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We have calculated the ferromagnetic-resonance (FMR) field and linewidth in an anisotropic metallic
medium in contrast to previous calculations done by others for an isotropic medium or for polycrystalline
materials. The Landau —Lifshitz equation of motion of the magnetization with an additional eA'ective

anisotropic field of cubic symmetry is coupled with Maxwell's equations. The solution yields a generalized
secular equation which is quartic in k', where k is the propagation constant. We assume two limiting cases

~ +. ~of the dynamic component of the magnetization m at the surface: (i) m is "free" to precess around the
magnetic field li at the disk surface and (ii) m is totally constrained in precessing around H. As an

example, results are given for a (100) Ni disk and for H in the plane of the disk and at various angles with

respect to the (]00 & axis. At 300 'K the FMR field (co /y) is greater than its insulator value of 3072 Oe

by 92 and 89 Oe, for H along the (100) and (110) axes, respectively; the linewidth is nearly isotropic
and equal to 262 Oe. However, at 77 'K, where the anisotropy fields have a greater influence, the FMR
fields are 341 and 207 Oe greater than the isotropic insulator value; the linewidth is anisotropic and equal to
660 and 424 Oe for the two respective directions. For the above cases, m is assumed to be pinned at the
surface. The results which are also given for unpinned surface spins do not differ qualitatively. All the
results have been obtained for two different frequencies, 9.4 and 24.0 GHz. Contrary to intuitive feelings,

the anisotropy in the linewidth is inversely proportional to frequency. This is due to the fact that the
anisotropy field becomes comparable to the resonant field as the frequency is lowered. We have thus found

that, although exchange-conductivity effects are small at room temperature, they are quite significant in
determining the resonance parameters at moderately low temperatures.

I. INTRODUCTION

One of the problems in the field of ferromagnetic
resonance (FMR) is the separation of surface and
volume preparation effects from effects charac-
teristic of the pure material. This is particularly
true for films where the ratio of surface area to
volume is very l.arge. During the past several
years, . improvements' have occurred in the pro-
duction of metal. samples, and in particular, very
good thin single-crystal plates with few surface
and volume defects have been produced. These
plates represent almost an ideal means to connect
the FMR-derived parameters to the material itself,
independent of preparation effects.

Unfortunately, although the experimental. means
to achieve high-qual. ity sampl. es have advanced, the
theory for metal. films has lagged in explaining the
FMR of metal. single crystals. In general. , the
magnetic parameters, such as the g factor, the
magnetization, and the magnetocrystal. l.ine anisot-
ropy constants, are obtained by making a critical.
assumption in the theory which, as we shall. show,
is not necessarily true. It is generally assumed,
even in an anisotxoPic medium, that the shift in
the FMR field due to the exchange-conductivity
effect is isotropic and independent of the direction
of the applied field with respect to some crystal-

lographic axis.
In this paper we extend earlier work' on l.ine-

width and resonance field in isotropic metal plates
to the anisotropic case. By comparing our results
with those for anisotropic insulating pl.ates, we ob-
tain the exchange-conductivity shift as a function
of angle. We find that this shift is anisotropic
especial. ly at l.ow temperatures, when the conduc-
tivity and the magnetocrystalline anisotropy are
both l.arge.

The formalism involved in the calcul. ations is
developed in Sec. II. We as~ ~me that the sample
is a semi-infinite pl.ate and that the magnetization
is uniform throughout the sample. The Landau-
Lifshitz equation of motion for the magnetization
is coupl. ed with Maxwell's equations to obtain a
secular equation for their simultaneous solution.
We show that this equation reduces to previously
well-known forms in simpl. e l.imiting cases. From
this equation, one obtains the values of the elec-
tromagnetic propagation vectors.

The surface impedance Z is introduced as in
previous calculations ' to reduce the number of
variables required to specify the problem at the
sample surface. The rf electric field is el.iminated
as a variable through the definition of Z. In con-
trast to the previous use of an isotropic2 4 surface
impedance, we assume an anisotropic surface im-
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pedance to account for an anisotropic internal. field
Ho needed for resonance. Z is calculated for a
given angle of Ho with respect to some crystal. lo-
graphic axis. The FMR field and linewidth, ~/y
and h&u/y, are obtained from the real part of Z.

