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Measurements of the low~temperature specific heat have shownthat Gd (OH);,\' undergoes a co-
operativetransitionat 0.94+0.02 K. Todeterminetheinteractions giving rise to this transition,
aseries of accurate susceptibility and magnetic-specific~heat measurements were made at tem-
peratures high comparedto the transition, and analyzedusing asymptotically exact series expan-
sions. The susceptibility measurements were madeusing an audiofrequency mutual-inductance
method at temperatures between1.4 and4.2 Kand14.7 and 20,0 K. Themagnetic specific heat was
determined using two different techniques. Onewas the conventional calorimetric method, and
measurements were made at temperatures between0.4and15K. Anestimate of the lattice spe-
cific heat and a comparisonwith calorimetric measurements of the diamagnetic isomorph La(OH);
aregiven, Intheother method, the magnetic specific heat was determined from the field depen-
dence of the adiabatic differential susceptibility, using the method of Casimir and du Pré
(CdP). For this, a special 4.5-MHz tunnel-diode oscillator was used, together with a sensi-
tive temperature controller and a superconducting solenoid. Measurements were made in
fields up to 15 kOe at temperatures between 5 and 68 K. Using an iterative procedure, the
leading terms in the susceptibility expansion were found to be xp=A/(T— 6 + By/ T + By,/
T?++++) with A=7.815 + 0,008 emu K/mole, 6=0,02=0.10K, By =2.05+ 0.10K? and By,
=—0,59+0,10K?, where |l denotes measurements parallel to the crystal ¢ axis and the super-
script «© denotes correction to an infinitely long sample shape. For the magnetic specific
heat, the leading terms were found to be Cy/R=Cy/T?+Cy/T3++++, with Cy=4.09 = 0.05K>
and C3=—4.2 % 0.7K% The unusually small error in C, reflects the fact that the CAP method
determines CMTZ/R directly, without the necessity of first correcting for the much larger lat-
tice specific heat., To analyze for _Ehe interactions, the dominant contributions were assumed
to be of the Heisenberg form J,,§0 *Sy with J, restricted to nearest and next-nearest neighbors
plus the calculated magnetic dipole-dipole coupling summed over all neighbors. These as-
sumptions were tested as part of the analysis and upper limits were obtained for J3 and for
possible anisotropic nondipolar interactions. The analysis was also checked against additional
susceptibility measurements perpendicular to the ¢ axis at temperatures between 1.4 and
4.2 K and magnetization measurements in fields up to 14 kOe at temperatures between 1,1
and 4.2 K. The final results gave J;=0,180+ 0.005 K and Jy== 0,017 + 0,005 K, indicating
that the system should approximate to an assembly of loosely coupled antiferromagnetic
chains, but the situation is complicated by the magnetic dipole interactions which are com-
parable in strength. To investigate the nature of the ordering, accurate susceptibility
measurements were made at temperatures between 0.6 and 1.4 K again using an inductance
method. The results were interpreted as characteristic of an antiferromagnet with predomi-
nantly but not exclusively nearest-neighbor interactions. The cooperative properties of such
a system are difficult to calculate, and even though all the important terms in the microscopic
Hamiltonian have been determined, it has not proved possible to predict the precise nature of
the ordered state. A number of possible states are discussed which probably approximate to

1973

the actual ground state, but further theoretical work on this problem is called for.

1. INTRODUCTION

The detailed analysis of a cooperative magnetic
system generally involves three distinct steps:
identification of the appropriate form of the micro-
scopic Hamiltonian; determination of the magni-
tudes of the individual terms; and finally, a many-
body calculation of the cooperative properties.
Some approximation is usually necessary at each
step, but in suitably chosen systems, the uncer-
tainty in the first two steps can be made quite
small, and it is then possible to concentrate on the
theoretically more interesting many-body aspect
of the problem.
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One series of compounds in which it should be
possible to achieve this situation are certain mem-
bers of the rare-earth hydroxides R(OH);. All of
these have the simple structure of the light-rare-
earth trichlorides with two magnetically equivalent
ions per unit cell and Cg; point symmetry. The
structure is such that first- and second-nearest
neighbors are significantly closer than other neigh-
bors and it should therefore be possible to charac-
terize the interactions by a reasonably small num-
ber of parameters. Moreover, their lattice pa-
rameters are some 14% smaller than those of the
corresponding chlorides so that one might expect
cooperative effects at readily accessible tempera-
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tures. A number of magnetic, thermal, and opti-
cal measurements have already been reported for
several of the hydroxides'™® and it seems clear
that this is indeed a potentially interesting series
of compounds. In this, the first paper of a
series, '*''® we want to concentrate on one which
should be particularly simple and amenable to de-
tailed analysis: Gd(OH)s.

The magnetic Gd* ions are quite well described
in terms of an %S; /2 state, for which anisotropic
orbital effects vanish, and one might therefore ex-
pect Gd(OH); to approximate to a simple isotropic
Heisenberg system with nearest- and next-nearest-
neighbor interactions. In this paper we shall ex-
amine the complete spin Hamiltonian for Gd(OH),
in the light of recent EPR experiments on Gd**
ions®!® and pairs in Y(OH); and Eu(OH); "% and
we shall report an analysis of a series of magnetic
and thermal measurements from which quite accu-
rate values of the interaction parameters can be
determined.

The results of both our analysis and the EPR
measurements'® show that the Heisenberg form is
indeed a good approximation for the exchange part
of the interaction between nearest and next-nearest
neighbors, but we shall also find that a number of
additional terms due to magnetic dipole-dipole
coupling may be unexpectedly important in this
system. This is a result of some unusual cancella-
tion effects which give rise to a situation in which
the cooperative properties appear to be controlled
by several of the weaker interactions. Gd(OH),
is thus an excellent example of a system in which
both the form and magnitude of the interactions can
be determined with some certainty, but the coop-
erative properties present an interesting and un-
usually complex problem.

The problem of inferring the cooperative prop-
erties from the spin Hamiltonian appropriate to
Gd(OH); will be discussed only briefly in this paper,
but we shall be able to conclude that the ordered
state should approximate to an antiferromagnetic
linear chain with spins perpendicular to the crys-
tal ¢ axis. This is in marked contrast to the iso-
morphic and apparently similar system GdCls,
which orders ferromagnetically with spins parallel
to the ¢ axis.?"?® The difference can be related
directly to the empirically observed variation of

- the exchange parameters J; and J, with changes in
the interionic separations, '° but the underlying
reason for the changes in the J’s remains unex-
plained. The present work therefore provides two
additional data points for any future theoretical
analysis of Gd*'-Gd®" exchange interactions.

The analysis in this paper uses generally well
known methods, involving a fit of susceptibility and
specific-heat measurements toasymptotically exact
series expansions. However, in order to ensure
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useful accuracy for the final interaction parameters
it was necessary to make very careful measure-
ments in regions of field and temperature where
the theory would be adequate, and this involved
special measurement techniques which are de- .
scribed in Sec. IV. The theory and the fitting pro-
cedure also were treated with special care and
these aspects are discussed in Secs. III and VIA,
A number of additional checks and a discussion of
the completeness of the final solution are given in
Sec. VID.

The problem of determining the ordered state is
discussed in Sec. VII and all the principal results
are finally summarized in Sec. VIII. Explicit ex-
pressions for lattice sums usedin the high-tempera-
ture-series expansions of the susceptibility and
specific heat are given in Appendix A together with
a discussion of special features in the numerical
calculations. In Appendix B a brief discussion is
given of the difficulties of separating magnetic and
lattice specific-heat contributions to the total spe-
cific heat, and it illustrates the great advantage of
using a method which determines the magnetic part
directly.

