans-
port coefficients determined by the use of Neu-
mann's principle are obtained by using in Eqs. (19)
and (20) [Eqs. (2. IV) a.nd (2. 28) of Ref. 5] the
unitary and antiunitary operations, respectively,
that are contained in the group M [or g or g(A) in
Kleiner's notation]; M is the group of the opera-
tions that leave the Hamiltonian X(5) invariant. In
dealing with Onsager's principle, Kleiner has a
different procedure from that given in part (i) of
prescriptions A and C. In Kleiner's procedure,
instead of using the group M that includes only

the operations which leave the Hamiltonian 3C(H) of
the system invariant, another group X(H) is con-
structed. In addition to the operations of the group
M, the group X(H) also includes all the operations
that send X(H) into R(—II). X(H) will therefore be
some supergroup of M, and the various possible
structural relations between X(H) and M (=g) are
identified in Table I of Bef. 5. Having constructed
the group X(H), the procedure that is described by
Kleiner, s "prescription 8," consists of the follow-
ing: (i) Use Eq. (19) for the unitary elements of
X(H), and (ii) use Eq. (22) for the antiunitary ele-
ments of X(H).

By using the (possibly) larger group X(H) instead
of M, Kleiner's formalism enables the generalized
Onsager reciprocal relations to be derived as a
consequence of requiring the tensor to be invariant
under the operations of the group X(H). In this
prescription the modified Onsager reciprocal rela-
tions are not used explicitly, because they are as-
sumed to be covered by the use of X(H).

IV. RELATION BETWEEN PRESCRIPTION 8 AND
PRESCRIPTION C

In Secs. II and III we have considered the prob-
lem of the exploitation of antiunitary symmetry
operations in simplifying the form of a tensor that
represents the transport coefficients of a magnetic
crystal or of a nonmagnetic crystal in the pres-
ence of a magnetic field H. We did not concern
ourselves very much with the problem of actually
identifying the nonunitary group that applies to a
given physical situation. We now turn our atten-
tion to this problem and use the term magnetic
crystal" loosely to mean any system involving a
crystal which is described by a Hamiltonian in-
volving a magnetic field H that may be external in
origin or may originate within the crystal as a re-
sult of some magnetic ordering.

For the general Hamiltonian Xg of a magnetic crys-
tal, the group which is of physical significance is the
groupof Zg,' that is, the group of operations that
leave the Hamiltonian 3' invariant: this group may
be either a type-I or a. type-III Shubnikov group. If
it is a type-I group, there are no antiunitary opera-
tions to be considered and, therefore, no difficul-
ties. We are therefore concerned with the case
when the group M of the Hamiltonian is a type-IG
Shubnikov point group. In general it seems rea-
sonable to suppose that K- may contain both odd and
even terms in H, and therefore the operations of
this gxouP must leave H invariant. That is, in
Kleiner's notation it is g and not X(H) that is the
group of the Hamiltonian of the magnetic crystal.
However, by analogy with the case of spin space
groups mentioned previously, if there axe some
additional physical reasons for assuming that only
even terms in H appear in 3C-, then one would be
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justified in using Kieiner's group X(H). The addi-
tional physical information which is available
comes from the modified Onsager relations 222 II2 2'2'2 2'2'2 ll C

X~ (0) H X~ (H) g~ (H) Case and category

o,, (H) = &r,-, (- H),
4'22' ll 4' 4'22' 2'2'2 va.

«, ,(H) = «, ,(- H),

(I/7)~, , (H) = ~, , (- H) .

(5) For o;, (H), the electrical conductivity in a nonzero
magnetic field, we find from Table VIof Ref. 5
and Table IV of Ref. 7, respectively, for these
two groups Xi(Ii)
2'2'2

Equation (5) means that the diagonal components of
the electrical- and therma, l-conductivity tensors
are even functions of H. This is demonstrated in

many metals when the transverse magnetoresis-
tance is proportional to H, provided the Fermi
surface of the metal is not multiply connected.
But Kleiner's treatment using X(H) rather than M

(or P) is equivalent to assuming that the Hamilto-
nian is an even function of H. This is certainly
a different condition from the modified Gnsager
relations which, although they impose other condi-
tions, only require the diagonal components of the
electrical and thermal conductivity to be even func-
tions of H. Kleiner's assumption would also seem
to be doubtful because the Zeeman term is odd
in H.

