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The effect of paramagnetic impurities with local moments on the nuclear-spin-lattice re-
laxation is studied by using &he method of Blume and Hubbard. An average over random im-
purities is taken on the equations of motion for nuclear and electron spins in the low-concen-
tration limit. An integral equation for the electron-spin correlation function is obtained and
solved self-consistently. The correlation function behaves like exp [- (t/Fl) 2] for small t,
expf- (t/X'2)] for intermediate t, and exp[- (t/I'3) ] for large t. The nuclear-spin correlation
function is calculated from the electron-spin correlation function. The dependence of the
spin-lattice relaxation time on the concentration of impurities, magnetic field; and tempera-
ture is obtained. Our calculations are discussed in terms of results obtained from the phenom-
enological approach.

I. INTRODUCTION

In the study of nuclear-spin-lattice relaxation in
a metal, the magnetization M '(t) is observed to ap-
proach the equilibrium value as exp[- (t/7)'~ '] in
the diffusionless limit. ' ' This type of relaxation
is primarily caused by the presence of paramag-
netic impurities. The study of the concentration
c, magnetic field Ho, and temperature T depen-
dence of the relaxation time 7 is very interesting,
but the contribution of the diffusive motion of the
nuclear spins to the relaxation, which dominates
the large-t behavior of M'(t), makes such an anal-
ysis of 7 difficult. ' Recent experiments' have
overcome this difficulty and a theoretical analysis
of M'(t) would be useful.

In the phenomenological explanation of the
exp[- (tl&) ~

] dependence of M'(t), a position-de-
pendent spin-lattice relaxation time T,(r) is intro-
duced in the Bloch ecluation and an average on T,(v)
is taken over all impurities. There are several
undesirable features in this approach. Firstly, it
is not clear that the exp[- (t/7)' ] dependence is
due to the approximation in the averaging proce-
dure or to the Bloch equation which is valid only in
the long-time limit. Secondly, T,(x) is not a well-
defined quantity. If T,(r) is interpreted as T, of a
nuclear spin at a distance x from an impurity, then
the theory should predict M'(I) as a superposition
of several functions exp[ —t/T~(f)], where all of the
T&(i) are different.

Blume and Hubbards have used the Heisenberg
model to study the spin-spin correlation function
from a first-principles basis. %e will apply their
method to a nuclear-spin system interacting with
electron spine through a dipole-dipole (d-d) inter-
action with proper consideration of the average
over random impurities. The electron spins inter-
act through a Ruderman-Kittel-Kasuya- Yosida
(RIFF) interaction. Both the d-d and RKKY inter-

actions behave like 1/x, and it is this spatial de-
pendence that is responsible for the time depen-
dence of M'(t). The Blume-Hubbard formalism'
and the average over impurities are given in Secs.
II and III. New features in our calculation and a
discussion of the results of McHenry, Silbernagel,
and Wernick are given in Sec. IV.

II. GENERAL FORMALISM

The system under consideration consists of nu-
clear s'pins I and electron spins 8 localized at po-
sitions ri and r, , respectively, and coupled through
a standard d-d interaction,

g rirs "
S S(fg rgy)(Sg r(g)

3 i J 2 7

&s)

where z, &
= I r; —r& I and. y~I and. ysS are the mag-

netic moments of I and 8. The magnetic energy is

II = el~ I +&us~ Sy
i

where +, = —y, HD and &s = —ys Ho. The magnetic
energy can be eliminated from the equations of mo-
tion by transforming to a rotating frame of refer-
ence, namely, I'=I"+iI', and S'=S'+zS' are
transformed to I'(t) e""I' and S'(t) e""s'. The
equation of motion for I, the nuclear spin at ri, is

„—, I (I) = f [II,„,I (t)]

yI ys otgy g y
(I sr

.I -3
2 y

Y)

where r;& has been abbreviated to r& and a dummy-
index convention has been used. In this convention
the commutation relation for spins has the form
[I",I ]=i@ I'. The z components of land S ap-
proach nonzero equilibrium values in the limit as
t-~. We redefine these components as I'(t) —(I')
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and S'(t) —( S'), where ( ) denotes the thermody-
namical-ensemble average, in order that the en-
semble averages of the redefined components ap-
proach zero as t- ~.