II. Gd(OH); STRUCTTIRE AND SAMPLES
A. Structure

The crystallographic structure of the rare-earth-
hydroxide series has been the subject of both
x-ray- 27 and neutron-diffraction studies.® The
symmetry of the entire series, from lanthanum
to ytterbium andalso yttrium?®% is hexagonal with
space group P6;/m(CE,). For the present study,
only the cation point symmetry (Cs,) and the mag-
netic cation sublattice are of interest and this is
shown in Fig. 1. Also given in this figure are
several near-neighbor distances for G4(OH);, and
it can be seen that the nearest and next-nearest
neighbors are indeed significantly closer than other
neighbors. The lattice constants used for these
and all other calculations are a=6.30 A and c = 3. 61
A, as reported by Klevtsov and Sheina,®® in agree-
ment with our own x-ray diffractometer measure-
ments, 303!

It may be seen that the rare-earth ions form a
close-packed-hexagonal structure with a relatively
small ¢/a ratio (0.57). The magnetic ions can be
thus thought of as lying on identical chains all
parallel to the ¢ axis, with the two nearest neigh-
bors (n=1) on the same chain separated from the
central reference ion by a distance of +c. The
six second-nearest neighbors (z=2) are situated
on similar chains separated from the reference
chain by a distance a/V3 and displaced a distance
3c along the c¢ axis. The third-nearest neighbors
(= 3) are situated on six chains which are arranged
in a regular hexagon around the reference ion at
a distance a in the plane of the central ion.
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FIG. 1. Arrangement of Gd®* ions in Gd(OH);. The
successive neighbors and their distances from the refer-
ence ion are as follows [the distance from reference ion
(A) is in square brackets]: (0) reference ion; (1) nearest
neighbor (1n) [3.61 (=¢)|; (2) next-nearest neighbor (2%)
[4. 06]; (3) 3rd-nearest neighbor (37) [6.30 (=a)]; (4) 4th-
nearest neighbor (4x) [6.52]; (5) 5th-nearest neighbor
(57) [7.22]. One may note especially the relatively small
distances between the nearest and next-nearest neighbors
compared with the distances between other neighbors.

B. Samples

Most of the samples used for this work were
small single crystals which had been prepared in
this laboratory using a high-temperature (300-

400 °C) high-pressure (800-atm) hydrothermal pro-
cess with concentrated NaOH solution as the min-
eralizer. Details of the preparation are given
elsewhere.3® The crystals were generally about
1-10 mg in weight in the form of hexagonal prisms
parallel to the ¢ axis (~10X0,3X0,3 mm) and are
probably the largest and most perfect Gd(OH),
crystals made so far. Most had well-developed
faces and some were quite transparent. For the
specific-heat measurements much larger samples
(up to 70 g) of microcrystalline powder were used,
and these were prepared by a similar method but
under conditions which did not favor crystallite
growth.

A total of six different samples were used as de-
scribed in Table I. For the samples used for the
“high-temperature” magnetic measurements (I-
III), it was necessary to estimate appropriate de-
magnetizing factors N, and this involved some un-
certainty since it was not possible to shape the
crystals into proper ellipsoidal forms. Moreover,
for samples II and III for which more than one sin-
gle crystal was used, it was necessary to minimize
the effect of small air gaps between the separate
pieces.® Fortunately, the uncertainties due to
these difficulties were quite small and it was possi-
ble to estimate values of N from the corresponding
values for ellipsoids of the same length to diameter

~compound and direction, and equal to 1.992+0.00
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ratio, 3% Table I gives the values for N, corre-
sponding to measurements parallel to the crystal
axis; for measurements perpendicular to the axis
we can then use the relation N, + 2N, =47.

Samples I-III were aligned relative to the mea-
suring field by eye to an accuracy of better than
+3°. The corresponding uncertainty in measuring
Xr and X7 was estimated to be quite negligible com-
pared with other experimental errors.

For sample IV used for the low-temperature
powder-susceptibility measurements, about 8 g
of Apiezon-N grease was mixed with the hydroxide
to improve the thermal conductivity and to ensure
random alignment of the needle-shaped microcrys-
tals.®® The material was packed into a 3:1 cyl-
inder and the demagnetizing factor was estimated
using the work of Joseph, %

The samples used in the calorimetric measure-
ments were made quite large so as to reduce er-

. rors due to addenda (sample holder, heater, and

thermometer), and Apiezon-N grease was again
used to enhance thermal equilibrium. In the ear-
liest measurements (sample V) about 6 g of grease
was mixed with 15 g of hydroxide, but in later mea-
surements it was possible, by careful mixing, to
reduce the amount of grease to 1 part in 15 while
still preserving good heat contact (sample VI).

III. THEORETICAL CONSIDERATIONS

A. Effective Spin Hamiltonian

The form of the Hamiltonian for Gd(OH); should
be identical to that of other isostructural Gd** com-
pounds, several of which have previously been
studied in some detail.®” In particular, extensive
EPR experiments on Gd*" in both diamagnetic tri-
chlorides®®* and hydroxides [Y(OH), and
Eu(OH); 1""%%] have shown that the dominant inter-
action may be written in the form*

JC=§1J¢/§¢" §j+§ail[§f' S - 38 #i)(8p #4))]

+2gﬂgﬁ'§i+ V.+H', (1)
i

where a;;=g%1%/73; is a measure of the strength
of the magnetic dipole-dipole coupling and r;; is
the distance between ions i and j (7;;=F;;/|F 1)
and the effective spin S=%. The g factor has been
found to be practically independent of the particular
1,18

We shall assume this value also for Gd(OH),; and
shall show that this is in fact consistent with the
measured Curie constant.

The term V. denotes the effect of the crystal field
on the S=# ground state, ! and it can be expressed
in terms the usual effective spin operators O as*

V.= %b3 03 + 53 03 + 135 (63 08 + b8 09). (2)
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TABLE I. Summary of experiments and samples.
Length/
Sample Type of Temperature Number of Total Diameter Demagnetizing
no. measurements region (K) single crystals weight (mm) factor N?
I Low~frequency
susceptibility 1.4-4.2
High-field 1 2.2 mg 4/0.4 0.20+ 0.05
magnetization 1.1-4.2
I Low-frequency
susceptibility 14,7-20 2 30.8 mg 14/1° 0.15+ 0.05
jui High-frequency
susceptibility 5-68 3 18 mg 18/0.6" v.10£0.05
v Low-frequency
susceptibility 0.6-1.4 polycrystalline 3lg 44/17 1.6+0.1
v Specific heat 0.4~5 polycrystalline 15¢g see see
VI Specific heat 2-15 polycrystalline 70¢g eoe LK)

%In units in which N for a sphere is %w.

Spin-resonance measurements on Gd* ions in
Y(OH)s, *® La(OH),, ** and Eu(OH),'® have shown
that only the first term is appreciable, and the
value of b3 was found to lie in the range —0.0195
to —0.0355 K, varying slightly with temperature
and the nature of the host lattice. The value ap-
propriate to pure Gd(OH); may be expected to lie
close to this range and we therefore estimate®
b Gd(OH);]= —0.02+0.01 K, with a rather large
error limit to allow for all the uncertainties in the
interpolation. We shall see that any crystal field
in this range makes only a very small contribution
to the magnetic properties and the effect of the un-
certainty is thus entirely negligible.

The final term in Eq. (1) represents the various
higher-order interactions which have not been in-
cluded explicitly. Such terms could arise from
anisotropic bilinear exchange, and from electric
multipole-multipole couplings via spin-orbit and
crystal field admixtures into the ground state,
There is good evidence from the EPR measure-
ments'® that all such terms are in fact very small,
and we shall ignore them in the first analysis., In
Sec. VID4 we shall make quantitative estimates of
the contributions which these terms might make
to the observable bulk properties and we shall
show that the effects are indeed negligible.