Although the calcul. ations are applicabl. e to any
cubic magnetically anisotropic material, they are
applied to the specific case of a thin disk of nickel
in Sec. III. Nickel is chosen because it has l.arge
anisotropy constants, K, and Ã2, particularly at
l.ow temperatures, because it has been studied ex-
tensively' ' by FMR, and hence the exchange con-
stant A. and the Landa. u-Lif shitz damping param-
eter are reasonably well. known, and, finally, be-
cause high-quality thin single crystals can be
grown in platelet form. We have obtained ar/y and
a&a/y for temperatures of 300 and VV 'K. At low

temperatures one expects a large effect because
the conductivity is large and the skindepthis small. .
Thus, the change with depth of the rf component
of the magnetization is l.arge and the induced ex-
change fields should be large. Furthermore, the
anisotropy is also large. For convenience, we
choose the thickness of the nickel sample to be
1 p, m, larger than the skin depth. At temperatures
below -VV 'K, the skin depth becomes anomalous
and our present calcul. ations would be inapplicable.

We also obtain results at two different frequencies
(9.4 and 24. 0 GHz) and for a variety of values for
the conductivity o, since this parameter may vary
in actual samples as a result of a variation in puri-
ty from sa.mple to sampl. e.

II. THEORETICAL FORMULATION

A. Secular Equation

The explicit functional dependence of Ho on angle
can be derived from

H, =- V.Z/~, , (2)

where Mo- jM). The gradient operator V is de-
fined with respect to the direction cosines measured
from the crystal axes. I' is the magnetic free
energy:

2 2 2 2 2 2 2F&= —H, ~ M+ 2mMpap + Z, (a.-, a2 + a., a3+ ap a3)

+ K2(Qg n20p) . (3)

In Eg. (3), the a, 's are the directional cosines of M
with respect to the cubic (100) axes. K, and Kp are
the first- and second-order anisotropy constants,
respectively. The first term on the right-hand
side represents the Zeeman energy, the second the
demagnetizing energy, and the third and fourth
the magnetocrystalline anisotropy energies.

The form of the second term in Eq. (3), the de-
magnetizing energy, is dictated by our having taken
the 2 (or y) axis to be a (100) axis normal to the
plane of the pl.ate as shown in Fig. 1. Further, we
assume that, in the static situation, the magnetiza-
tion is saturated, and that the sample is infinite
in the x and z directions, so that the demagnetizing
factor is 4m. This last assumption is reasonably
good for pl.ates with aspect ratios as low as 25.

Substituting Eq. (3) into (2), we get

Hp = H, —4wMpnp a —2K~[a.q(a, p + aoa„

+ ERp(Qg + Gp)a + Qp(lay + (P2)ag]/Mp

2K2(QgQpQp @ + &pa)(gp 8

+ QpcPgcPp ag) /Mp, (4)

It has been shown over the years that the Landau-
Lifshitz4-7, 9,&0 and Gilbert formsts of the equation
of motion can adequately describe the time depen-
dence of the magnetization in magnetic metals.
Since at temperatures well below the Curie tem-
perature, both models give similar results, we
will use the Landau-Lifshitz damping form for
convenience:

1 dM = Mx(Hp + h+ h„+ h,„+h~) .N

where
in Eq.

The

the a's are unit vectors„The second term
(4) is H„and the third and fourth terms are

rf Maxwellian field h, which is made up of

The various terms in the parentheses, which are
discussed in detail below, represent different
effective magnetic fields acting upon the magne-
tization. Respectively, these terms are the static
effective internal'field, the rf Maxwel. lian field, the
rf a,nisotropy field, the exchange field, and the
effective damping f ield.

The static internal field Ho can be expressed in
terms of the external. field H, , the demagnetizing
field H„, and the static cubic anisotropy field H„:

Ho = Hg + H~+ H~ .
PIG. &. Geometrical configuration of the applied field

and the magnetization.
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k„„=—(C,m„+ C2m~ + Csm, )/Mo,

k~ = —(Cqm~+ C5m + Cemg)/Mo,

k„,= —(Cvm„+ C,m, + Cgm, )/Mp,

where

Ci = (2%i/Mo) (1 —ni) + (2K2/Mo) n~n~,

Ca ——C4
——2ngng [2K)/Mp + (2K2/Mp) n3]g

Cs = Cv = 2n, n3 [2Ã, /Mo + (2K2/Mo) n2],

C~ = (2K, /Mo) (1 —n2) + (2K2/MO) (2, cP~

C~ = C~ = 2n2ns [2K, /Mo + (2K2/Mo)n~],

(Ga)

(Gb)

(Gc)

Cg = (2K)/Mo) (1 —nq) + (2K2/Mo) nqn2

Each term h„z represents the rf component of h„
in the p direction. The rf field h„ is present only
if there is a small deviation of M from its equilib-
rium position Mo.

The effective exchange field h,„ is obtained from

h,„= (2A/Mo) V M,
where A is the exchange stiffness constant. In a
metal, the attenuation of the rf field generates a
spatial variation of M, and results in h,„.