In Kleiner's treatment, because the requirement
of invariance of the tensor under X(H) leads to the
right answer for the generalized Onsager recipro-
cal relations, it is then assumed that prescription
B will lead to the correct simplification of any ten-
sor describing a transport property of a. crystal
in a situation with symmetry described by one of
the magnetic point groups. It is not obvious, to us
at least, that this assumption is justified, and if it
were so, it would be useful to see some general
proof that prescription B is equivalent to prescrip-
tion C. We submit, however„ that no general
proof exists and that prescription B is an artifice.
This in itself does not matter provided it leads to
the correct answers. However, by imposing a
symmetry different from that actually possessed by
the system, there would seem to be a danger that
Kleiner's treatment may lead to an incorrect sim-
plification of certain tensors. Ne can illustrate
this by considering a simple example and, to facili-
tate comparison with the results of Kleiner, we
assume that all the components of the eleetrieal-
conductivity tensor are real.

Consider two crystals with the point-group sym-
metry [X~(0)] of 2'2'2 and 4'22' in the absence of
any external magnetic field. Suppose that each of
these crystals is now placed in a magnetic field
H that is directed parallel to the g axis in each
ease. We can identify the various groups in-
volved when H is present by inspection of Table
I of Ref. 7:

o (H) cr„,(H)

cr, , (II) = —cr„,(H) o„(H)

0 0
,
4'22'

(21)

o (H) v„,(H)

o„(H) = . o (H) cr„„(H)

0 0 o„(H)

(22)

where we have used o(H) =o (II)+o (H).
To find the form of o,&(H) using prescription C

we need to use the group M [or g ~(H)], which is
2'2'2 and has the unitary subgroup 2 (Cz). For 2

(C,), o, , (H) takes the form

o,, (II) =

„(H)

„(H)

cr„,(H) 0

~„(H) 0 (23)

1 0 0

0-S 0

0 0

as Sin Eq. (17),

(z„,(II) = cr„„(H)*,

cr„(H) = (x„(H)*,

o.,(H) = cr,„(H)*,

o„(H)= —o (H)* . (25)

Equations (24) show that the diagonal elements of
o, , (H) must be real, while Eq. (25) shows that
o„,(H) must be imaginary. If we use Onsager's
relation for the diagonal elements we find

o„„(H)=o„„(-H),

o„(H) = o„(-H),

v„(A) =. (x„(-H),

(26)

where, of course, we have not required o,~(H) to
be a symmetric tensor. The antiunitary opera-
tions give, using, for example, C&, which has the
matrix
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o,„(H) =o„,(-H) .
The final expression for o,J(H) is therefore

o (H') o„,(H) 0

o„(H) = o„,(- H) o„(H') 0

rr„(H'))

(29)

(29)

where the diagonal elements are real and the off-
diagonal elements are imaginary. The thermal
conductivity takes the same form. Equation (29)
shows that the result of using prescription C is
different from prescription B for 2'2'2 [see Eq.
(21)] and is more restrictive than, although not in-
compatible with, prescription B for 4'22' [see Eg.
(22)].

For completeness we should also mention that
using prescription A for the cases in our example
would involve using just the unitary subgroup of
M [or g(H)], which in this case is the point group
2 (C,), followed by the use of Eq. (5). This leads
to the same form for o„(H) as that given in Eg.
(29), but without the restrictions of the diagonal
and off-diagonal elements as to being real and

imaginary, respectively.
There are several points to note about the re-

sults of using prescriptions 8 and C. The first is
the fact that M [or g(H)] is the same for both
cases, so that, whereas prescription 8 leads to two
different forms for a,z(H) for these two examples,
prescription C (or, of course, prescription A)
leads to a common form for o,z(H) in both cases.
The second point is that neither prescription 8
nor prescription C (nor, of course, prescription
A) predicts the vanishing of the two off-diagonal
components o„,(H) and o,„(H). Prescription B ap-
pears not to predict the behavior of the diagonal
components as even functions of H. Finally, pre-
scriptions 8 and C predict different answers for
both examples.