The leading term in Eq. (1) represents the iso-
tropic exchange coupling which generally falls off
rapidly with increasing separation between the
spins. From the crystal structure shown in Fig.
1 we would therefore expect the nearest-neighbor
exchange constant (J;;=4J;) and the next-nearest-
neighbor constant (J;;=dJ,) to be relatively large,
with all other J’s very much smaller. To obtain
an estimate for the upper limit of these more dis-
tant neighbor exchange interactions, we shall al-

bTotal length of the crystals laid end to end.

low in the analysis for a possible nonzero J;, and
we shall assume that if this turns out to be small,
Jy, J5, etc., will also be small. This is reason-
able not only on physical grounds, but also be-
cause the expressions for the specific heat and
susceptibility contain combinations of all the J’s
and it would be very unlikely that several relatively
large distant neighbor J’s would cancel to simulate
the effect of a single small J;.

In contrast to the exchange interactions, the mag-
netic dipole interactions fall off quite slowly with
distance (~1/7°) and we must expect comparable
and cumulative effects from many neighbors. For-
tunately, the dipole interaction can be estimated
from the crystal structure and the g value, and
there is no difficulty in calculating an arbitrary
number of terms. As we shall see, most of these
do in fact turn out to be quite small compared to
the largest exchange interaction, but some of them
may nevertheless be very important for the coop-
erative properties due to some interesting and
complex cancellation effects. Thus, even though
the dipole interaction presents no difficulty in the
determination of the complete spin Hamiltonian,
it does provide a challenging ingredient in the anal- .
ysis of the cooperative properties of GA(OH);.

B. High-Temperature Expansion

There is no theoretical way of estimating the
three J’s which were left undetermined in Eq. (1),
and to obtain values from experimental data we
make use of the standard method of “high-” tem-
perature series expansion for the susceptibility
and specific heat.**™*® For this, we were able to
take over some general results for systems with
arbitrary symmetric tensor interactions developed
by Marquard, ¥**® which he had previously applied
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to the isostructural compound GdCl;. The coeffi-
cients in these expansions are functions of J;, J,,
and J3 as well as the known dipole interactions
a;;, and in this section we shall give the results
for the corresponding lattice sums appropriate to
Gd(OH);. The final fitting of the J’s to the ex-
perimental data is given in Sec. VIA.

1. Susceptibility

Because of the Cj, point symmetry of the hydrox-
ides, the susceptibility xr is axially symmetric
and can be described by Xr along the ¢ axis and xlT
along any direction perpendicular to the ¢ axis.

For both directions xr may be expanded as a series
in 1/T of the form?-5°

X7 =N/ (T =04+ By /T + By /T?+:-+), (3)

where « denotes either Il or 1, With x7 in units of
emu/mole, the Curie constant x=N,g2u4S(S+1)/
3kp="7.815+0,008 emuK/mole independent of
direction, using the isotropic EPR g value 1.992
+0.001. We will occasionally also express X7 in
emu/cm® with the Curie constant x,=/V,, where
Vy is the gram-atomic volume. Vj, can be calcu-
lated from the lattice constants given in Sec. ITA
which correspond to Vy=37.4+0.4 cm® and hence
Xp=0.209 £0,002 emuK/cm?,

The first three coefficients in the denominator of
Eq. (3) are found using Marquard’s results to be’

0= -8 (J, +3J,+3J;5) + 21Z¢y, (4a)
By=3 1+ 375+ 379) — 20 + P00 + 120, (4D)

By=133(J3 + 375 + 3J3) — 2885 (37, J% + 6], + 273)
+18LL (L 1204, + 804g; + 2445, — 484/, + 964L)

133 1659 1883
+73° 239+ "3 D1z — 4 203

3450 v/ | 47255/ 9471/
=3 o+ 5 2128 203 (4c)

where the Z’s and the A’s are dipolar lattice sums
defined in Appendix A, All the sums except the
first-order single-dipole sum Xy, in 6 are indepen-
dent of the external shape of the specimen. The
shape dependence of 6 can be treated in a simple
way for ellipsoidal samples with principal axes
parallel to the susceptibility axes:

ea(1)+N¢x(1))\u=Ga(z)““No‘(z)xu, (53)

where 0, (j) is the value for sample shape j with
demagnetizing factor N,(j). This is equivalent to
the usual relation between the reciprocal suscepti-
bilities

1/X3(1) = N (1) = 1/X3(2) = No (2). (5b)

All measurements in this paper will be corrected
to correspond to an infinite needle parallel to the
¢ axis, for which N,=0 and N, =27, and we shall
denote the corrected values of 6 by 6, and 6.

| =3

MEISSNER, AND WOLF

The evaluation of all the lattice sums was per-
formed using the Yale IBM 7040-7094 computer and
is described in Appendix A. Numerical values for
the various sums appropriate to Gd(OH); were sub-
stituted into Eqs. (4a)-(4c) and the final expres-
sions are shown in Eqs. (6a)-(7c) below. For the
susceptibility parallel to the ¢ axis we find

0y= -8 (J,+3J,+3J,)+1.441 - AN, - 4b3,  (6a)
By, =3 (J%+ 3J5+3J2) - 4.690J, + 2,013,
+1.324J,+1.00, (6b)
By, = 133(J} + 3J3 + 3J3) — 28588 (37,J% + 6J2T 5 + 2J3)
—18,607J% - 11,888 J,+98.115J2
—7.175J1J3 — 95, 655 J5J; — 21. 8952
~2.614J, - 9.304J,+1.190J; - 0. 377, (6c)

while for the susceptibility perpendicular to the ¢
axis we obtain

6,= -3 (J; + 3T, + 3J;) +0.598 — 1, (27 — 3N,) + 263,
(7a)

B, =81 (J% 1 3%+ 3J2)+ 2. 345J; — 1.007J,
-0.662J5+0.870, (7b)
By, = 133(J3 + 375 + 3J3) — 28885 (3,75 + 672, + 273)
+9.304J%+5.944J,J, — 49.058J% + 3. 587 J;J,
+47.828J,J5+ 10, 948J% - 6. 542,
-10.603J,+3.936J, -0.515. (7c)

Inthese expressions we have also included the
most significant contributions of the crystal field,
which may be characterized in the present case by

‘a single parameter b3=-0.02+0.01 K. (See Sec.

IITA.) This is an unusually small value, and an or-
der-of-magnitude estimate shows that the corre-
sponding contributions to B,, Bj, etc., will be en-
tirely negligible (<0.1%), and even the first-order
contribution to 6 is very small. In other S-state
systems, higher-order crystal field contributions
might well be much larger and one might also have
to consider cross terms with the exchange and di-
pole interactions. Such effects would complicate
the analysis, and even though it should be possible
to allow for them we must regard the smallness of
the crystal field as a very welcome simplification
in the present case.

2. Magnetization

In Sec. IV A2 we will also need an expansion for
the magnetization for finite fields at relatively high
temperatures. For gugH <kgT and T > Ty the
first approximation for M is

~ AH
"T-6+B,/T+B,/T%

M (8)
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in accordance with Eq. (3) for Xr. The next-order
term in the field correct to first order in the inter-
actions can be found from the Brillouin function

M =NgppS Bg(gp.sS Hee /R5T), (9)

using molecular-field theory to determine the ef-
fective field

Hoy=H+AM, (10)

where A is related to the interactions by A=6/x.
Combining Eq. (8) with the expansion of Eq. (9) we
obtain

A\H TH?
M=r=67B,/T+ B,/ (1'3"5 (T - e)’) (1)

where

as_ll()(i“”) (25%+25+1). (12)
Higher-order terms in both the field and inter-
actions could, if necessary, be found using the
more general method of Van Vleck, 5!'°2 put it turns
out that this calculation is quite complex and for the
present purposes Eq. (11) will turn out to be suf-
ficiently accurate.