The Landau-Lifshitz (LL) damping field h, has
the form

h~ = —(X/yMO) M x (Ho + h+ h„),
where A. is the LL phenomenological damping term,
assumed to be isotropic. ' The form of h~ is such
that the magnitude of M is conserved. In principle,
h,„should be included in this term, along with Ho,
h, and h~ . However, the effect of including h,„
is so small, ' and the mathematical complication
so great, that we neglect it here.

Equation (1) must be solved simultaneously with
Maxwell's equations. In Gaussian units

9
V x E = ———(H + 4wM),c t (7a)

VxH= E,c

V ~ (H+ 4') = 0. (7c)

The Maxwellian field H which appears in Eqs.
(7) is composed of two terms

the incident, transmitted, reflected, and demagnetiz-
ing rf components, is not known a Priori. Its value
is determined by satisfying Maxwell's equations
and the boundary conditions appropriate to these
equations. These are discussed below.

The rf anisotropy f ieM h„ is simply calculated by
taking virtual. variations of H„, '

h~= &H~. (G)

Thus, for the three components of h„, we find

H= HO+ h (Sa)

The internal fieMs E and H are subject to the
usual electromagnetic boundary conditions at the
surfaces of the plate.

The magnetization M can likewise be decom-
posed into static and rf components:

(sb)M=MO+ m,
where M is parallel to Ho. In this pa.per we shall
consider two limiting boundary conditions on the
dynamic magnetization m: (i) m = 0 at the surface
(usually referred to as the full-pinning condition")
and (ii) Sm/By =0 at the surface (the free-pinning
condition). In practice, any condition between
these two extremes is possible. '

Equation (1) and the set of Eqs. (7) are coupled
through the magnetization M. In the microwave-
frequency range, the displacement-current term
that would appea. r in Eq. (7b) is neglected since
it is small compared with the conduction-current
term. There are nine variables (M, E, and H) in

Eq. (1) and the set of Eqs. (7).
In an FMR experiment the external rf magnetic

field is small so that the deviation of M from its
equilibrium direction M is small, i e. , .

Ihf'&IHol and Imf«IMof

V x (V x H) = —
g

—(H + 4m'M) .c &t

Substituting Eqs. (8a) and (8b) into (9), we get

(9)

(10)kka, —kh= —j 2 (h+4mm) .

Equation (10) may be written in component form:

I„+Qh„= 0,
4vm, + k„=0,

(1la)

(lib)

(11c)nz, +Qh, =0,
where q = (I/4n )(I + —,

'
jGao k ) and Go = c /2v o&u.

Equation (lib) corresponds to the Kittel rf de-
magnetizing field, which is introduced directly
into the equations of motion via Eq. (4) as a sepa-
rate field component by most authors. ' It enters
automatical. l.y through the use of Maxwell's equa-

Wave propagation in the sample is assumed in the

y direction, since the sample is symmetrically
excited by external linear polarized waves traveling
in the +y direction. That is, m and h are both
proportional. to e ~ '"'. Qf course, for finite-
size samples, propagation in the x and z directions
inside the medium must be considered. ' '7 Mag-
netostatic-mode excitations' in films may arise
when this is the case. But for a semi-finite film,
these modes are not excited.

The variable E in the set of Eqs. (7) can be
eliminated by combining Eqs. (7a) and (7b):
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tions. Obviously, the dc demagnetizing field is
not contained in Eq. (11b) but is found in Eq, (4).

Substituting Eqs. (8a) and (8b) into (1), and
neglecting nonlinear terms in m and h, yields

A. H 2A

~ M, x (h i h„) + —(h+ h„) — — [U ~ (h i h„)]U,
y

"
y

(12)
where

U = ~la„+ O.2a + e3a, (13)

The variable h is eliminated from (12) by relating
mto h through Eqs. (11). Substituting Eqs. (6)
into Eq. (12}, we obtain a set of three equations
in terms of rn„, I, , and m, . The three equations
are of the form

[A] ~ m=O, (14)

where [A] is a 3x 3 matrix whose elements are
given by

gll + Cll 012 + C12 013 + C13

[A] = a21+ c„a„+c„
Q31 + C31 032 + C32 33 + C33

det[A. '] = 0 . (16)

This results in a secular equation which is quartic
in k2:

(a + b + 2&a) n2 + (1 —n2) [ad+ bc+ &(a+ d) ]+&

+ C11C22 + C11C33+ C22C33 C31C13 + C21C12 + C23C32

31 1$ + 13 31 + 32 23 + R3c32 + a21 12 + 12c21)

—[d(1 —n2) (c„+c$3) + a(1 n1) c3$ + a(1 —n3) c11

+ a(2 —n1 —n', )c221 —Q(c»+ c22+ c„) = 0. (17)

The a's are the matrix elements of [AJ if K, = Z2 = 0
(no magnetic anisotropy). In the Appendix, the a, &

and c;, are defined in terms of K, , K» M» IIo, A.,
y, 0, andA.