We are interested in calculating the measured
quantity 5I'(t), the relaxation function, which is
defined by

5I"(t)=limi f dt [I (t), A'(t )]e"', (4
6~p

where A'(t) is the external disturbance that pre-
pares the spins for the relaxation. In our problem
A'(t) = he'"' I'(t), where h and &u are the strength and
frequency of the field. Equations (3) and (4) may be
combined to give an equation of motion for 5I (t):

l

5i (t)=Z y'y' ~"'&SP 3~"'"' 7' i i 5I"
\7

f ~I
~ f ~

s
~

I

~

rge 6

+ ~
o~& g ~ 3~0'.8Y .i

~ ~

- 3~""OS6 I r'r'
+ &""6S'(I)- ' ' ~ I' (5)

where 5$ &~(I) is given by Eq. (4) with I (t) replaced
by S&.

Equation (5) can be rewritten as an operator
equation

5I (t) = i [hg x 5I (t) + h*, (t)x 5I (t)], (6)

where hp* and h& are the first and second terms in
Eq. (5). The third term is neglected for reasons
described in Appendix A. The formal solution of

Eq. (6) is~

5I (t)=[exp, i 1, h*(t )dt 5I(0)]', (7

where h*= h~+h& and exp, denotes the time order-
ing of terms in the exponential. It follows that the
normalized relaxation function is given by

G(t)=&«i'(t))&-=„., (6)

-=~.' & &II,(t, ) II;(t.)). ,

where &ui) = y, y~/a' is the d-d interaction strength
for two spins a distance a apart and a is the near-
est-neighbor distance. The quantity H;(ti) H&(tz)
may be written in a more conventional form, '

where G(0) =1. The cumulant expansion of 5I(t) re-
sults in

G(t)=exp(--'f, f, «i«2«[hi(ti)hi(ta)], )).],
(9)

where &( )), denotes the cumulant expansion of the
operator inside the brackets and subscript + means
the time-ordered product is taken. In Eq. (9) we
have used «hf)), =«h,*)),=0 and have retained only
the first nonzero term in the expansion. The in-
tegrand in Eq. (9) may be written

« Ihl(t, ) h*, (t,)],)).

II/(ti)II/(4)= 6 14 l&2l 2[ST(ti)S (4)e "~ ' '2'+S;(ti)SJ(4)e ~ ' ']+9l&il Sc'(ti)Sc'(4)
r~

+-,' le, l'-,' [s,'. (t,)s;. (t,) e*"."i-'"+s.(t,)s,'.(t,) e *"~"i-'I)]), (II)

where Fp
= 1 —3 cos 8~, F&

= sing, . cos8& e'"&, and
F2= sin38&e~"&. In Eq. (11), we have neglected +7
since ur, /&u~ «1. We should also point out that r, ,
8&, and p,. are independent of time because diffu-.
sion is neglected. Our final result for the normal-
ized relaxation function is

t
G(t) = Bthtt (

— t
'

(
ch ckt Z ( ll'(th) ttt(tt) ))

(12)
The relaxation function for the electron spins is

calculated by the same method. The electron spins
are assumed to be coupled through the RKKY inter-
action

6

II,(t,) II, (t,) = ', S'(t, )S-(t,) . —
rg

(15)

where J=io ErcTOI(I(0) with E» J» and N(0) being
the Fermi energy, strength of the impurity-con-
duction-electron-spin interaction, and density of
states at the Fermi level, respectively. Values of
these parameters for the La, ,Gd, Al~ system are
given in Ref. 4. The result is J= 1 'K.

If we denote (5S*(t))/& 5S'(0)) by G(t), then

G(t)=sthtt(--'c'I f, cthctt Z (lit(th)l7t(tt)).
—.~

(14)
where

0
&RKKg p J M S~ Sg (13)

We summarize here the approximations that have
been used to derive Eqs. (12) and (14). First, we
have neglected the last term in Eq. (6) and have
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made a similar approximation in deriving Eq. (14).
This approximation is discussed in Appendix A,
Second, we have neglected higher-order terms in
the cumulant expansion and have decoupled
h, (t,)h, (t~) as a sum of H/(t, ) H/(t(). These approx-
imations are justified in Ref. 6 for short times.
They are justified in our case for small concentra-
tions since the neglected terms will result in high-
er-order terms in c.