3. Specific Heat

The magnetic specific heat per spin can likewise
be expanded as a high-temperature series

CM/R=Cz/T2+C3/T3+---. (13)

The coefficients are generally field dependent (Sec.
IV A2), but in order to find the quantity related
most directly to the interactions, we will use the
zero-field value Cy(0, T)=Cy. In this case the co-
efficients in Eq. (13) are found using Marquard’s
results to be

Ca 1323 (J1+3e]2+3J )+'13_2’3'202+21(b2) (143)
Cy=18% U1+ 375 + 3735) - 552 (37,3 + 67575 + 273)
_ 83349 A +27'183 AOS - 16 le _ 13423 203. (14b)

The term containing b3 is again due to the crystal
field, and using the value given in Sec. III A we can
estimate the contribution to C, as 0.008 £0,008 K2.
The corresponding contribution to C; is estimated
to be negligible.

The lattice sums Z,, and 4,, are identical to some
of those for X and defined in Appendix A, and sub-
stituting the values previously determined we find

=1323 (72, 37% 4+ 3J%)+ 1. 348, (15a)
C,= lggs (3 + B3T3+ 33) — 83318 (37,2 + 6J%T, + 2T3)
~18.89dJ; - 35.02J,+8.40J5-1.29,  (15b)

where we have included in C, the small crystal
field contribution which accounts for only about 0. 2%
of the total. The computer programs for both
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these expressions were checked by evaluating them
also for the parameters appropriate to GdCl; and
comparing the results against the published values. “
As before, the agreement was perfect within the
estimated accuracies.

4. Discussion

It can be seen that the expansion coefficients for
both xr and Cy increase rather rapidly in com-
plexity with increasing order, and that it would be
quite difficult to compute any of the higher-order
terms for a system such as Gd(OH); with apprecia-
ble long-range interactions. Fortunately, the
eight coefficients which we have been able to cal-
culate are more than enough in the present case,
since there are only two (or possibly three) unknown
interaction parameters to be fitted. For other sys-
tems containing non S-state ions we must generally
expect more complex forms for the interactions, 3%
and the series-expansion method can then be used
only if the form of the interactions can be simpli-
fied by some other considerations, such as a domi-
nant crystal field anisotropy. We shall consider a
case of this kind in the second paper of the present
series, *® in which we shall discuss Tb(OH),.

It is interesting to note one feature of the present
results which illustrates a general problem which
may be important in all systems with long-range
interactions. This concerns the relatively large
contributions from cross terms between the larger
near-neighbor interactions and the many weaker
far-neighbor interactions. These terms seem to
become more important in the higher-order ex-
pansion coefficients and this suggests that special
care must be taken to include longer-range inter-
actions in calculating these coefficients. Physically,
this may be related to the fact that as the tempera-
ture decreases and the average range of the cor-
relations increases, the effect of direct long-range
interactions on the correlation between more dis-
tant neighbors may become comparable to the high-
er-order effects of short-range interactions.

It is also of some interest to compare the present
numerical results with the corresponding coeffi-
cients for GdCl;, since this illustrates the possible
sensitivity of the various sums to small changes of
lattice structure. Part of any difference is of
course due to a simple change of scale, since each
dipole interaction is proportional to g%/c®. Allow-
ing for this scale factor we then still find differences
ranging from 2 to 10%, depending on the order of
the dipole sum. These may be compared with the
difference between the ¢/a ratios in the two lattices
which is only about 2%. This shows that it is gen-
erally not very accurate to extrapolate lattice sums
(and especially the higher-order sums) from one
lattice to another, even when they are apparently
quite similar.
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IV. EXPERIMENTAL METHODS

A. Specific-Heat Measurements

To measure the magnetic specific heat, two dif-
ferent techniques were employed. One was the con-
ventional electrical-heating method, in which one
measures the total specific heat which is then ana-
lyzed to allow for the lattice contribution. The
other was a magnetic high-frequency method,
which determines Cy directly. As we shall see,
the two methods are complementary in the present
case, the first being more accurate below about
5 K, while the other is more accurate at higher
temperatures.

1. Calorimetric Method

The measurement of the total specific heat was
carried out in the usual way by subjecting a thermal-
ly isolated sample to a measured pulse of Joule heat
and determining the change of temperature. Mea-
surements were made from 0.4 to 15 K, using a
cryostat equipped for both He® and He* cooling. A
detailed description of both the calorimeter and the
jexperimental procedure is given elsewhere, **
but there were a few special features in the present
experiments which require comment.

One arose from the fact that the samples were
microcrystalline (Sec. II B) and this involved usinga
copper container and grease to promote thermal
equilibrium. The heat capacity of the calorimeter
plus grease was measured separately and sub-
tracted. Below about 5 K this led to only a small
uncertainty, but at higher temperatures it increased
to a possible error of about 2% at 10 K. At these
temperatures, this correction represented the
largest error in the experiment. The uncertainty
in the specific-heat measurements themselves was
generally less than 1%.

A more serious uncertainty arose in the analysis
to determine the magnetic part of the specific heat.
This involved making an estimate of the lattice con-
tribution, which, as we shall show in Appendix B
is far less certain than is sometimes supposed. At
temperatures below about 5 K the lattice correction
becomes quite small (<3% of the total) and the cor-
responding uncertainty in the final values of Cy is
less than 0.3%. At higher temperatures, however,
the correction becomes very large, and at 13 K, for
example, it accounts for about 80% of the total
specific heat. An estimated uncertainty of about
9% in the correction then implies a possible error
of about 30% in the final value of Cy,. In this re-
gion it is necessary therefore either to improve
the accuracy of the lattice estimate or to devise
a technique which can measure Cy directly. For-
tunately, such a technique is in fact available in
the form of the Casimir and du Pré method, which
we shall now discuss.
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2. High-Frequency Specific-Heat Measurements

The method of Casimir and du Pré®"'® involves

measuring the field dependence of the adiabatic
magnetic susceptibility xs(H), which can then be
related to Cy using simple thermodynamics and a
knowledge of the static (isothermal) magnetic prop-
erties. Details of the method and apparatus using
a tunnel-diode oscillator have been described in
some detail previously, 85 and some recent im-
provements in the technique are being published
elsewhere. %!

Measurements were made between 5 and 68 K,
the upper limit being set by the temperature-con-
trol system in our particular cryostat. The lower
limit represents a temperature below which the un-
certainty in the static terms relating xs(H) to Cy
exceeds the error in the analysis of the total spécif-
ic heat, which becomes more accurate as the lat-
tice contribution decreases in importance. The
high-frequency method is thus complementary to
the usual electrical-heating method, and it is par-
ticularly useful for temperatures high compared to
the cooperative transition.

A necessary condition for obtaining the appropri-
ate adiabatic susceptibility is that the measuring
frequency must be high compared to the spin-lat-
tice relaxation rate but slow compared to the spin-
spin relaxation rate. For Gd(OH); this condition
can fortunately be satisfied very easily. Due to
the predominantly S-state character of the ground
state, the spin-lattice relaxation rate of Gd** com-
pounds is generally quite slow®? (75} <107 sec™ at
T =70 K and decreasing for lower temperatures),
while the spin-spin rate is typically much faster®
(158~ 10" sec™®, and essentially temperature inde-
pendent). A wide range of frequencies f will there-
fore satisfy the condition Tgy, << 27 f << 755 and for
convenience we chose f=4.5 MHz. Under these
conditions the real part of the measured differential
susceptibility x’(H) will be equal to the adiabatic
susceptibility xs(H) of the spin system in internal
equilibrium but isolated from the lattice.