Now, as we have pointed out above, the form of
the LL damping term is such that the magnitude of
M is conserved. In the linear approximation (ne-
glecting nonlinear terms of the form m mz, h h&,
and m hz, where ~ and P mean x, y, or z, taken
cyclically) this means that m is perpendicular to

For example, it is easy to show that for M$
in the film plane

m, = —m„tan8, (16)

where e is the angle between M and the z axis (see
Fig. 1). In general, the three equations in Eq. (14)
are not linearly independent. Thus, we may reduce
the 3x 3 matrix to a 2x2 matrix [A'].

There exist nontrivial solutions for m if

a'= Qa, b'= Qb, d'= Qd. (19a)

Now, @=0 is the nonmagnetic solution which re-
sults in the classical. skin depth. The quantity
inside the brackets is a cubic equation in k2 which
was derived by Ament and Rado. 2 Finally, with
M perpendicular to the film plane (n2 = 1), Eq. (18)
becomes

a +b +2a+~ =0. (19b}

The roots of k2 can be easily soLved from Eq. (19b)
to give the dispersion relation

0=- a+ jb .
The form of the secuLar equation in Eq. (19b) was
derived by Akhiezer3 for perpendicular resonance.

2. Anisotropic Insulators

For an insulating material. the conductivity o is
0 and the skin depth 50 is infinite. For unpinned
boundary conditions, since there is no attenuation,
only the k=0 mode will be excited. With no mag-
netic damping (X=O) and with A=O, Eq. (17) then
reduces to a very simple expression for the fre-
quency of the FMR uniform-precession mode. X et
us consider three special directions.

If M is perpendicular to the plane of the sample,
but along the [010]axis, n, = n$= 0 and n2= 1.
Equation (17) then yields

(u/y = H$ + 2K)/M$ .

The definitions of g, b, c, d, and 0 are given in the
Appendix. Had we taken the determinant of [A], we

could have obtained the same dispersion relation,
plus the additional unphysical root ru/y = 0.

By considering various limiting cases of Eq. (17),
we can show that previously derived secular equa-
tions are contained in it. Several such cases are
treated below.

1. Isotropic Metals

We recall that all of the c's are zero if K, =K2=0,
in which case Eq. (17) reduces to

(a'+ b'+ 2Qa) n', + (1 —n,')

x[ad + bc + A(a+ d)1+ 02 = 0. (18)

The secular equation given in Eq. (18} is exactly
the same as the one obtained previously for iso-
tropic magnetic metal plates4 and is applicable for
an arbitrary direction of M (in o3 out of the film
plane). Equation (18) is quartic in k, giving four
pairs of roots, where the members of a given pair
are negatives of each other. Furthermore, with
M in the plane of the film (n, = 0), Eq. (18) be-
comes (after multiplying by Q )

Q([a'd+ b'c+ &(a'+ d')]+ Q&') = 0,
where
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Using Eq. (4), we obtain

Ho =H, —4m&0.

Therefore,

&o/y = H, 4v-MO+ 2X,/M, .

This is a mell-known result. '9'~o

If Mo is in the fiim plane, along the [001]axis,
n, = n2 = 0 and n, = l. From Eq. (4), Ho = H, . Then
from Eq. (17)

2E( 2K -1/3
H ~ —-'- H +~+ 4' (21)g ~ C 9

If Mo is in the fil.m plane, along the [101]axis,
o., = o,, = I/v2 and n2=0. Equation (1V) yields

From Eq. (4), we have

Ho = H, —Eq/Mo,

which gives

(22)
Thus, by taking some appropriate l.imits of Eq. (1V),
we have shown that some recognizable results can
be generated.

