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The bulk susceptibility of an induced-moment system containing substitutional vacancy im-
purities is studied in the low-impurity-concentration limit, utilizing a Green’s-function -

method in the random~phase approximation.

It is found that the variation of the inverse sus-

ceptibility with the impurity concentration is strongly temperature dependent, in contrast to
the temperature-independent result predicted by the simple molecular-field theory in which
the exchange interaction is merely scaled by the factor 1 ~c¢. At low temperatures the devia-
tion can be up to 35% for a simple cubic lattice. A further investigation shows that a refined
molecular-field theory taking account of the nonuniform distribution of the magnetization in
the impure crystal recovers most of the features predicted by the Green’s-function theory.
However, no molecular-field theory can account for the behavior of systems of small energy

gap, or systems of low ordering temperature.

In these systems the contribution of the col-

lective excitations greatly alters the results at low temperatures not only quantitatively but

also qualitatively.

1. INTRODUCTION

The study of the effects of impurities in an
otherwise perfect crystal has been of considerable
theoretical and experimental interest in recent
years. In a previous paper! (referred to as I here-
after) we discussed the impurity modes and local
susceptibilities of an induced-moment magnetic
system containing a single substitutional impurity.
The system was studied in the paramagnetic phase.
Two singlet energy levels were assumed for all ions
and explicit results were given for a simple cubic
crystal lattice with nearest-neighbor-only ex-
change interactions. In particular, we showed
that there exist two impurity modes and they are
of S type. This remains true for impure induced-
moment paramagnets of other geometry with only

nearest-neighbor exchange interaction. As in an
ordinary ferromagnet,? the impurity modes can be-
come localized, appearing above the energy band
and/or in the gap. Local susceptibilities on the im-
purity ions were also calculated and remarkable dif-
ferences were found between the Green’s-function
results and the prediction of molecular-field theory
(which ignores the collective excitations of the sys-
tem).

In this paper we extend the Green’s-function cal-
culation in I to the case of vacancy impurities, that
is, when the impurity ions are nonmagnetic or are
actually vacancies. We still choose a two-level
paramagnetic induced moment system as the host
in this calculation. Instead of the local suscepti-
bility on the impurity ion, which is zero for a va-
cancy impurity, we discuss the bulk susceptibility
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of the impure crystal. To study the depression of
the bulk susceptibility by addition of vacancy im-
purities, we plot the inverse susceptibility per mag
netic ion versus the impurity concentration. At
low impurity concentration a straight line is ob-
tained, the slope of which describes the effect of
the dilution. We find, in the Green’s-function cal-
culation, that the effect of dilution is temperature
dependent, and is most pronounced as the energy
gap of the excitations of the pure host crystal van-
ishes. In the random-phase approximation (RPA)
this is the case at the critical temperature 7', for
systems with 27,/A<0.1.% But even for a system
with sizable energy gap in the excitation spectrum,
say, a third of the crystal field splitting of the two
levels, 20% change in the slope is observed (for a
simple cubic lattice) as temperature increases.
This phenomenon is not expected in the simple mo-
lecular-field theory in which the exchange inter-
action is simply scaled linearly according to the
concentration of the vacancies; in this case the di-
lution effect can be easily shown to be temperature
independent. (We shall call this theory MT1.)

A closer investigation, however, shows that de-
spite the fact that the excitation waves are im-
portant in the determination of the detailed behavior
of the temperature dependence of the dilution ef-
fect, it is possible to develop a molecular-field
theory (MT2) to account largely for the tempera-
ture behavior. What is missing in MT1 is a con-
sideration of the nonuniform distribution of the
magnetization (or the susceptibility) in an impure
crystal, or the cluster effect. In MT2 we recover
the major features. However, for an induced-
moment system with small energy gap in the col-
lective excitations, the theory is still inadequate
in describing the low-temperature behavior of the
system; and the Green’s-function theory should be
used.

Recently, Fulde and Peschel? have discussed
the same system using Abrikosov’s diagrammatic
technique. The static susceptibility function they
obtained is reproduced here by the molecular-field
theory MT2, which, in a certain way, shows more
explicitly the physical picture of the impure sys-
tem. Like MT2, the theory of Fulde and Peschel
failed to include the effect of the collective excita-
tions in the crystal. This is achieved in the
Green’s-function theory.