The relation between the susceptibility measured

under these conditions and Cy is given by %'+
CylH,T) ( / (x ) xr&@) Y
R H
R [ ) Xz )] X' xr(©0) 1)

(18)
where Xrp(H)=(8M/8H); is the isothermal diftferen-
tial susceptibility in a field H. If the field and
temperature variation of the static magnetization
M(H, T) is known, all the remaining terms on the
right-hand side of Eq. (16) can be calculated, and
in the present case this could be done to sufficient
accuracy using the limited expansion, Eq. (11).
The magnetic specific heat can thus be related to
a ratio of susceptibilities x’(0)/x’(H), which can be
measured quite conveniently.
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In general, we must of course expect Cy(H, T) to
be field as well as temperature dependent (Sec.
IIIB3), and in order to find the quantity related
most directly to the interactions [Eq. (13)],
Cy(0,T), we can use the thermodynamic relation-
ship®

acM) (a?H

=) - _7(=35). (17)
(BM " 8T/,

This combined with Eq. (16) using M in Eq. (11)
gives the magnetic specific heat in zero field,

Cul0, T _ 2 ( T

7 )(1 ~y"r(H, T)

T-y
T
X<1+Ols (T_—G)T’V(H, T))

3//
ZR"(T%EHZ 18

where the last term represents the field depen-
dence of Cy to lowest order, and where

HZ
'V(H, T):X’(O)/X'(H)—l 2 (19)
y= 0,, - Bau/T - BSH/Tz, (20)
d B ZB
d®y -2B B

The constants as and A/R appropriate to Gd(OH),
may be estimated from Eq. (12) and the value for
X given in connection with Eq. (3):

Qq/5=0.058 10 +0, 000 06 (K/kOe)?
and
A/R=0.094000.00009 (K/kOe)?.

Values for the other parameters will be estimated
as discussed in Sec. VI.

The experimentally determined function »(H, T)
in Eq. (19) should thus be independent of H to the

" extent that the field dependence of C, can be ne-
glected, and to simplify the analysis this was en-
sured by limiting the maximum value of H used at
each temperature. Within the limits of accuracy
of the present experiments (+0.3%), this implied
a maximum H of 0.3 kOe at 5 K rising to about 15
kOe at 68 K.

To check the validity of the expression for the
field dependence a series of measurements at
higher fields was also made at one of the lowest
temperatures, and a value was obtained for the co-
efficient of H% in Eq. (18). Comparison with the
calculated value provided a useful check on the
parameters used in the final expression for y.
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B. Low-Frequency Susceptibility Measurements

These experiments can be described conveniently .
in two parts: single-crystal measurements above
1.4 K and powder measurements below 1.4 K.

1. Single-Crystal Measurements

Susceptibility measurements were performed at
liquid-He* temperatures (1.4-4.2 K) and liquid-
hydrogen temperatures (14.7-20.0 K) using the
method of McKim and Wolf,® In this method the
susceptibility is determined from the change of
mutual inductance of a double-coil system when
the sample is moved relative to the coil, using an
audio-frequency Hartshorn bridge. The apparatus
was calibrated with several multicrystal samples
of manganous ammonium sulphate [Mn(NH,),(SO,),
*6H,0]. From the reproducibility of different
samples we judge the absolute calibration accuracy
to be about +0.5%. The relative accuracy for the
temperature dependence of Xr for one particular
sample, on the other hand, was very much better
than this and was estimated to be about +0.1%.
The temperature in both the hydrogen and helium
ranges was found from the vapor pressure above
the coolant after correctionfor the hydrostatic head
pressure, and the uncertainty in this (~0.1%) is
probably the main contribution to the scatter in the
data for any one sample.

2. Powder Measurements below 1.4 K

Measurements of the susceptibility were made
from 0.6 to 1.4 K using a He® cryostat described
elsewhere.® The much lower sensitivity of this
system made it impossible to measure the small
single crystals available, and a much larger mul-
ticrystalline sample was therefore used (see Table
I, sample IV),

The susceptibility was again determined by an in-
ductance method, but since it was now not possible
to move the sample relative to the coil only changes
in Xr could be measured. However, by extending
the measurements up to 4.2 K and comparing the
results with the previously determined absolute
single-crystal susceptibilities, it was possible to
normalize the powder data to an accuracy of about
1%. Care was taken to avoid spurious contribu-
tions from the cryostat by keeping all parts at a
fixed low temperature and varying only the tempera-
ture of the sample, using an electrical heater
wound directly on the sample. The temperature
was measured with a germanium resistor cali-
brated in situ against the vapor pressure of He®
and He*. In the temperature range between 0.6
and 1.4 K this calibration was estimated to be
accurate to better than 0,005 K,
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C. Magnetization Measurements

Measurements of the magnetization in fields up
to 14 kOe at temperatures between 1.1 and 4.2 K
were made using a Foner-type vibrating-sample
magnetometer. Details of the apparatus are given
elsewhere, °® but we may here note the fairly high
sensitivity (~2x10™ emu) which enabled us to mea-
sure quite small samples (See Table I, sample I)
to a relative accuracy of about 0.1% at the maxi-
mum field. The absolute accuracy, which involves
the calibration of the apparatus and the mass of the
sample, was about 1%.

Magnetization measurements were made both
parallel and perpendicular to the crystal ¢ axis by
aligning the sample in a horizontal plane and rotat-
ing the magnet. For the parallel direction, the
maximum alignment error was judged to be +3°,
while for the perpendicular direction it was essen-
tially zero. The low-field results for both direc-
tions were checked against the ac susceptibility
measurements (Sec. VF) and good agreement was
found.

V. EXPERIMENTAL RESULTS

A. Calorimetric Specific-Heat Measurements

The results of the calorimetric total-specific-
heat measurements are shown in Fig. 2. The most
striking feature is the sharp peak at 0.94+0.02 K,
which is clearly associated with a cooperative
phase transition.® There is also a noticeable broad
shoulder on the high-temperature side, which we
shall later interpret as due to short-range order in
a predominantly one-dimensional system. The na-
ture of the phase transition will be discussed fur-
ther in Sec. VIIB.

At the lowest temperatures, the measured total
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specific heat is almost entirely due to the magnetic
contributions, but at higher temperatures the lat-
tice becomes increasingly important., In order to
estimate the lattice contribution C;, additional
specific-heat measurements were made on La(OH),
between 4,2 and 15 K, and compared with measure-
ments on Gd(OH); over the same range. The re-
sults of this analysis are given in Appendix B,
which also includes a second estimate of C; based
on a comparison of the calorimetric and high-fre-
quency measurements on Gd(OH);. A comparison
of the two estimates indicates a rather large dif-
ference which is not readily explained. For the
present we must therefore set a correspondingly
large uncertainty on C;, and we conclude that C /
R=(3.4£0.3)X1077",

Using this relation we can find C from the mea-
sured total, but the correction is quite small (<3%)
over the range covered by Fig., 2, and the corre-
sponding uncertainty is less than 0.3% of C,,. How-
ever, at higher temperatures the uncertainty in-
creases rapidly, and at 13 K it accounts for a pos-
sible error of 30%. We shall therefore use the
calorimetric results only below about 4 K and rely
on the high-frequency data at higher temperatures.

B. High-Frequency Specific-Heat Measurements

Measurements of the relative field dependence of
the adiabatic susceptibility x’(H)/x’(0) were made
at 21 different temperatures in the range 5-68 K,
for about 13 different values of H at each tempera-
ture. The maximum field at each temperature was
determined from the condition of a field indepen-
dent Cy according to Eq. (18) to better than 0. 3%.

The method of analysis to determine the asymp-
totic value of the function »(T)=»(H -0, T) from
plots of x'(0)/x’(H) -1 vs H? is discussed else-

FIG. 2. Total specific heat
of Gd(OH); from calorimetric
measurements, curve a, which
is very close to the magnetic
specific heat in that the lattice
specific heat contributes a maxi-
mum of about 3% at 5 K. The
peak corresponds to Ty=0.94
+ 0.02 K and is interpreted as
the onset of a complex long-
range antiferromagnetic order.
Curve b is the high-temperature
asymptote Cy/R=C,/T*+ Cy/ T3
as calculated from the final
values of the interactions.

O-G 1 1 1
© ! 2 1k 3
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where?? and it was generally found that #(T) could
be estimated to about £0,5%. The values were
slightly less accurate for the lowest temperatures
as the maximum allowed field becomes smaller
with a correspondingly smaller variation in x'(H)/
x'(0). But even at the lowest temperature »(7')
could be estimated to better than +1%.