3, Anisotropic Metals

We now consider the most general. form of Eq.
(17), including effects of exchange (A & 0), conduc-
tivity (cr&0), magnetic damping (A. &0), and anisot-
ropy effects (K, and K2 different from 0). However,
we will restrict M to lie in the film plane, the
(010) plane. In this case the secular equation [Eq.
(17)] gives rise to a solution Q= 0 and a cubic equa-
tion in k~:

[a'd+ h' +cQ(a'+ d')]+ QQ~

+ Q[(c11c22 + C11C33 + 22 g3)

—(ca|cps+ '2~en+ c„c„)]
'Bl 13 13 31 + +32 c2&

+ 23C32 + 021cig + Oypcp|)

—[d (c„+c.„)+ a (I - ~,') c„
+ a'(I —a',)c„+a'c„) = 0 . (23)

As expected, the inclusion of anisotropy fields does
not modify the "pure" nonmagnetic skin-depth mode
@=0discussed previousl. y for the case of Ky —Kp
=0. However, since we are interested in the mag-
netic sot.ution of the problem, we must sol.ve the
cubic equation. Although there are analytical.

waysa' of solving for the roots, Eq. (23) is so
cumbersome that an analytic solution becomes
quite involved. %e have solved the cubic equation
numerically, by computer, and we wil. l present a
comprehensive study of the roots in another paper.

In Sec. IIB, we outline the method and obtain an
expression for the surface impedance g in terms
of the roots of Eq. (23).

m„—&3m', mg — Z, rn, .
Each solution corresponding to a particular k„must
satisfy Maxwell's equations, and Eqs. (11)and (14),
obtained from the equation of motion. From Eqs. (11)

m, (n) = —Q„k,(n), (25)

where Q„ is the value of Q corresponding to 0„.
Then, from Eqs. (14) and (25) it is relatively sim-
pl. e to show that

m, (n) = v„h, (n),
where

V» Q»(hn + QicP3 —&3c21)/(d+ + —Cga) . (27)

In Eq. (27), b„ is the value of 5 (see the Appendix)
correspondMg to k'~,

8. Surface Impedance

If we substitute one of the six 0 values (three
pairs, positive and negative) obtained from Eq.
(23) into Eq. (14), we obtain an internal magnetic
rf fieM solution. As in the case of the isotropic
metal, a each of these solutions corresponds to a
linearly polarized wave. The total internal rf
field is a linear combination of these eigenmode
field solutions. The proper combination is deter-
mined uniquely by the boundary conditions. All.
solutions must satisfy the continuity of the rf elec-
tric and magnetic fields across the surfaces. In
addition to this, we must specify a boundary condi-
tion on the magnetization. Here we assume one of
the usual. limiting cases: Either m is fully pinned
at the surface (m=0) or it is completely unpinned
(Sm/ey=0). For what follows, we will assume
that the rf excitation is applied symmetrical. ly to
the two surfaces of the sample, so that the inter-
nal. rf field solutions are a symmetric function of
y. In this case, the compt. ete solution must be a
sum of three hyperbol. ic cosines generated from
each of the pairs of solutions with wave vector k„,
n=-l, 2, and 3.

Before writing and sol.ving the equations which
represent the boundary conditions, we introduce
some transformed variables, in order to simplify
the mathematics, and the surface impedance Z, in
order to eliminate the rf electric field. For in-
plane FMB, it is convenient to introduce a pair
of transverse fields, h, , and I, , in the pl. ane of
the film and normal. to Mo. Thus,
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In general, the surface impedance g is a tensor
property. 22 But for the characteristic polarizations
of the system, reflected without change of pol. ariza-
tion, it is a scalar' def ined as

For full pinning, Eqs. (31) and (32) become

3

Z X„Q„cosh(k„d/2) =0 (m, = 0),
n-"1

(31')

Z = (c/4wo) e, /k, . (28) 3

p X„v„cosh(k„d/2) = 0 (m, = 0) . (32')

n=1
cosh(k„d/2) = k (h continuous), (29)

Q X„k„sinh(k„d/2) = Z (e continuous), (30)
n=l

Using Eqs. (251-(28), we may write the boundary-
condition equations explicitly. For the case of
completely f ree surface pinning

n=1

In Eqs. (29)-(32 ), d is the thickness of the film
and X„ is the field strength of kd(n). The rf field
ko is the magnetic field at the surface and, like

h, (n) and m, (n), is transverse to Mo. For either
set of boundary conditions, the equations can be
written in the form

n=i

k„ i)„s(nh(k„d/k) = 0 ' = 0)By

v„k„sinn(k„d/2) = 0 — " =
0)By

(31)

(32)

[B]~ Y = 0,

where [B] is a 4&&4 matrix and the components of
the vector Y are h, X, , X, and X, . For un-
pinned spins, the matrix [B is given by

[B) =

1 cosh(k, d/2)

Z k, sinh(k, d/2)

0 kiQ, sinh(k, d/2)

0 k, v, sinh(k, d/2)

cosh(k2 d/2)

k, sinh(k, d/2)

k2Q2 sinh(k2 d/2)

k, v, sinh(k, d/2)

cosh(k 2d/2)

k2 sinh. (k2 d/2)

k,Q, sinh(k2 d/2)

k2 V2 sillll(k2 d/2)