In the experimental aspect, problems of vacancy
impurities in a paramagnetic induced-moment sys-
tem have been of interest recently in various lab-
oratories. Wallace ef al.’ have measured the mag-
netic susceptibilities of Pr-La and Pr-Y alloys as
the concentrations of the vacancy impurities La and
Y vary. Unfortunately, because of the oxidization
problem, the sample was not prepared as a real
powder (nor a single crystal). The uncertainty in
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the susceptibility due to the crystalline field thus
overshadowed the effect calculated in this paper.
Two experiments, focusing on the transition of
induced-moment systems from the ordered phase
to the paramagnetic phase by diluting the ordered
crystals with nonmagnetic ions, have been carried
out. Cooper and Vogt® studied the decrease of or-
dering temperature of Y,Tb,.,Sb as the concentra-
tion of the nonmagnetic component Y increases. It
becomes a paramagnet when x =0,.6. The results
were analyzed using a simple molecular-field the-
ory (MT1) and the strength of the exchange inter-
action was scaled linearly according to the concen-
tration of Y. The high impurity concentration in
this case precludes us from using the results de-
rived in this paper, which are valid to first order
in the impurity concentration. At low concentra-
tions of the vacancies, as will be shown later, the
strength of the exchange interaction J is not scaled
down linearly according to the concentration ¢, but
rather that - 9[1 - ¢ G*(0)], where G(0) is the lat-
tice Green’s function. Bucher et al.” have also stud-
ied a related problem. They measured the suscepti-
bility of Th-Pr alloy and found a steady decrease of
the inverse susceptibility as the concentration of Th,
a nonmagnetic ion, decreased. The alloy was in the
paramagnetic state throughout the range of concentra-
tion of Th in the experiment. However, presumably
because of the quite different sizes of Pr and Th
ions, the crystal field interactions as well as the
exchange interactions vary in a rather complicated
way. A simple analysis does not appear likely.
At present we do not seem to have a suitable ex-
periment to test the theory. It is hoped that this
calculation will stimulate some carefully prepared
experiments in this direction. An interesting sys-
tem for this purpose may be the Pr;T1 compounds
with La dilution recently studied by Bucher et al.®
They have measured the susceptibilities of
La,Pr;.,T1 compounds with various La concentra-
tions at one temperature, 4.2 °K, which is below
the magnetic ordering temperature of the pure-
host compound (11 °K). To measure the suscepti-
bilities at various temperatures above the ordering
temperature, and observe the temperature-depen-
dent depression upon adding the La impurity, would
be of great interest, At the low-concentration lim-
it, the temperature dependence of the depression
of susceptibility should be described by our theory.
For high concentration of the impurity, we do not
have a suitable theory and it is not unreasonable to
assume a more uniform distribution of the magne-
tization (upon applying a field), so perhaps the sim-
ple molecular-field theory (MT1) is not a bad one
to use in this case.

In Sec. II the Green’s-function formalism used
in I will be modified to adapt to the present case of
vacancy impurities by letting 4, the energy gap



2104 Y-L WANG AND E, SHILES 7

between the two crystal field states on the impuri-
ty ion, approach infinity. This is not a trivial pro-
cess and some caution needs to be exercised. The
momentum Green’s functions are then calculated
and the results are extended to a small but finite
concentration of impurities using Izyumov’s pro-
cedure. Susceptibility as functions of concentra-

. tion of impurities and temperature are then found
from the momentum Green’s functions and dis-
cussed in Sec. III.

II. GREEN’S-FUNCTION FORMALISM

To examine the behavior of susceptibilities we
consider the following Green’s functions:

3 () = (ST )15 (0))
= —-i0@)([S; ); S7(0)]),

where 6(¢) is the unit step function and the angular
brackets denote the canonical thermal average.