Having shown, by considering a simple example,
that prescriptions 8 and C may give different an-
swers, it is important to try to decide which one is
actually correct. This is not easy because the dif-
ferences between Egs. (21), (22), and (29) are
relatively difficult to distinguish experimentally.
Such an experiment might involve measurements of
the Hall effect for a crystal with the symmetry of
2'2'2 or 4'22' with the magnetic field applied in the

which means that each of the diagonal components
of the conductivity must be an even function of H,
i.e. , a function of H . This is consistent with the
observed H behavior of the magnetoresistance of
many metals. If we use Onsager's relation for the
off-diagonal element o„,g) we obtain

o„,(H) =o,„(-H) (27)

or

z direction to distinguish between Eels. (22) and

(29). There are various diffi. culties in the way of
such an experiment because the symmetry predic-
tions will only apply if H is exactly along the z
axis. Neglecting operations that involve the space
inversion I, the point groups 2'2'2 and 4'22' de-
scribe the symmetry of antiferromagnetic NiF&
(in a nonstandard crystallographic orientation) and
antiferromagnetic MnF~, respectively. Thus, on
symmetry grounds, suitable crystals for such
Hall-effect measurements would be antiferromag-
netic NiF3 or MnF&. However, on practical
grounds, the very low conductivity of such crystals
would make these experiments very difficult to
perform.

In view of the fact that prescriptions 8 and C
may lead to different forms for the tensor repre-
senting a given property of a magnetic crystal-
and also in view of the fact that results for tensors
for the electrical conductivity, thermal conduc-
tivity, and thermoelectric effects have been tabu-
lated previously by Kleiner ' —it would seem to be
useful to tabulate the results for the same proper-
ties using prescription C instead of prescription
B. These results are presented in Table I.

There are some theoretical objections to pre-
scription B. These include the objection that there
is no direct physical justification for the use of
Eq. (20) for those antiunitary elements of
K(H) that are not also in M [or g(H)]. Another ob-
jection to prescription 8 is the statement on p.
321 of Ref. 5 that if X(H) is in category b "there is
consequently no Onsager reciprocity relation. "
This is a rather disturbing conclusion. Suppose
that we consider a crystal with only the symmetry
of the trivial point group 1 (C,). If we had never
thought of considering crystallographic (or mag-
netic) symmetry at all and had just gone through
the usual considerations of irreversible thermody-
namics, we would presumably have concluded, as
usual, that Onsager's relation would apply. How-
ever, if one reduces the symmetry from that of
any one of the many possible category-b groups
(see Table I of Ref. 7) to no point-group symmetry
at all, the Onsager reciprocal relation which, ac-
cording to Kleiner, would not apply in the higher-
symmetry situation, would suddenly reappear
when the symmetry is removed. This would make
it possible for a reduction in the crystallographic
symmetry to lead to a reduction, rather than an
increase, in the number of independent tensor com-
ponents that have to be specified. This is rather
curious and is the reverse of what happens in every
other example of the application of group theory in
physics; a reduction in the number of independent
parameters needed to describe a physical situation
always occurs as a result of an increase, not a
decrease, in the symmetry of the system. We
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therefore regard Kleiner's conclusion that there
is no Onsager reciprocal relation for category-b
magnetic groups as highly suspect.

V. EXTRAORDINARY HALL EFFECT IN
FERROMAGNETIC Co

The question of the existence of the extraordi-
nary Hall effect in a ferromagnetic metal, that is,
the contribution to the Hall effect arising from the
internal field in such a metal, has played a signif-
icant part in the previous discussions of the sym-
metry properties of transport coefficients for mag-
netic crystals. 3 7 The discussions were particu-
larly concerned with the example of ferromagnetic
Co, which has the hcp structure. The symmetry
predictions of the form of a, r(H) will depend on the
group M of the symmetry operations of the mag-
netically ordered phase, which in any given mag-
netic domain of a single-crystal specimen will de-
pend on the relative orientation of the magnetiza-
tion of that domain and the crystallographic axes
of the specimen. The group M will be the inter-
section of the crystallographic point group 6/mmm,
or 6/mmml', and the noncrystallographic group
~/mm' that describes the symmetry of the axial

vector representing the magnetization, or the in-
ternal field, in the domain under consideration.
If the orientation of the magnetization is arbitrary
relative to the crystallographic axes, the inter-
section M will be the almost trivial point group
1 ((:,) which contains only the identity E and the
space inversion I. For this group M the conduc-
tivity tensor cr„.(H) is therefore

o„(H) o„(H) a„(H)

o„.(H) = cr„(H) o„(H) cr23(H)

a31@) 032(H) a33/H)

(6O)

or, if we make use of Onsager's theorem,

a11(H ) a12(H) a13(H)

ai j(H) a12( H) a22(H ) +23(H)

cr„(-H) a23( H) -a33(P)

Clearly, therefore, for an arbitrary orientation of
the magnetization relative to the crystallographic
axes, the extraordinary Hall effect is permitted by
symmetry considerations and, indeed, appears to
have been observed in practice. '~'8

TABLE I. Forms of tensors for thermogalvanomagnetic coefficients for type-III Shubnikov point groups. (a) The
elements in each of the type-III Shubnikov point groups can be identified, for example, from Table 7.1 of Hef. 16. (b)
To facilitate comparisonwith the tables of Kleiner (Hefs. 5-7) we have restricted the tensor components to being real. (c) Only

the forms of o.;&(H) and n&~(H) are given. The form of?(.'&&(H) is the same as that of a.;&(H), while the form of 1t.,&(H) can
be obtained from that of n;, (H) via Eq. (6).