Z= p/&,

where

p —(Q2 —'Q1) (V2 —Vi) —(V2 —V1) (Q3 Qi)

Q2V3 —V2Q3 Q3V, —V3Q,

k, tanh(k, d/2) k2 tanh(k2 d/2)

(33)

@1V2 V1@2

k2 tanh(k2 d/2)

For full pinning, the surface impedance is

Z= &'/p,

where

6' = (Q2v2 —v2Q2) k, tanh(ki d/2)

(34)

+ (Q2v, —v2Q, ) k2tanh(k2 d/2)

+ (Q,v2 —V, Q2) k2tanh(k, d/2) .

The power absorbed by the sample is given by2'

S = ae[Z].
The resonance field is defined in the conventional.
way as the field &u/y for which dP/d((k)/y) == 0. The

There exist nontrivial solutions for Y, if

det[B] = 0 .
After expanding the determinant, we obtain the sur-
face impedance

l.inewidth is obtained from the peak-to-peak width
of the derivative of the resonance line.

III. RESULTS

Ideally one wouM like to calculate the FMR-
frequency fieM and linewidth as functions of E, and

K2 while the values of other parameters are fixed.
However, this is unrealistic for any magnetic metal
of interest. As an example, for nickel. the values
of K, and K2 can be varied by either varying the
temperature of the sample or alloying the sample
with another element such as copper or palladium.
However, as the temperature or the alloy composi-
tion is varied, the conductivity, the magnetization,
the magnetic damping, and the g factor are also
affected.

We describe here the results of calculations for
Ni at two temperatures, 300 and 77 K. The values
of 4m~0, 0, K, , E2, ~, and g were obtained from
published values. ' '2" Since o is a structure-sen-
sitive property, we have varied it over a reason-
able range at each temperature. We expect a
marked contrast between the results at the two
temperatures since K1, E2, and o change by an
order of magnitude between the two temperatures.
The other parameters are reasonably constant
between the two temperatures, although the mag-
netization does vary slightly.

We fix the frequency (k)()/2v and the in-plane
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FIG. 2. Difference in resonant "effective" field be-
tween the field value obtained from metallic effects and
the insulator value of 3072 Oe as a function of 0, the in-
plane angle of Mo. The angle 8 is defi~ed with respect to
the (100) axis. The frequency is 9.44 GHz and the tem-
perature is 77'K. The resistivity ratio p is defined as
the ratio of the resistance value at room temperature to
resistance at 77 K.

as a function of frequency or of &u/y using Eq. (35).
The derivative of the absorption curve yields the
shifted resonance frequency, the effective field
v, /y, and the linewidth hv, /y for a metal. In
Table I we show the results for ~0/'2m=. = 9. 44 0Hz„
~0/y= '3072 Oe and for v, /2e = 24. 0 6Hz, wo/y
= 7810 Oe for a temperature of 300 'K. The reso-
nance field shift for the unpinned case is the so-
called exchange-conductivity shift. For the pinned
case, the shift is due to both exchange conductivity
and pinning. We note that for either pinning con-
dition both the shift and linewidth are approximate-
ly isotropic at both frequencies.

As the temperature is lowered, the values of

2Ã, /M, 2Ã)/M, and o all increase. We would ex-
pect, therefore, that the resonance field shifts
and l.inewidths would both increase and become
more anisotropic. That this is the case is shown
in Table II, for 7= VV 'K. The low-temperature
results are shown in greater detail. in the series
of figures. Figures 2 and 3 show resonance field
shift as a function of 8 for the two frequencies.
The conductivity 0. at 300 K is given in Table I and
results are shown for a variety of resistivity
ratios p. We note that there is a substantially
greater anisotropy in the shift at the l.ow frequency
than there is at the high frequency. This is to be
expected since 2', /M and 2Ã, /M are a Larger frac-
tion of &u/y or of Ho at low frequency than at high
f requency.