III. IMPURITY AVERAGE

Since the electron spins are distributed randomly
throughout the system, an average of G(t) and G(t)
over all possible configurations of the random vari-
able r& has to be made. We will use the so-called
cumulant average in a form which is valid for small
concentrations. For a random variable 0/(r/}, we

may write
go No

exp — 0& = 8 o&,

where

yg(t, 8, y)= QJ,
' f dt'(t t'—)G(t') [9~E,~'A, (x)

+-,'(9[F,['+ iz, i')X,(x)cos(u, f'] (22)

Ai(x) =S —B~(x) . (23)

The volume integral in Eq. (16) can be trans-
formed to

(1 e-(a/r) ()tt))4 U(
rpa

(24)

U(y)=; —
J ~/, (1 —e') .
~o

(26)

The function U(y) admits the following expansions
which will be used for the numerical calculations
in Sec. IV: for small y,

=II (1 —(I —e "/))„
( 1)n „,n a1

6 „() (n+I)! n+-,' (26a)

=- [(1-(1-e '/))., ]"o

=- [1 —f (d'r/Na ) (1 —e /)]"o,
(16)

where ( )„denotes the average over the random
variable r/. The first = sign in Eq. (16) denotes the
approximation that all 0& are assumed to be inde-
pendent, while the second denotes that they are all
identical. The third denotes that the a priori prob-
ability is uniform. In the limit as No- ~, we have

(
o

axp]-E tyt =exp —e, — (1-a )), (17)
av a

where c=NO/N
If we apply Eq. (17) to Eq. (14), we obtain

d rp(t)=exp(-e ~; ()-e-t.t.t'., t t)) ()p)
r~a a

where

y, (t)=!&' f, f, «, «g[S'(tg)S (tg)],

=Z'X, (x) f (t-t')G(f')dt'

and

A, (x) = 2B, (x)/x .
The function B~(x) is the Brillouin function of the
order S and argument x= y~ SHO/T. The derivation
of Eq. (19) is given in Appendix B. A similar ap-
plication of Eq. (I"l) to Eq. (12}gives

&(t}= exp (- e + (1 —exp —(a/e}' yt(t, e, y )]),
r&a

(21)

for large y,
-p 1

U(y) =-~ m"'- I+— (26b)

where R(n, y) is the continued fraction

R(n, y)=

1+%+1
y+2

1+a+2
y +3

g + ~ e ~
(26c)

The volume integral in Eq. (21) is more compli-
cated because of the angular dependence of y~.
However, if we define ya(t) as the normalized angle
average of y, (t, 8, y), and write y(,(t, 8, (/)) = y, (t)
+ h(t, 8, tp), then the volume integral in Eq. (21) may
be written

J
a '

1 —exp — — y~(t, 8, t/))a

Our final results for C(f) and G(t) are

G(t} exp[ 4=wc U(y-, (t})] (29)

4, g d" U(ya(t)) &

=o &ye m

We retain just the first term in Eq. (2V) since the
derivative of U(y) for I& 2 is small. This is
equivalent to approximating yz(t, 8, y) by its nor-
malized angle average

yg(t)=co() f, dt'(t-t')G(t')(~/I, +PA cos(u, t') .
(26)
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G(t) = exp[- 4 n'c U (y (t))) . (so)

Equation (29) is a nonlinear integral equation for
the electron-spin correlation function while Eq. (30)
is an expression for the nuclear-spin correlation
function which can be evaluated once G(t) is
known. '

IV. NUMERICAL CALCULATIONS AND DISCUSSION

the intermediate-time region (II):

G;(u)=e" e ", y~«1, u»1; (33)

In this section we solve the integral equation for
C(t) and evaluate the integrals of G(t) that occur in
the expression for G(t). A reduced time variable,
u=t/I'o, where

Fo = 3/v ~ c ZAr(x)'~ (31)

is introduced to scale the integral equation for G(t)
so that G(u) is approximately independent of c over
most of the range of u. The integral equation for
G(u) was solved numerically by substituting a trial
solution for G(u) in Eq. (19), evaluating the inte-
grals for y&(t), by Simpson's rule, and calculating
a new trial solution from Eqs. (26) and (29). The
procedure was iterated until self-consistency was
achieved. The iteration sequence converged to suf-
ficient accuracy in four or five iterations.