T roc linxc: 1

Point groups

Monoclinic: 2' m' 2/m';
2 '/m 2'/m'

Orthorhombic: 2 '2'2 ~ m 'm '2.
m m 2 3 1'pl m m 3 mmm j m m m

~«(H')

0.„(-H)

(a13(- H)

0-g» (H )

~„(-H)

~«(H')

( o

0-;~(H)

0.)2(H)

a22(H )

0.„(-H)

og, (I-I)

~„(H)

~»(H')

o

a„%2))

o

0

(7»(H )

n «(H)

g 2((H)

( ~31(H)

e;;(H)

n„(H)

~»(H)

n )3(H)

g»(H)

a. »(H)

~ «(I-I) o

o &„(H)

o o

o )
0

a»{H)

r e «(H) o, g2(H) 0

n. 2& {H) cu 22(H) 0

0 0 n»(H)

Trigonal, tetragonal,
and hexagonal~

(a„R')
gq((H )

r

cpt
«(H)

o ~„(H)
0 o

o )
0

0, &&{H)

Cubic: m'3; Z'3m'; 4'32';
m '3m '; m '3m. m3m ' C

„(2'I o o

O g «(I-I') O

0 0 a11(H)p

~ «(H) 0

o ~& (H)

o o

o )
o

n «(H)

4' 4' 42'2' 4'22' 4/m' 4'/ ' 4'/11 4m'm'; 4'mm '; 42' '; 4'2
mmm'; 4'/m 'm'm; 4/mm'm '; 32' 3m' 8' 6m'2'; 6'm2'; 6'm '2; 6' ~ 3'
6 /m ' 6 /m' 6m m ' 6 m m' 6 /mmm '; 6'/m 'm 'm; 6/m 'm 'm '; 6/om'mm;

' 4 m2' 4/m m m' 4/m
3m'; 3'm; 3'm'; 62'2'; 6
6/m~l m'.

mm; 4/
'2 '2; 6/m '
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a„,(P) o„„(A)

o„.(H) =
i -o„,(H) o„,(H')

0 0

0 (34)

where o„,(H) is an odd function of H [from Eqs.
(32) and (33)]. The off-diagonal elements in Eq.
(34) are nonzero and therefore, in contradiction to
the statement made by Kleiner, s'~ it appears that
when prescription A is correctly interpreted and

applied to 62'2' it does lead to nonvanishing off-
diagonal components. The application of prescrip-
tion B to this example also leads to o,&(H) of the
form in Eq. (32) with no further restrictions (see
Ref. 6). Thus, both prescriptions A and B allow
the existence of the extraordinary Hall effect in
ferromagnetic Co magnetized parallel to [0001].
The example of 2'2'2, which is equivalent to 22'2'
or 2'22', has already been discussed [see Eqs.
(21) and (29)]; in this case when prescriptions A

and B are used, the off-diagonal component o„„(H)
is also nonvanishing and real so that these pre-
scriptions both allow the existence of the extraor-
dinary Hall effect in a domain of ferromagnetic Co
magnetized parallel to [1010]or [1120]. If one
uses prescription C for 5ii parallel to [0001], one
obtains Eq. (34) as before and then makes use of,
for example, 8C as the additional antiunitary
generating element. Equations (24) and (25) will
then apply again so that, as in the case of 2'2'2
considered previously, we find that the diagonal
elements of o,~(H) in Eq. (34) must be real, while
the off-diagonal elements must be imaginary.
Therefore, for direct currents and with use of
prescription C, o„,(H) will be zero for a domain of
ferromagnetic Co that is magnetized parallel to

If '3R, the magnetization of a domain, is in some spe-
cial orientation relative to the crystallographic
axes the number of elements in the group M may be
increased. In particular, if K is parallel to the
[0001], [1010], or [1120]direction, M will be
6/mm'm', mm'm', or m'mm', respectively, or,
ignoring the space inversion, 62'2', 22'2', or
2'22', respectively. " The subgroup of unitary
elements for 62'2' is the point group 6 (C~) which
simplifies o,~(H) to

o„(H) o„(H) 0

o„(H)= —o„,(H) o„„(H) 0, (32)