To find C (0, T)T%/R using Eq. (18) it was also
necessary to estimate values for the expansion pa-
rameters 6,, B,,, and By,, and this was done itera-
itively as discussed in Sec. VIA. The values final-
ly adopted were 6,=0.00+0.10 K (corrected to the
shape of the high-frequency sample), Bs,=2.05
+0.10 K%, and By, =-0.59+0.10 K%, Substituting
these values and the experimentally determined
#(T) in Eq. (18) we obtain the results shown in Fig.
3, in which we plot Cy(0, T)T%/R as a function of
1/T. The error bars represent the combined un-
certainties from the parameters used in the anal-
ysis as well as experimental errors in estimating
7(T).

It may be seen that the over-all errors are quite
small, especially at the highest temperatures,
which are the most important for the determination
of the high-temperature asymptote. At the lowest
temperatures the errors become somewhat larger,
mainly due to uncertainties in the static param-
eters 6,, By, but fortunately the calorimetric esti-
mates of Cy become more accurate in this region.

10040 20 15 10 8 6 5
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These are also shown in Fig., 3 and it can be seen
that they provide an excellent complement to the
high-frequency measurements.

Comparing the two sets of data in the region of
overlap one may attempt to refine the values of the
various correction factors which enter into the two
analyses and in particular one can obtain a better
value of C;, as will be discussed in Appendix B.
Using independent estimates B,, and B, (see Sec.
VIA), one can also use a comparison of the low-
temperature data to obtain an improved value of
6,. With the relative uncertainties in the present
results no significant improvement in the estimate
of 6, could be obtained, but in some cases this may
prove to be quite a sensitive check. ®

C. Entropy and Internal Energy of the Magnetic System

The zero-field magnetic-specific-heat measure-
ments permit calculation of other thermodynamic
functions such as the entropy Sy(7)/R and the in-
ternal energy Uy(T)/R, which can provide useful
checks of both the measurements and the analysis.
Given C, /R we have

Su(T)/R= foT (Cy/RT)dT
and
Uu(T)/R= [T (Cy/R)dT,

where the zero of Uy has been chosen such that
Uy—~0as T—-=, Inpractice, Cy is available over

(23)

(24)
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FIG. 3. High-temperature magnetic specific heat for Gd(OH); from high-frequency susceptibility measurements (o)
and calorimetric measurements on samples V (X) and VI (+), plotted as Cy,T?/R vs 1/T to identify the first two terms in
the high-temperature expansion CMTZ/R-- Cy+C3/T. The line a is the high-temperature asymptote, with C,=4.09+ 0.05
K? and C3=—4.2+0.7 K°. This was found from the high-frequency data using small corrections from higher-order
- terms in the expansion as determined from the calorimetric data. Curve b is the result of the self-consistent fitting

procedure described in the text.
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only a finite range of T and both low- and high-tem-
perature extrapolations are required. In the pres-
ent case, the high-temperature extrapolation pre-
sents no difficulty, since the asymptotic expansion
of Cj; has been determined quite accurately (see
Secs. VB and VIA), but the low-temperature con-
tribution (7' <0. 4 K) must be estimated and this
introduces a small uncertainty. Fortunately, the
major contribution to both S and Uy comes from
the region over which good measurements of Cy
are available and both functions can therefore be
estimated with good accuracy. Both curves have
the generally expected shapes and we shall here
quote only a few values which are of interest.

For the total entropy one finds

Su(=®)/R=2.0£0.2

and this is in excellent agreement with the value
In8=2.08 expected for a system with S=%. This
agreement provides at least a rough check on the
normalization of the specific-heat measurements.
For the entropy at the transition one finds

Su(Ty)/R=0.9£0.2,

a relatively low value, consistent with the predomi-
nantly one-dimensional character of Gd(OH);. We
shall discuss this in Sec, VII.

The most useful value of the thermodynamic func-
tions is the energy at T=0 K,

Uu0)/R=-3.22+0,15 K,

since this provides a measure of the energy of the
magnetically ordered ground state. We shall see
(Sec. VII) that this value is consistent with our ap-
proximate ground state and it shows that the true
ground state cannot be too different from our sim-

ple model.
D. Field Dependence of the Magnetic Specific Heat

In connection with the analysis of the high-fre-
quency susceptibility to obtain the magnetic specif-
ic heat (Sec. IVA2), it was shown that one could
generally expect Cy to be field dependent. For the
simplest analysis we may keep H small and cal-
culate the asymptotic value Cy(0, T), as we have
done above, but a measurement of the field depen-
dence provides additional and independent infor-
mation on the interactions. In Fig. 4 we show the
variation of Cy(H, T)T%/R as a function of H? in
fields up to 15 kOe at a temperature of 5.527 K,
and it can be seen that the change under these con-
ditions is quite large (~30%). According to Eq.
(18) we would expect the leading term in the field
dependence to be proportional to H?, and this is
verified by the results in Fig. 4. The variation
for H <5 kOe is seen to approach a straight line
and the asymptotic slope may be estimated to be
K,=-0.0050+0,0005 (K/kOe)®. We shall show
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later (Sec. VID 3) that this value is in good agree-
ment with the value calculated from the final set
of interaction parameters.

No attempt was made in the present experiments
to study the temperature dependence of K;, but in
principle this should provide an independent and
relatively accurate means of determining the pa-
rameters By, and By, which occur in the leading
terms for the 1/7T expansion of X, (see Sec. VID3).

E. Isothermal Susceptibility Measurements

It is convenient to discuss theilow-frequency
susceptibility measurements in three parts: (i)
the high-temperature results (14.7-20.0 K) for
Xr, from which the leading terms in Eq. (3) can be
extracted; (ii) the helium-temperature results for
both xr and X7, from which the leading terms in the
magnetic anisotropy expansion can be obtained;
and (iii) the powder susceptibility results near T,
which can be related to the nature of the ordered
state,

1. High-Temperature Results

The analysis of high-temperature susceptibility
measurements is notoriously difficult since it is
generally dominated by the leading Curie-law term
which gives no information about the interactions.
The usual procedure is to plot 1/xr as a function of
T to find 6 by extrapolation, but this can lead to
sizeable errors if higher-order terms are signifi-
cant. To make full use of the relatively high
accuracy of the present measurements we shall
therefore plot 1/x7T as a function of 1/7 and we
shall study the effect of the higher-order terms by
an iterative procedure.

In Fig. 5 we show by the series of filled points
the variation of l/x}T as measured, corrected only
for shape as explained in Sec., IIIB1. It can be
seen that the points fall on a fairly straight line
and we might be tempted to associate the slope of
this line with the leading term in Eq. (3), —#6,/x.
However, this slope can be affected significantly
by the inclusion of higher-order terms in the
series expansion |[Eq. (3)], and estimating B,, and
By, from the final set of interaction parameters
(Sec. VIB) we can calculate

(1/).(;'71): (I/X;T) - (Bav!/T2+ B3||/T3)/)\.,

which should be a much better approximation to
(1-65/T)/x. Using Byy=2.05=0.10 K? and By,
=-0.59+0. 10 K® from Table II we then find the

set of open circles in Fig, 5. It can be seen that
the points again fit a straight line and we may as-
sume that this is now close to the limiting high-
temperature asymptote since the effect of additional
higher-order terms (which can be roughly estimated
from lower-temperature data, see Sec. VID2) is
probably quite small, This is also confirmed by

(25)
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FIG. 4. Field dependence of
CyH, T)T?/R for GA(OH); at T
=5,527 K as calculated from Eq.
(18) from measurements of x ’(0)/

x‘(H). The dotted line has a slope

Ky==0,0047 + 0.0010 (K/kOe)?