The numerical solutions for G(u) revealed three
regions with different types of time dependence.
They are the short-time region (I):

6u~ ff~c
G, (u)=e "i'', y&«1, u»1; (32)

e 5 1/8 g r L+8 T r T (s9)

r((o)
G(u) cos(uu du G(u) du,r Jp 0

and co=(d, rp, for large y2,

(4o)

ct, and (ct) ~ in regions I-III, respectively. The
boundarybetweenregions IandIIis t= [8 Ar(x)] '~,
while the boundary between regions II and III is
ct= [Z'Ar(x)] 'i'

It should be emphasized that the results in re-
gion III are probably not a good representation of
the electron-spin correlation function because of
the small value of G(t) in this region. As shown
in Appendix A, the validity of one of the approxima-
tions used in the derivation of the integral equation
[Eq. (29)] is questionable when G(t) «1. The ques-
tionable behavior of G(t) in region III will not ad-
versely affect the calculation of G(t) since the
small magnitude of G(t) in this region will result
in a correspondingly small contribution to those
integrals of G(t) needed to evaluate G(t).

The nuclear-spin-lattice relaxation function G(t)
is calculated from G(t) according to Eqs. (26), (28),
and (30). The calculation may be simplified by not-
ing that G(t) = 1 for t & I'o when z~/Z« I, a condi-
tion usually satisfied. In La~, Gd, Ala, &D/Z= 10
Under this condition y z is linear in t and its mag-
nitude determines the time dependence of G(t)
through function U (y2). For y2 & 1 or t & 7„ then,

G(t)=e ""
where

and the long-time region (III):

r
G, (u)=e'"~' exp —' 4 —(u —u)

rp

yg»I, u»1 (34)
where

G(t) = exp —(t/r)"',
where

87P (0~ I 7 I (CO)
L+6 T r T

(41)

(42)

I'/F, = J"G(u)du

u = I'/I'o f u G(u) du . (s6)

The asymptotic behavior of G, is

g ( i 4ffc/3 -N(I'/I'0)ug (37)

The above results for the three regions were ob-
tained by taking the indicated limits of Eqs. (19)
and (26). They are compared with the numerical
solution for G(u) in Fig. 1 for c=o.ol, The pres-
ent calculations show that solutions in regions I and
III are not important in the range of u where G(u)
varies from 1.0 to 0. 1.

Our use of a concentration-dependent reduced-
time variable has obscured the actual e dependence
of G(t). The decay of G(t) is proportional to ct,

The integrals of G(t) that occur in Eqs. (39) and
(42) were evaluated numerically. We find that
I /I o= 1+ 2. 16c to about 1% for c - 0. 2. A plot of
I'(~)/I for c = 0. 01 a.s a function of ~ = +, I'o is
shown in Fig. 2. We find that the c dependence of
the Fourier transform of G(t) can be scaled ac-
cording to the reduced frequency co= ~, rp for small
c, departures from the curve shown in Fig. 2 for
c = 0. 1 are about 5%. The decrease of I'(&u)/I' with
increasing ~ is roughly 1/(1+ ~ ) in accord with the
exponential behavior of G(u) in the intermediate
time region which dominates the Fourier trans-
form. Our calculations show that the expressions
used in the phenomenological approaches are very
accurate.

To summarize our numerical results, the
exp( —t/~)'" dependenceof G(t) occurs in our cal-
culation by the Blume-Hubbard methode because
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the d-d interaction has a l/r' dependence and be-
cause vz/Z« l. In addition, the linear c depen-
dence of 7 in Eq. (42) is a result of 1/rs dependence
of RKKY interaction which also causes the expo-
nential decay of G(t) in the intermediate-time re-
gion.

There are several experiments' where the
exp(- I/v)'~2 dependence of G(t) have been unam-
biguously identified. In the experiment by Tse and
Hartmann, the relaxation was observed for times
corresponding to both the short-time and long-time
limits. The behavior of Eq. (38), when considered
as a function of t, is in qualitative agreement
with the measured relaxation shown in Fig. 1 of
Ref. 2, because Eg. (38) agrees with the observed
result dG(t)/dt' -0 at t-0.

The behavior of G(t) at the large-t limit is studied
in detail in Ref. 4. Their results can be satisfac-
torily summarized by an expression similar to Eq.
(42), except for a factor 2~~~2. The effect of Ar ~3

is to reduce the change of v as a function of x, as

shown in Fig. 3. In Appendix B we discuss the ori-
gin of the factor A'r~a and the possibility that it has
overcorrected the expression used in Ref. 4. Our,

results on the second term in Eg. (42) are analo-
gous to those of Ref. 4. When values of J and c are
inserted in this term, we find it too small to ex-
plain the Ho dependence in the experiment. We
should point out, however, the second term is ex-
tremely sensitive to the numerical value of c used
in the calculation.

In conclusion, we have given a justification of
the various time dependencies shown in Refs. 1-5.