For an impure system with randomly distributed
impurities, the Green’s functions are to be aver-
aged over all configurations of the random lattice.
We shall follow the procedure of Izymov® to obtain
the average accurate to the first order in the im-
purity concentration. We first consider the single-
vacancy—impurity problem. To borrow the for-
mulations of I, we recall that the Hamiltonian, in
pseudospin variables, for an induced-moment host
crystal in the paramagnetic phase containing a
single substitutional impurity at the origin of the
coordinates, assuming two energy levels for each
ion and only nearest-neighbor exchange interaction,
has the form

Jo= = ADSSE —(8g— A)SE - 4902200 SESE,,
H I 6
-8a(Jpao—Ja)SE2I 8%, (2.1)
]

where A and Ay are the host and impurity crystal
field energy-level splittings, J and J, are the host-
host and impurity-host exchange coupling param-

" eters, and o and ag are the matrix elements of the
z component of angular momentum J* between the
crystal field ground state and the excited state for
the host and the impurity ions, respectively. We
have taken pseudospin component % equal to 3 for
an ion in its ground state and — 3 for an ion in the
excited state. The equation-of-motion method is
used to study the Green’s functions. As shown in
1, the combined Green’s functions in the energy
Fourier space, §i;(E)=Gj,(E)+Gj,(E), obey the
following equation of motion:

2 2
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Here A, ; is the Kronecker 6 function. Taking A,
=4 and goap=Ja we solve for the pure-crystal
Green’s function,

ik (D

0o SENE+L) 1
Sir= = NYECE (2.3)
where
E,=A(1-2(S*)Ayp)t/? (2.4)

is the energy dispersion relation for the magnetic
excitons in the pure crystal, A=4Jza?/A, and z
is the number of nearest neighbors to an ion.

For the case of a vacancy impurity we take Jya,
equal to zero since the impurity is not magnetically
coupled to its surrounding ions, and take 4, to
approach infinity since only one energy level is
involved at the impurity site. This procedure is
different from that of Pink, '° who has studied prob-
lems of impurities in an ordered induced-moment
system and specialized the results to the case of
vacancy impurities by taking 4y=0. The spurious
zero-energy mode is thus avoided. Fulde and
Peschel® have employed the same procedure to ob-
tain their results for the case of a vacancy impuri-
ty. The susceptibility function they have obtained
agrees with ours in MT2.

Substituting gy as zero and considering the lim-
iting case of Ay~ <, we see from Eq. (2.2) that
Go:=0 for all /. That this must be true can be
seen by interpreting §}; as a measurement of the
response of the ith pseudospin to a small distur-
bance of frequency E/7 applied at the Ith pseudo-
spin; because of a lack of coupling of the impurity
jon at the origin with its neighboring host ions the
response is obviously zero. On the other hand,
the product 4,5}, takes the value — (S§)/7 in the
limit. (S§) is 3 exactly because of the infinite en-
ergy gap. If we take (S7)=(S*) for all ;#0 as an
approximation, we obtain the equation of motion of
Gi; as follows:

Ez " 83a2<sz> + Ti
(—A_Z "'1) il+_—-—_4:—>gi+ﬁ,l=—_A_l_ ’

X (2.5)

where

T =89 (S%)A; 02285
5

+(1=4;0)4; (S )1+E/A)/n. (2.6)
As in I, we can solve this equation to obtain

A
z 28% Ty, 2.7)

9i!=<sz>(E+A) ;
which relates the Green’s function §;; to a sum of
Green’s function, £S5, . We therefore find the
Green’s function easily:
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$1=6% -$%S01 /50 (2.8)
We note that Eq. (2.8) is a general result of mod-
els of nearest-neighbor coupling of ions in a Bra-
vais lattice and is independent of the crystal sym-
metry. The only impurity mode is seen at E= A,
where ReS%5=0, and is within the host excitation
band. The mode is of S symmetry and is spatially
extended.

To facilitate the configuration averaging process
for a finite impurity concentration, we consider
the momentum Green’s function § }(k), defined, for
K in the first Brillouin zone, as

9;(1:) =28 i gk -
15
We note that because of the lack of translational

invariance of the system, G} (K) still depends on a
site index. For the single-vacancy-impurity

(2.9)

problem,
&) =8 (k) (1 - %153 /8% (2.10)
where
. (s? >( E+A )
0
S ()— E‘g—_‘Ei (2.11)

is the momentum Green’s function for the pure host
crystal, The configuration average is now taken
on the momentum Green’s function §}(kK). The pro-
cess of averaging restores the translational in-
variance. We find for the single-vacancy problem,

<9:(E)>- 2263 (k) =8 (&) - 8%(&) (1/N) (83)"! 8™ (k),
(2.12)
(2.13)

+ > 1
(500 = [ T (/M %)

to order of 1/N. More explicitly,

L 8%) (E +A)(1 - D;'/N)
(SN =" w3 ARy (1 - DI/’
, (2.14)
where
= (B — A)gd% /(S*), (2.15)