as determined from theory [Eq.
(30)1, using the calculated expan-
sion coefficients in the suscepti-
bility given in Table II. The best
fit to the low-field data gives K;
=—0.0050 + 0.0005 (K/kOe)? as
shown in the solid line, in excel-
lent agreement with the calculated
value. The small discrepancies
between calculated and measured
values at the highest fields are
due to the limited expansions used
for both the field and interaction

7
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the intercept corresponding to 1/7=0, 7.82+0,08
emuK/mole, which is in excellent agreement with
the expected value 7.815+0.008 emuK/mole.
From the slope of the line we find 67 =0.08 +0.08
K, where the error limit has been estimated to
include the uncertainty due to the higher-order
terms as well as the experimental scatter. This
value may be compared with the result of a similar
analysis of the zero-field high-frequency measure-
ments which covered a larger temperature range
(4-70 K), but with somewhat larger experimental
scatter®: 67=-0,04+0.08 K. It may be seen that
the two values are consistent within their respec-

T(K)
I(‘)O S0 2'5 20 15

0.129

0.128} oo .
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FIG. 5. Parallel susceptibility of Gd(OH); measured
in the liquid-hydrogen range and corrected to that of an
infinite needle plotted as 1/x'+T vs 1/T (solid circles) and
as (I/S(L;'T) = (I/X‘:II-T) - (BZII/TZ +Ban/T3)/>\1; vs 1/T (open
circles), with By, and Bg, taken from Table II. This
“corrected” curve identifies the Curie—~Weiss theta from
the slope 6;=0.08+ 0.08 K, and the Curie constant from
the intercept at 1/7T=0: A=7.82=+ 0.08 emu K/mole.

200 terms, as explained in the text.

tive error limits, and we can combine them to give
a final weighted average

6,=0.02+0.10 K,
where we have increased the over-all error limits
to allow for the possibility of a hidden systematic

error in either the low- or high-frequency mea-
surements,
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FIG. 6. Low-frequency susceptibility of Gd(OH); for
an infinitely long needle in the liquid-helium temperature
range for measurements parallel (0) and perpendicular
(X) to the ¢ axis. Curves a and b are calculated from Eq.
(3) with 6, B,, and B as found from Eqs. (6a)—(6¢) and
(7a)—(7c) (see Table II), using the final exchange constants
in Table III. For the dashed lines one higher-order term
B, has been included with By,=1.1 K* for curve a’, and
By =2.1K! for curve b’.
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2. Anisotropy at Helium Temperatures

Measurements of the susceptibility parallel and
perpendicular to the ¢ axis were made on sample
I (see Table I) from 1.4 to 4.2 K. The results
corrected to correspond to an infinite needle ac-
cording to Eq. (5b) are shown in Fig, 6. It can be
seen that the susceptibility is quite anisotropic and
this provides an additional variable which must be
fitted by the final analysis.

The anisotropy can be expressed most convenient-
ly in terms of the function A(1/xz)=(1/x7) - (1/x%),
and using Eq. (3) we would expect this to follow a
law of the form

A(1/X7)=1/X(- A6+ AB, /T + ABy /T?+- .. ), (26)

where A0=6; - 6;, AB,=B,, — B,,, and AB;=B,, -
B;,. Experimental values of A(1/xr) can be cal-
culated from the data shown in Fig. 6, and plot-
ting the results as a function of 1/7T we obtain Fig.
7. At first sight, it looks as if this has the form
predicted by Eq. (26) with only the two first co-
efficients A6 and AB, contributing. However, fit-
ting these to the data over the whole temperature
region would in fact lead to sizeable errors, as we
shall later see that higher-order terms are quite
significant at the lower temperatures (Sec. VID1).
To eliminate the effects of these higher-order
terms, we therefore used an iterative procedure,

T(K)

0.5

1 L
0.25 0.2 0.4 0.6 0.8
17 T(K™)

FIG. 7. Quantity A(l/xp)=1/x5~1/xpvs1/Tfor GA(OH)s
corresponding to an infinitely long needle parallel to the
c axis. The points have been determined graphically
from the measurements shown in Fig. 6. The solid line
is the least-squares asymptotic high-temperature fit to
the data which gives A=—2.29+ 0.10 K and AB;=1.15
+0.15 K% The dotted line is calculated from Eq. (26)
using the values for the coefficients in Table II, as cal-
culated from the exchange constants in Table III.
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successively deleting low-temperature points, re-
fitting A6 and AB, to the remaining data, and ex-
trapolating the results to 1/7=0, This procedure
finally gives A6=-2,29+0,10 K and AB,=1,15
+0.15 K%, We shall compare these values with the
corresponding values calculated on the basis of the
final analysis in Sec. VID2,

3. Powder Susceptibility near Ty,

The results of the powder susceptibility measure-
ments are shown in Fig. 8. The most prominent
feature is the inflexion which occurs near 0.94 K,
the temperature at which the specific heat has its
sharp peak. Fisher has shown® on quite general
grounds that such behavior is characteristic of the
onset of antiferromagnetic long-range order, and
he has proposed the explicit relation

Cu
R

where A(T) is a slowly varying function of 7.

In the original derivation, xr was defined as the
susceptibility parallel to the direction of the spin
alignment and only interactions between nearest
neighbors on a simple two sublattice system were
considered. Under these conditions A(7') can be
related to the total internal energy Uy(0) and the
asymptotic high-temperature susceptibility
X2 T )1

A(T)= = ATYy(0)/R(X7T)1 s (28)

where f(T) is now a slowly varying function of T of
order unity. In more complex systems with longer-
range interactions, f(7T) will generally differ from
one, and we can similarly include contributions
from other components of xr.

Differentiating the results®®~™ in Fig. 8 and com-
paring 8(y,T)/8T with the measured specific heat
(Fig. 2), we find a function A(T) which varies slow-
ly with T, as expected, from a value of about 0, 61
(emu/mole)™ at 0.7 K to about 0,72 (emu/mole)™
at 0.9 K. Substituting the previously determined
values of Uy(0)/R (Sec. VC) and (x77T)r-~ =X (Sec.
IIIB1) we can thus find the corresponding f(T),
and in particular we find f(T,)=1,8+0.2. This
value appears to be quite reasonable and there
would seem to be no doubt that GAd(OH), is an anti-
ferromagnet with predominantly but not exclusively
nearest-neighbor interactions.

= AT) 5 (e T), (27)

F. High-Field Magnetization Measurements

Magnetization measurements were made parallel
and perpendicular to the ¢ axis, and the results for
two temperatures (the highest and lowest measured)
are shown in Figs. 9(a) and 9(b). As explained
previously (Sec. IIIB 2), it is difficult to extract
useful parameters from these measurements and
the main purpose was therefore to provide a check
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FIG. 8. Powder susceptibility of
Gd(OH); from 0.6 to 1.4 K. The
curve clearly exhibits an inflection
. point near 0.94 K, the temperature
of the specific-heat anomaly. These
susceptibility data are later used to
identify the anomaly as due to a
paramagnetic to antiferromagnetic
< phase transition.
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on some of the other results.

In particular, it was possible to compare the
initial slopes with the results of the low-field sus-
ceptibility measurements, and in all cases good

" agreement was obtained. Another, more useful
check provided by these results was for the approxi-
mate theoretical expression [Eq. (11)], which was
used in the evaluation of the high-frequency specif--
ic-heat measurements. This expression with the
final set of parameters taken from Table II is
shown as the solid line in Figs. 9(a) and 9(b), and
it can be seen that the agreement is very good for
fields below about 7 kOe for T=4.212 K. This is
well within the range of fields used in the specific-
heat measurements at these temperatures, and we
can expect even better agreement at higher tem-
peratures. The discrepancies at the highest fields
are not at all surprising, since under these condi-
tions many additional terms in the series expansion
will become significant. Because of the large spin
and relatively complicated interactions, it would be
quite hard to calculate a much more exact high-
field approximation and it would probably not be par-
ticularly useful inthe present range of temperatures.