APPENDIX A

In order to write down the formal solution for
5I'(t), the last term in Eg. (5) has to be neglected.
An examination of the condition for the validity of
this approximation is given here. Only the spin
component in the g direction, S&, is considered.
We want to show that the ratio r= 5I,/5S&(I) is large
at all values of t;
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S,(I)= (i) f di'
fo Ch f [S,(i), &gg+&Rxxv]i i;(i')i .

(Al)
We have to consider only [S, , H~~] for v, then

vs, (1)( i&, ( e/r„)' f,'di f' s, (i) [l, (t), l, (t')]dt'

(A2)

(A3)= ~, (n/r, ,)'f dis, (i)~1, (i) .
Thus,

r= G(t) [(u~ cf S,(t) G(t)j ' dt, (A4)

where we have used (a/x, &)~ =c. Since S~(t) has the
same time dependence as M, (t), we can write
S,(t)=G(i)s&(0) Th.en the ratio is given by

r= G(t)[(o cs, (0)J G(t)G(t)dtj '

IO.O

5.00—

I.OO—

C = O.OI

=G(i)[~, cS,(0)f G(i)di] ',
since G(t) varies much slower than G(t). For
small t, (PA~i t)(1,

1
1ii2 1/2 ic JA

(A5)

' 0.20—

r= G(t) [((u /ZA' ') e"'S, (O)]
' .

For large t, A~i cJt~ 1,

r di G(i)
0 cJA~

(A6)
O.IQ—

0.05 0.5

X (K/Oe )

l.5 2.0

(AV)

I.OO

0.50

44 OIO

0.05

~= G(&) [(~ /&&"') sg(0)]
'

Since ~~/JAir~ ~= 10, x is much greater than 1

FIG. 3. Comparison of two forms for the x dependence
of the relaxation time with the data of Ref. 4 for c= 0.01,
Ho —-24.4 koe. The theoretical curves are normalized to
the datum point at x =0.1.

for G(t) ) 10 . Our approximation in Eq. (5) is al-
ways valid and our result given by Eg. (42) is justi-
fied.

A similar procedure can be applied to the discus-
sion of the derivation Eq. (18), where 5$&(i) = f
&( [S~(t), S,(t')]) dt' e", i &j, is neglected in com-
parison with

OS, =f &[S,(t), .S;(i')])d.t'e"'.
We use

ts,.(i)=i' J di f (/[s„a„„„],s, (i'))) di'e"'

=i J(a/r;&) f di(s, (i) J' [s,(i), s,.(i')])di'e"'

O.OI
0 IO

FIG. 2. Normalized Fourier transform of G(u) for
c=0.01.

l2

=Jcf dts;(i) G(t) 5S;(0) .

The ratio of 5S,. and 5S;(i) is x', where

r'= G(t) [S&(0)cZ J G(t)dt]

for cJt «1, x'» 1. When cJt»1, then

~' = G(i) [s,(o)x',"]-',

(A8)

(Alo)
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which seriously imposes the validity of our approx-
imation. For the purpose of calculating G(t), we
are interested only in the range that G(t) is large
enough to contribute to the integrals in Eq. (21) and
the approximation is probably valid for this pur-
pose. However, Eq. (Alo) shows that the asymp-
totic behavior G(t) in Eq. (N) cannot be taken seri-
ously.

APPENDIX B

The induced magnetization M'(r, t) = ys*(r, t) in
the presence of the external field h(r) from t= -~
to 0 is |3

t 0

M„(r, r, t) = T M'(t) = T X„G(t), (B5)

where we have neglected second terms in Eq. (B4).
When X„is evaluated in the approximation that

the spins are noninteracting, Eq. (B5) becomes

—,
' [s', (t), s', (o)],= s' ', "

G(t'),

where

(B6)

The ratio of the second term to the first term is
-(c/10) (J~/T ) at small t, and becomes smaller as
t gets larger. Substitution of the numbers T=4'K,
J= 1 'K, c= 0. 1 shows the ratio is indeed very
small. Hence,

(M'(r, t)) =t dt' d'r'e" h(r') Sye
X

where

dss ~t et+«(t-t') ~& ~ (x'-x')

p Xss( ~ +)s 8

x( [M'(r, t), M'(r', t')])

d
=J~ d r' h(r ') e'"'" ' '

(2v)'

II /P&& X~i(k~ &)

(Bl)

B(x)= coth x -—coth-2S+ 1 2S+ 1 1 x

(Be)

Similarly

M, (r, r, t) = —,
'

( [M '(r, t), M (r, 0)],) = T X,.G(t),
(Bv)

where X,.is the transverse component of the static
susceptibility

X,.={[M'(r, t), M-(r, t)])/H, .