500—

angle 8, and calculate the resonance static in-
ternal field He(8), assuming an insulating medi-
um. This is done by selecting a value of +0,
and substituting it, along with appropriate val-
ues of K„K), M, and g, in Eq. (21) for a
(001) direction, Eq. (22) for a (101) direction, or
the appropriate simplification of Eq. (23) for
arbitrary 8, to calculate He(8). Then, for the ap-
propriate 8, H0 is kept fixed and the power ab-
sorbed by the sample per unit area is calculated

400

20

!0

24. 0

Direction of
Mo

(100)
(110)

(100)
(110)

Resonance field shift
~ /V- ~d0/V (Oe)

Pinned Unpinned

92 25
89 24

Linewidth
Ace, /y (oe)

Pinned Unpinned

262
260

185
180

TABLE I. Room-temperature FMR field shift and ~

linewidth. free p=
25
20~——14

IO

T= 300 'K
4~~=6100 e

g=2, 19
fT---l, 42x10 mho/cm

2'/M = —220 Oe
2E'2/M=-45 Oe

d=l IMm

25 50
e(deg)

FIG. 3. Same as Fig. 2, except the frequency is 24 6Hz.
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f (GHz)
Direction of

Mp

Resonance field shift
(d /y-(dp/y (Oe)

Pinned Unpinned

Linewidth
Acro/y (Oe)

Pinned Unpinned

TABLE II. Low-temperature FMR field shift and

linewidth.
linewidth, if the line is Lorentzian. In this case
the derivative linewidth b,vp/y is obtained by mul-
tiplying «u/y by 0. 577." For H, along the [0011
axis, we use Eq. (21) and

9.44

24, 0

(100)
&110&

&100&

(110)
T=77 'K

4'=-6350 G
g=2. 19
0 = 19.9 x 105 mho/cm

341 122
207 73

343 116
281 93

660
424

806
694

328
216

460
408

2K'/M=-3100 Oe
2K2/M = —520 Oe

d=1 pm

where JI0 is the internal field at resonance and is
calculated from the resonance equations using
either ~p/y = 3072 or 7610 Oe. For Hp along the

[101]axis, we use Eq. (22) and

heep X f Ei K2

y y~o 0 0

we have

2X
[Hp + 27fMp —p(Cgg + Cpp + Cpp) ] ~

ymy
(36)

where 4v/y is the half-power point frequency field

We note from Table I that linewidths at room
temperature are nearly isotropic. From Table II,
we see that they have become quite anisotropic
at low temperature. This is again shown in greater
detail. in Figs. 4 and 5. However, part of the
anisotropy at low temperature would be observed
with an insulator. The size of this effect can be
obtained either from the solution of Eq. (35) with
the o =0 version of Eq. (23) or from an approxi-
mate calculation, which works well for this case.
First, for a =0 we can put Eq. (23) into the form P

putting appropriate values for 2nM0 = 3000 0,
&=3.75x10' Hz, and y= 3.073xlpp Hz/Oe, we ob-
tain, at x band,

h&u /y —121 Oe, H II [0011,

b.&op/y —105 Oe, Hp II [101] .

We see from the above that the insulator linewidth

is &-5 of the total linewidth, depending on the
pinning conditions. The rest of the linewidth is
due to the metallic effect. Equation (36) accounts
for only about +9 of the anisotropy in the linewidth.

Finally, it should be pointed out that at low tem-
peratures (T-77 'K) the skin depth begins to be-
come anomalous in ¹i.For lower temperatures,
the effect of the exchange conductivity on the line-
width and field position is nearly constant. This
means that if we were to "push" our calculations
into the anomalous skin-depth temperature region,
the curves (in Figs. 2-5) for different p's "ap-
proach" each other.

IV. DISCUSSION AND CONCLUSIONS

800
We have shown that for metals with large mag-

netocrystalline anisotropies and high conductivities

~ |'00

b

400

25
20
l4
IO

200
25

8(deg)

P=
25

~ 2Q

)O
~4

i I

50

FIG. 4. I"MR effective fieM linewidth as a function of
8, the in-plane angle of Mo. The frequency is 9.44 GHz
and the temperature is 77'K. The resistivity ratio p is
defined as in the caption of 'Fig. 2.

l000

c 800

3'
a

l4

IO

free P =

„25
——~20

~l4
-io

t

500 25
8(deg)

FIG. 5. Same as Fig. 4, except the frequency is 24 GHz.
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there exist substantial. anisotropies in the shift of
resonance field from its insul. ator value and in the
increase of resonance linewidth over its insulator
value. While this result is intuitively reasonable,
it has not previously been demonstrated. More
important, the possibility of such an effect has
usually been ignored in the analysis of FMR data
for singl. e-crystal. metals. Ignoring the shift, in
particul. ar, can have very serious effects on an
attempt to evaluate a consistent set of parameters
appropriate to resonance experiments.