For finite impurity concentration one may ex-
pect a simple extension of Eq. (2.14) by replac-
ing 1/N with the impurity concentration ¢ at the
low-concentration limit. That this indeed is true
can be shown in a way parallel to the derivation
of Izyumov for a conventional impure ferromag-
net, We sketch the proof in the Appendix. To
first order in the impurity concentration,

v (8% (E+4)(1 —cD})

<gi (k)> - - E*Z _ Aa +2<SZ>AA2'yk(1 —CD?) .
(2.16)

We note that the excitation wave-energy spectrum

is shifted as if the exchange interaction were

weakened by a factor 1 - cReD;H(E,), instead of

1 - ¢ as one would obtain based on a molecular-

field-type reasoning. The excitation modes are
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also broadened, with a width proportional to c.
1II. MAGNETIC SUSCEPTIBILITY

The magnetic susceptibility for the impure sys-
tem can be found directly from the averaged
momentum Green’s function ($*(K)). We first
note that the static longitudinal susceptibility is
given by

%= =2m g% (W% I NEe0,r0s

and that the retarded Green’s function ((J%;J%))
is, in the pseudospin variables,

(3.1)

{d%; I =4a?(S*; S). (3.2)
This is because®
J? = 2aS* (3.3)

as the net magnetization ¢/) -0, which is the per-
tinent limit in the calculation of the susceptibility
at a vanishing field in the paramagnetic phase.
Therefore

X

FiET -41a%$*(k=0, E=0) (3.4)
_2¢% _J1- -cGN0)]2¢5%) (3.5)
A 1-2(SHA[1-¢G0)] "
Here we have made use of the fact that
((S*; 8 Mpo0= (% SNe=0 (3.6)
and that
Dy(E=0)=Cl0)=~ ¥} —> (3.7)

N T 1-2(")Ayg
This integral can be calculated numerically, ! and
the physics of its appearance in Eq. (3.5) will be-
come clear later in the discussion of MT2.

The susceptibility per magnetic ion is x =%/(1 ~¢).
We consider the inverse susceptibility per magnetic
ion to the first order in c;

gk x” 1(C> (2<Sz> A+d C> (3.8a)
where
®=A-[1-G™0)]/2(5%). (3. 8b)

Higher-order terms may enter. However, the
present calculation is accurate only to the first or-
der in the impurity concentration; this prevents us
from discussing the deviation from linearity in a
plot of X vs c. On the other hand, a simple molec-
ular-field theory (MT1), assuming simply a weak-
ening of exchange field by a factor 1 -c¢, would give

Pubxt= (22313

which is an exact linear relationship between x™
and ¢c. We see also that the intercept of the
straight line on the ordinate axis [i.e., x™(c= 0)]

A+Ac) (3.9)
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is given by (&/2a?)(1/2(S%)—A) for both theories
although the population factors 2(S*) may be quite
different. A discussion of x™(c =0) calculated in

the Green’s function theory (GFT) and in the mole-
cular-field theory has been given by Wang and
Cooper.® The slope of the straight line in the pres-
ent GFT varies with temperature as both (S*) and
G(0) are functions of temperature. This is in con-
trast to the simple molecular-field theory which
gives a temperature-independent slope A A/(20%) or
2dz. At high temperatures or small exchange to
crystal field ratio A, the slope given by the Green’s-
function theory approaches that by the simple molec-
ular-field theory.

As mentioned in Sec. I, it is possible to recover
the main feature of the temperature behavior of &
using a more careful molecular-field method. We
sketch the theory in the following.

We consider a single substitutional vacancy im-
purity in an induced-moment system in the paramag-
netic phase. In a small external field H applied
along the z axis, the magnetic moments induced
vary in space relative to the site of the impurity.

A similaranalysis briefed inIenables us to write the
equations relating the induced magnetic moments
(letting the impurity site be the origin),

20 Loy Jy=200L i+ (1 = A, o), (3.10)
n K .
where
Lmn'—‘Am.n—gZ} Am,ﬂ-l-ﬁ ’ (3’113‘)
6
5Lmk=-’g‘(Am,oEAk,b+Ak,02Am,s>, (3.11b)
[ 6
2%} oPH A
h==—% tanh(ZkT , (3.11¢)
and
- A tanh (== (3.11d)
a=Atanh( oo .