Let h(r) = const= Ho,
—

=([M'(r, t), M'(r', t')]) . Thus,

—,'( [S'(r, t), S (r, t')]+ [S (r, t), S'(r, t')])

(M'(r, t)) . (B2)

It is obvious that the Fourier transform of
(6I(r, t))' is X„(r,+)/&u and (5I(r, 0))'= X„.

Define

{M'(r,o)) =Ho d&u
'* ' =HOX„,

e 00

where X„is the longitudinal static susceptibility
given by

= 2S G(t) . (B9)

(Blo)

and

We should emphasize that an isotropic assump-
tion is implicitly made, namely, the commutators
( [S (t), S'(t')]) and ( [S'(t), S'(t']) have the same
(t —t') dependence. One may also make the same
assumption on the anticommutators; then

M,.(r, r, t) = T —,
' {(S' S + S S') ) G(t)

( r P &) e-&re(t t')- M„(r, r, t) = T ( (S')') G(t) . (B11)

=-,'([M'(r, t), M'(r', t')],); (»)
then the fluctuation-dissipation theorem gives us

coth(&/2T) X,",(r, r', v) = 2M„(r, r', up)

or

M (r r' t)= —,t —coth ——6I'(t)d i d
2T dt

1 1=T CI'(t)- ———
~

SI'(t) ~ ~

12 7 dI )
(B4)

Equation (B10) is obviously different from Eq. (BV)
when x is large. This problem cannot be resolved
unless a set of coupled equations for M„and M (t)
is solved. We use Eq. (B't) to discuss our results
because it is more conventional in the literature.

An attempt was made to solve for M„and M, .
Preliminary results indicate that M„(t) and M,(t).
can be expressed as e ' and e ' '-, where P„
and I', are functions of A~ and A~ in the important
exponential region. We find that I', , which should
enter in Eq (42), varie. s less rapidly with x than
A~r~~(x) as indicated in Eq. (42). Thus, the plot of
A~(x)/A~r~~(x) in Fig. 8 represents too large a cor-
rection.
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The bulk susceptibility of an induced-moment system containing substitutional vacancy im-
purities is studied in the low-impurity-concentration limit, utilizing a Green's-function
method in the random-phase approximation. It is found that the variation of the inverse sus-
ceptibility with the impurity concentration is strongly temperature dependent, in contrast to
the temperature-independent result predicted by the simple molecular-field theory in which
the exchange interaction is merely scaled by the factor 1 —c. At low temperatures the devia-
tion can be up to 35% for a simple cubic lattice. A further investigation shows that a refined
molecular-field theory taking account of the nonuniform distribution of the magnetization in
the impure crystal recovers most of the features predicted by the Green's-function theory.
However, no molecular-field theory can account for the behavior of systems of small energy
gap, or systems of low ordering temperature. In these systems the contribution of the col-
lective excitations greatly alters the results at low temperatures not only quantitatively but
also qualitatively.

I. INTRODUCTION

The study of the effects of impurities in an
otherwise perfect crystal has been of considerable
theoretical and experimental interest in recent
years. In a previous paper' (referred to as I here-
after) we discussed the impurity modes and locai
susceptibilities of an induced-moment magnetic
system containing a single substitutional impurity,
The system mas studied in the paramagnetic phase.
Two singlet energy levels were assumed for all ions
and explicit results were given for a simple cubic
crystal lattice with nearest-neighbor-only ex-
change interactions. In particular, we showed
that there exist two impurity modes and they are
of S type. This remains true for impure induced-
moment paramagnets of other geometry with only

nearest- neighbor exchange interaction. As in an
ordinary ferrornagnet, the impurity modes can be-
come localized, appearing above the energy band
and/or in the gap. Local susceptibilities on the im-
purity ions were also calculated and remarkable dif-
ferences mere found between the Green's-function
results and the prediction of molecular-field theory
(which ignores the collective excitations of the sys-
tem).

In this paper we extend the Green's-function cal-
culation in I to the ca,se of vacancy impurities, that
is, when the impurity ions are nonmagnetic or are
actually vacancies. VYe still choose a two-level
paramagnetic induced moment system a.s the host
in this calculation. Instead of the local suscepti-
bility on the impurity ion, which is zero for a va-
cancy impurity, we discuss the bulk susceptibility