The procedure usually used in evaluating such
data has been to assume an isotropic shift in reso-
nant field due to the exchange-conductivity effect,
and to fit the data with a resonance equation ap-
propriate to an insulator. As we have shown, this
is completely invalid for a material such as Ni at
low temperatures. Let us use the results pre-
sented in Table II to illustrate the consequences of
this procedure. For a sample whose properties
have the values given in the table, with pinned
surface spins, at 9.44 GHz, the difference in
resonance field for the (100) and (110) directions
in the film plane, over and above that which would
be measured for an insulator, is 341 —207=134 Oe.
If we were to attempt to interpret these data in
terms of Eqs. (21) and (22), we would be obliged
to use incorrect values for M0, K» K» or y. If
we were to use the values of M0, K» and K2 known

from other experiments, we would be obliged to
interpret the results in terms of an anisotropy in

y or in the g factor. Thus,

134 = A@0

1 1

~(100& ~(110&

Therefore, for the pinned case,

4g 134
&& ioo & o&o /y& &op &

For the unpinned case, 4g/g&&pp& 0. 015.
One of the approximate schemes '~' to incorpo-

rate exchange-conductivity resonance field shifts
in an anisotropic medium has been to write II, in
Eqs. (21) and (22) as H, —5H, , where 5H, is a
f ictitious exchange-conductivity shift. Further-
more, 5H, was assumed isotropic, which is con-
trary to our findings. Using this approximation,
Rodbel. l and Frait and Gemperle found at X band
that the g factor was isotropic for nickel and iron,
respectively.

However, substituting the FMR fields measured
by Rodbello in 1100] nickel platelets along the (100)
and (110) axes and the values of 4&&J&fo, K, , and

K~ obtained for torque measurements' on spherical
nickel samples into Eqs. (21) and (22), Aubert
deduced that the g factor was anisotropic (i&g/g«oo&
=0.08) at X band and at a temperature of -120'K.

We predict an anisotropic exchange shift which
may be interpreted as an anisotropic g factor with
a value of bg/g&, oo &

= 0. 01 to 0. 04, depending on
the boundary condition. The discrepancy between
our estimate and that of Aubert may be due to the
fact that the values of K» K» and possibly K, are
frequency dependent. The values of K, and K~ ob-
tained by Rodbell' from FMR field measurements
at X band were different from the values of these
constants obtained by Aubert at low frequency
(audio frequency). An investigation of the frequen-
cy dependence of K, and K~ is presently being
carried out. Since there may be a number of ef-
fects which can account for the anisotropy in the

g factor, it is crucial that a reasonable estimate
be obtained for the anisotropic shift in the resonant
field due to the exchange-conductivity effect.

Linewidth anisotropies such as we have dis-
cussed above have been observed experimentally
and reported previously. ~' It shoul. d be noted,
if one wishes to compare the theory described
here with experiment, that the calculations here
have been done, for convenience, in terms of fre-
quency sweep. Experimental results are al.most
always reported in terms of field sweep. To com-
pare the two it is necessary to convert applied
field to effective field or vice versa. '

Note added in Proof. The addition of a field of
the form (2k, /M) (n, a„+ noa, +n, a, ) to Eq. (4) does
not modify either the equilibrium condition con-
tained in Eq. (4) or the resulting secular equations,

~

since this field always aligns along the internal
~field.
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APPENDIX: DEFINITION OF SOME TERMS

The definition of each term in the matrix of [A]
is given below:

a» = —[a(1 —no&) + 0],
a1p = cap + d(y1n

a» = —bn~+ an, +3,
bQ3 + a@1@3

aoo = —[d(1 —no) + 0],
bQ1 + a&2&3

a31 = bQg + a@1@3

a3p = —CQ1 + d&2Qg

. a„=—[a(1 —n,') + &],

where

n = jo&/y,
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t:sa = t'sa+
h

ptas —&s)
yMQ

MQ 2A.
&ss = &as+

h
(&&s —&s)

Y Q

A= aj 6 1 —n, +30 0303Kq ~ g~ 3 p

0

t'tt = &tt + (Atat —C,),
Q

6 1

6 1

and, fina1. ly,

(1 —ai) ~ 10 n,'ai)

(( —a', ) + (O —' n,'a', ),

('ta = hta +
hf

(&tat &a),
Y Q

cat = hat + (A(aa —Ct)
Q

~aa = has +
Y Q

cst bst + ( A tas Cv)
Q

4KB 3 2+t+a+s(+s +a) ~

Q

bta = hsa = Gs(l 3&a) + As&t (Qs —2rra)
2K1 3 2E2' P P p

Q Q

its = —has = taa(3tas —I) + taatat (2tas —taa)
2K) 3 2E~

Q Q

hat = hst =
hf

tas(3tat I) + ~ tastas (2tat tas) ~

2K' p 2E~

Q 0

4Z, 2
haa =

hf
&ttaatas(&t tas) ~

Q

4Z, 3~t ~a~s(~a —~t)
0
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