Also, in the equations we have used 4,, , for the
Kronecker § function and z to denote the number of
nearest neighbors of an ion. A two-level system
is assumed. A generalization to a system of more
levels is straightforward. As inI, we define a lat-
tice Green’s function G,,, such that

20 G Lmp=Ag. (3.12)
m
This gives
ke(l-m)
Cpp=a @ ) (3.13)

N » 1-ay,
In terms of the Green’s function G, we rewrite Eq.
(3.10) as

J3=20 GipOL pydy +h 220G 1 (1= A, ). (3.14)
myk m !
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We find
1 I 1\ 1 a
N?J’“E(I_N)—Nl—a Ji, (3.15)

where gupd, is the magnetic moment of the nearest-
neighbor ions of the impurity and can be found from
Eq. (3.14) as

Jy=[n/all =a)] [G0) - (1 -a)] (3.16)
with
Go)-~ o2 (3.17)

N % l-ay,*

In the dilute limit we replace 1/N by the concen-
tration of the impurity ¢c. The averaged suscepti-
bility per magnetic ion is therefore

x=(2g%p%0?/Aa) (1/1 = a){1 - (/1 -a)
x[G"(0) - 1+a] }tanh (A/2kT) (3.18)

or
Fudx = (8/207) (coth(8/2kT) - A

+c{A -[1-G(0)] coth (A/2ET)}).  (3.19)

A plot of (2g°u%a?/A)x™ vs ¢ gives a straight line
with slope

&=A -[1-G"(0)] coth (A/2kT).

This result is similar to that given by Green’s-
function theory. The difference is in the population
factor 2(S*). In the molecular-field theory,

2 (S*)=tanh (A/2kT).

A comparison of the calculations of the GFT and
MT?2 is presented in Fig. 1 for a simple cubic lat-
tice. The slope ® is plotted against the reduced
temperature kp7/Afor a choice of values of A.
Results of GFT are represented by the solid curves
and those of MT2 by dashed curves., As shown in
the figure, the main feature of the temperature be-
havior of @ in GFT is recovered in MT2 in most
cases, especially for casés of small values of A.
Even for A=0.9, they are quite similar. The dif-
ference between the two curves is obviously due to
the inclusion of the collective excitations in the
GFT calculation and not in the MT2 calculation.

The zero-point motion is also included in GFT only.
This accounts for the difference of the two theories
at zero temperature. For finite temperatures, it
is seen that the lower-lying exciton states have
caused ® of GFT to start to rise at a lower tem-
perature. The difference is not large because of
the existence of a sizable energy gap (of about 0. 34)
in the exciton spectrum. At low temperatures both
GFT and MT2 show a 20% depression from the val-
ue given by MT1, As the critical condition of mag-
netic ordering is approached, the two theories show
more deviations from each other, Since the crit-
ical condition given by GFT is different from that

(3.20)

(3.21)
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FIG. 1. Temperature
dependence of & =2g%u3a?/ A
x(Ax™/AC). Solid curves
represent results of GFT
and dashed curves the re-
sults of MT2 ( a molecular-
field theory). The curves
are labeled by their corres-
ponding values of A=§

A=1.048

xza?/A.
A=1.0000204 /
/
A=1.0 / [A=|.0|357 Pz
— } 0.66 L L
- 005 0.1 0.15
1 1 1 1 1 1
(0] 0.1 0.2 0.3 0.4 0.5 0.6
k 8 T4
given by the molecular-field theory, we have plot- where

ted the GFT curve and the MT2 curve at their cor-
responding critical values of A, i.e., for the GFT,
A=1,0432 and for MT2, A=1. Now the contribu-
tion of the low-lying collective excitation states
manifests itself more dramatically. As shown in
the same figure, at low temperatures ® calculated
in GFT rises much more rapidly than in MT2, In-
deed, for k25T between 0.025A and 0.14, the GFT
curve shows a rapid linear increase in & while the
MT?2 curve shows almost no increase. Thus for a
nearly ordered induced-moment system the low-
temperature behavior of ® given by GFT is not only
far from that given by MT1 (a 34% depression), but
also at striking variance with that predicted by MT2.
This is also true for ordered systems of low crit-
ical temperature. The case with 25T;=0.09A is
shown in Fig. 1 as an example. As the MT2 curve
for this case is too close to the curve for 7.=0,

we show it in an insert., The steep rise of & just
beyond the critical temperature is a rather general
behavior, It shows up also in MT2 calculation, but
only for systems of higher T, (shown in the figure
for a case with 25T,=0.24). For the case of kT,
=0.094, the MT2 curve rises with a positive curva-
ture, in contrast to the negative curvature shown in
the GFT curve,