0 0 O„H

and the use of the Onsager theorem shows that the
di.agonal elements are functions of P and that

o„„(H)=o,„(-H) . (33)

Therefore, according to prescription A, o,z(H) re-
duces to

[0001], [1010], or [1120].
To summarize, therefore, the existence of the

extraordinary Hall effect in a single crystal of
ferromagnetic Co is allowed by prescriptions A

and B for all relative orientations of the magnetiza-
tion and the crystallographic axes and is also al-
lowed by prescription C for all orientations except
when the magnetization i.s parallel to [0001],
[1010], or [1120]. The predictions of prescriptions
A and B are, therefore, fully compatible with the
experimental observation of the extraordinary Hall
effect in ferromagnetic Co. It is not quite so easy
to reconcile the predictions of prescription C with
the experimental observation of the extraordinary
Hall effect in ferromagnetic Co. However, it has
to be remembered that the symmetry considera-
tions predicting a null extraordinary Hall effect in
Co, using prescription C, will only apply for a
single-crystal specimen that also constitutes a
single magnetic domain (i.e. , is saturated) and is
magnetized exactly parallel to [0001], [1010], or
[1120]. One or two other points should also be
noted. First, the symmetry predictions strictly
refer to the total magnetic field in the metal which
must therefore include any external field 5, that is
present in addition to the internal field in the met-
al. Moreover, it is also assumed that the shape
of the specimen is such that demagnetizing effects
do not cause local deviations in the direction of 0,
or of the magnetization, from the intended special
orientation. A perusal of the published accounts
of the experimental work involved'~' ~ shows that
it is far from obvious that all of these conditions
have been satisfied in practice. It therefore
seems that it would be an interesting and impor-
tant experiment to test the predictions of prescrip-
tion C by performing Hall-effect measurements
on a single-domain (i.e. , saturated) single-crys-
tal specimen of ferromagnetic Co to see if the ex-
traordinary component vanishes for the special
magnetization directions mentioned above.

VI. CONCLUSION

We accept the general validity of the criticism
made by Kleiner of the neglect by Birss of the anti-
unitary symmetry elements when simplifying the
form of the tensor representing a transport coeffi-
cient of a magnetic crystal or of a nonmagnetic
crystal in an applied magnetic field H. However,
we are not in agreement with some of the aspects
of Kleiner's treatment. Since Kleiner's treatment
(prescription B) and our own treatment (prescrip-
tion C) lead to different predictions in certain
cases, it should be possible to distinguish experi-
mentally between these two prescriptions, for ex-
ample, by studies of the extraordinary Hall effect,
although such experiments may be difficult to per-
form.
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We have examined the low-temperature properties of the cubic-planar Heisenberg ferro-
magnet with nearest-neighbor exchange which is defined by the Hamiltonian X=—g;, J;&S; S,.
+g;, (Z, , -K;;) P S",, where —/~K~ J (J positive). We find that as the exchange-anisotropy
parameter 8= (J—g/J ranges over the planar ferromagnetic stability limits 0 ~ 0&2, the be-
havior of the system changes from that of the isotropic ferromagnet at 0= 0 into that of the
isotropic antiferromagnet at 6 =2. The system's noninteracting-spin-wave frequency, ground-
state energy, zero-point spin deviation, and lowest-order renormalized frequency scale be-
tween isotropic ferromagnetic and antiferromagnetic values as g goes from zero to two. Over
most of the system's stability range, the planar ferromagnet exhibits a mixture of properties
combining characteristics of its intrinsic ferromagnetism with those of the antiferromagnet.
This behavior is discussed in terms of an isomorphic mapping symmetry for nearest-neighbor
exchange in loose-packed lattices which requires that in the limit g= 2 the planar ferromagnet
be unitarily equivalent to the isotropic antiferromagnet.

I. INTRODUCTION

The planar Heisenberg ferromagnet was first
introduced and studied as a, magnetic analog to the
lattice-liquid model for the superfluid transition
in He. ' More recently, however, there has been
increased interest in its behavior as a purely mag-

netic system. 3 In this paper, we study the prop-
erties of the planar ferromagnet in the low-temper-
ature spin-wave regime. We shall be concerned
with the Hamiltonian