In conclusion we remark on the possibility of
observing experimentally the effects calculated in
this paper. To do this we rewrite Eq. (3.19) in
the following form:

[x(€)/xo] ™ = [x(0)/xo]™ + c®2(S*),

Xo=(282p%a?/A) 2(5%)

is the crystal-field-only susceptibility of the system
assuming no exchange interaction. For 2% impuri-
ty, the cluster effect can be observed if x(0)/x, is
greater than 20 which corresponds to A=0.95in a
paramagnet. The condition for observing the col-
lective excitation effect is more stringent. We
note, however, that PryT1 (a singlet-triplet system
rather than the singlet-singlet system calculated
here) is an induced-moment ferromagnet with Curie
temperature =0.1A, As shown in Fig. 1, the
collective excitation effect could be observed for
systems with such a low ordering temperature, It
is further noted that the possibility of observing
these effects is greatly increased if a system of
lower dimension is used because then the impurity
concentration can be much higher. For lower-di-
mensional systems the effect calculated in this
paper is even more pronounced, as can be seen by
examining ® with the lower-dimensional Watson
integral G(0). Finally, we point out that for an
ordinary magnetic system, the effect calculated

in this paper certainly exists. It can be shown that
the paramagnetic susceptibility for an ordinary spin
system (S=3) containing a small concentration of
nonmagnetic impurities is, according to MT2,
given by

Xt= (4k/SPuENT - T, + cv{Tc -T[1-G*0)},
(3.22)
where
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G(o)=L 20 1 (8.23)

N % 1—(TC/T)7k )
Here the collective excitations (spin waves) are
heavily damped and we do not expect their contri-
bution to be large enough to alter the result of MT2
too much, as compared to the case of induced-
moment systems discussed in this paper. Work on
impurities of general nature and of arbitrary con-
centration is in progress.

APPENDIX: GREEN’S FUNCTION FOR FINITE
CONCENTRATION OF IMPURITIES

In a recent paper Izyumov® shows that, in ex-
tending a calculation of the momentum-dependent
Green’s function for a host ferromagnet containing
a single isolated impurity to the case of a small
finite concentration ¢ of randomly distributed im-
purities, one may obtain a result correct to first
order in ¢ by replacing 1/N in the single-impurity
result by ¢. We sketch here a similar diagram-
matic technique for an induced-moment paramag-
net containing a small but finite concentration of
vacancies.

The Green’s function §j, for our system with
finite vacancy concentration obeys the matrix
equation

J
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§'=X+g%Vvg", (A1)

where X;; = (1 - 25 44,)8Y, B is a vacancy-site index,
and V is the block diagonal matrix (correct to first
order in c),

an= E E V{C.O“ Am,Bw’ An,Bw . (AZ)
B8 o,0'

o and o' are summed over all z+1 perturbed sites
consisting of the impurity site and its nearest neigh-
bors, and V! is the perturbation matrix for a single
impurity, which has the dimensions z2+1 by z2+1.
All elements of V! in the second through the last
rows, and the first element in the first row, are
zero; the remaining elements have the value
89 a®(E + A)/nA. Iteration of (Al) gives

- (1-D80) 6 s
8
+GUVE*YGT L. L), (A3)

We then Fourier transform to k space, defining
S}(E) as for the single-impurity problem, and aver-
age over all possible configurations of the ¢N im-
purities. We obtain for the configuration-averaged
Green’s function (§*(K)), where the lattice-site in-
dex j drops out as expected,

<9*(1¥)>=9°*(E)+—1232 GOV S*E) e F T FD (7 K 4. _iZ) G¥(&) ok’ - k)
Ny oo N%

N

B,k 0,0

where we have defined p(K)= Ese'ii'g. The explicit
expressions for the configuration averages of the
products of p(K) are discussed, for example, by

- Yonezawa. '? Expression{A4) can then be expressed
in diagrammatic form, as discussed, for example,
in the work of Jones'® on fixed-moment systems.
We wish to consider, as does Jones, only those
scattering processes which contribute to first or-
der in the concentration; hence we retain only the
terms of order c in the proper self-energy. We
note that, since the perturbation is small in spatial
extent but not small in magnitude, we may truncate
the series in ¢ but must keep all orders in the per-
turbation V!, We obtain for (S'(K)),

1 2 E 90+(E”)V},l,, g‘O#(EI)e-i (B eg’ k' 05) <p(E" —E')p(ﬁ' —E)) —— (A4)

G @)= TS E+a)1 - cDF (E)]
E? - A%+ 2(5%) Ad?y[1 - cDHE)]
The term - ¢D;! (E) in the numerator, analogous to
that called L in Ref. 13, is the contribution from
the terminal diagrams (called interference dia-
grams by Jones), and the term — 2¢ (5?) Aa%; D3 (E)
inthe denominator, called o(K, w)in the analogous re-
sult of Jones, is the self-energy correction, due to the
impurities, tothe dispersion relation of apure crystal.
Comparing (A5) with (2. 14), which is the Green’s
function, correct to order 1/N for the crystal con-
taining a single impurity, we see that an extension
to a finite concentration ¢, to first order in ¢, in-
volves only the replacement of 1/N by c.

(A5)
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Hall-effect measurements as a function of temperature have been made on single~crystal
samples of VO, at temperatures both above and below the semiconductor-to-metal transition
temperature; the Hall mobility in the semiconducting phase was approximately 0.5 em?/V sec
and in the metallic phase approximately 0. 35 cm?/V sec.

INTRODUCTION

A number of transition-metal-oxide compounds
exhibit large, nearly discontinuous decreases in
their resistance at a specific temperature as their
temperature is increased; the mechanism causing
these semiconductor-to-metal transitions and its
relationship to the unusual properties of both the
semiconducting and metallic phases of these ma-
terials are not well understood at this time. Vana-
dium dioxide is a good example of such a material;
good single-crystal samples of VO, have shown a
semiconductor-to-metal transition at 67 °C at which
their resistance decreased by as much as a factor
of 10° in less than 0.1 °C with a hysteresis on
cooling of about 1°C.? This resistivity transition
is accompanied by a structural transformation in
which the tetragonal (rutile) high-temperature phase
is converted into a related monoclinic low-tem-
perature structure in which the vanadium atoms
form alternate staggered pairs along the ¢, axis. 2
Discontinuous changes in the magnetic susceptibility
and optical properties and a latent heat of about
1020 cal/mole have also been observed at the semi-
conductor-to-metal transition.® Various theories
which describe the semiconductor-to-metal transi-
tion make more or less specific statements con-
cerning the change in electrical carrier density at
the transition or the processes by which the elec-
trical conduction occurs in the high- or low-tem-
perature phase. The low mobility of the carriers
in VO, makes measurement of their properties
difficult. In spite of the difficulty of interpreting
Hall-effect measurements in terms of carrier den-

sities and carrier mobilities, it was felt that such
measurements would be of some use in discussing
the application of certain theories to VO,.

EXPERIMENTAL DETAILS ‘

Our samples were high-quality VO, single crys-
tals grown by the slow cooling of VO, dissolved in
a flux of V,05 in a sealed fused-silica ampoule, in
a manner similar to that of Ladd.! The best crys-
tals were grown at a cooling rate of 3.6 °C/h,
cooling from 1070 to 720 °C with about a 2. 5°C/cm
temperature gradient, and starting from an initial
mixture of VO, and V,05 with a composition corre-
sponding to VO, 4, .* The samples were approxi-
mately 5 mm long and 0. 5X0, 5 mm in cross sec-
tion with their long axes in the ¢, direction; all
electrical measurements reported here were made
parallel to this direction,

Hall-effect measurements were complicated by
the unusually large amount of noise observed be-
tween the Hall contacts in the semiconducting phase
which seems to be associated with strain in the
sample arising from the discontinuous change of the
lattice dimensions at the semiconductor-to-metal
transition. For this reason, our Hall-effect mea-
surements were made with a specially constructed
Hall-effect apparatus which employs a dc electric
current and an ac magnetic field.? An ac magnetic
field at 35 Hz with an amplitude of 11 kG peak-to-
peak was furnished by a small magnet with a 0. 32-
cm air gap driven through a resonant circuit by a
modified 40-W ac power amplifier. In order to
minimize inductive pickup from the magnetic field,
all leads to the sample were formed as twisted