Unfortunately, no magnetization measurements
could be made below the ordering temperature
where interesting field-induced effects would be
expected.

One purely empirical feature which may be noted
in the present results, is the inflexion in both the
low-temperature-magnetization isotherms. Such
inflexions have been observed before®® and they are
simply a consequence of a competition of different
interactions and the effect of the magnetic field.

In the present case the effect is quite marked be-
cause a significant amount of short-range order
develops |See Sec. VIIB] before the final onset of
long-range order.

VI. DETERMINATION OF THE INTERACTION CONSTANTS
A. Fitting Procedure

As explained in Sec. IIT A, we shall assume that
there are three unknown interaction constants
(1, Js, and J3) and we shall determine these by
fitting the experimental results to the theoretical
expressions given in Eqs. (6a), (15a), and (15b).
However, this cannot be donein a straightforward
way, since the analysis of the experiments them-
selves requires knowledge of some of the higher-
order expansion coefficients, and these must first
be estimated either empirically or theoretically.
In both cases this involves an iterative procedure
which must be applied with care if accuracy is de-
sired in the final analysis. Such an iterative pro-
cedure is often omitted on the grounds that higher-
order terms are probably small, but this is cer-
tainly not always the case.

The prime input data for our final fit will be 6y,
C,, and C; and approximate values of these can be
obtained by assuming that the higher-order terms
By, By, C,, Cs, etc., are in fact negligible.
Solving Eqgs. (6a), (15a), and (15b) one can then
obtain an approximate set of values for J,, J,, and
J3, and using Egs. (6b) and (6c) one can thus obtain
estimates for By, and B;,. Using these, one can
then obtain an improved estimate for 6y, as dis-
cussed in Sec. VE, and substituting this together
with the estimates of B,, and By, into Eq. (18) one
can thus obtain a more accurate determination of
Cy. This then provides the starting point for the
next step in the fitting procedure.

The next step involves estimating the effect of the
previously neglected coefficients C4, Cs, etc,,
which in contrast to By, and By, cannot be calculated
from the preliminary J’s, since the lattice sums
involved in these particular coefficients are pro-
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FIG. 9. Measurements of the parallel and perpendicu-
lar magnetization of Gd(OH); vs external field for (a) T
=4,212 K and (b) for T=1.10 K. The lines indicate the
calculated magnetization using the approximate low-field
expression in Eq. (11) with the expansion coefficients
found from the final values of the exchange interactions
(Table II), The agreement is good in (a) except for the
highest fields, confirming the adequacy of the form for
M and the final exchange constants. The discrepancies
at the highest fields in (a) and (b) are due to failure to
include more than one saturation term in M and also in-
cluding the interactions only to first order in this term.

hibitively complex. To estimate the effect of these
terms we have therefore adopted an empirical ap-
proach in which we have fitted the entire set of Cy
data (calorimetric and high-frequency) to expres-
sions of the form of Eq. (13), including successive-
ly two, three, four, and five terms. It was found
that the addition of terms beyond C, had only a
minor effect on the fitted values of C, and C3, and
it was therefore possible to determine these coef-
ficients with some certainty. Omission of C,;, on
the other hand, led to significant changes in C, and
C; (about 2 and 20%, respectively), emphasizing the
care which must be taken in determining the asymp-
totic terms.

The whole fitting procedure described above was
repeated until a consistent gset of expansion coef-
ficients was obtained, and in practice this was
achieved after about 20 iterations. The entire
iterative procedure is illustrated schematically in
Fig. 10 and it was carried out in practice using the
Yale IBM 7040-7094 computer.
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B. Results of Analysis

The final set of fitted values is shown in Table
II which includes estimated error limits to allow
for uncertainties in the experiments and the lat-
tice sums, as well as the effect of truncating the
susceptibility and specific-heat series.

It can be seen that the three principal coefficients
6y, Cs, and C; are determined quite accurately, and
we might therefore expect a correspondingly pre-
cise determination of the corresponding J’s. This
did in fact turn out to be the case, ultimately, but
not before an interesting ambiguity was removed in
the analysis.

This arose from the fact that J, and J3 in Gd(OH),
happen to be much smaller than J;, and with even
a small uncertainty in the series-expansion coef-
ficients, more than one solution for J, and J; is
then possible. This might have been missed in a
straightforward least-squares-minimization pro-
cedure, since each of the solutions had a well-de-
fined local minimum, which would have appeared
to be quite acceptable in the absence of other in-
formation.

However, closer study showed that there were in
fact two (and probably no more than two) distinct
minima; one corresponding to the solution J,= -
0.017+0.005 K, J3=0.004+0.005K, and the other
to the solution J,=0.010+0.005 K, J3=-0.020
+0.005 K, with J; essentially the same for both

TABLE II. Fitted susceptibility and specific-heat
series-expansion coefficients.

Parameter Value Method of determination
o) 0.02+0.10 K b
By, 2.05+0,10 K2 ¢
By, —0.59+0.10 K3 d
(67)? -2,26+0.10 K e
By, 3.22+0.10 K? £
By —-0.60+0,10 K? g
c, 4,09 +0,05 K? h
Cq -4.2+0.7K3 h
C, 42 K! i
C; -1+3K° j
Cq -2+ 6 K" k

2For an infinite needle parallel to the ¢ axis.

bAverage of two analysis of 1/xpT, using iteratively
estimated values of By, and By, (Sec. VE1).

®Calculated from Eq. (6b) using iteratively fitted J’s.

dcalculated from Eq. (6c).

®Calculated from Eq. (7a).

fCalculated from Eq. (7b).

8Calculated from Eq. (7c).

bpitted to C measurements [Eq. (13)], using succes-
sively two, three, four, and five terms.

iSame as h using three, four, and five terms.

JSame as h using four and five terms.

kSame as h using all five terms.
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and given by J;=0,180+0.005 K. The rms devia-
tion corresponding to the range of experimental un-
certainties was about the same for both solutions
and to distinguish between them it was therefore
necessary to invoke additional physical information.

This was provided by the EPR experiments on
pairs of Gd* ions in Y(OH); and Eu(OH);.'® These
gave J, values of —0,0086+0,0001 K and - 0.0210
+0,0001 X, respectively, and interpolating of pure
Gd(OH), we can conclude that the first of the above
two solutions must be correct. This also seems
reasonable on physical grounds, since we would
expect |J,| to be significantly larger than |J;l in
view of the considerable difference in the respec-
tive lattice separations (see Fig. 1). A further
piece of evidence favoring the first solution will be-
come apparent in Sec. VID.

Our final solution for the J’s is summarized in
Table III, which also includes the corresponding
values of the dipolar constants a,=g*u%/73. It can
be seen that the uncertainty in J3 includes the val-
ue J3=0, as we had suspected at the outset, and it
helps to confirm our supposition that the exchange
coupling between more distant neighbors will in-
deed be very small. For the sake of consistency
we shall use the small finite J; given by the least-
squares fit for all further discussion, but there
would be no significant difference if we chose to
use instead the value zero.”

Much more important is the contribution of the
magnetic dipole-dipole coupling which turns out to
be only somewhat smaller than the exchange cou-
pling for the near neighbors, and being proportional
to 1/7° remains quite appreciable for many of the
more distant neighbors. We shall see the impor-
tance of these longer-range terms in Sec. VII, inwhich
we shall consider the problem of the ordered state.

C. Graphical Analysis

If we assume that J; is in fact negligibly small,
we can replace the final computer fit of J; and J,

CALORIMETRIC
SPECIFIC HEAT
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TABLE III. Exchange and dipolar interaction constants
for Gd(OH);.
Neighbor®  Distance®  Exchange constant® Dipolar constant®®
n 7B Jo(K) an
1 3.61 0.180 + 0,005 0.0525 + 0.0004
2 4,06 ~0.017 + 0,005 0.0369 + 0.0003
3 6.30 0.004 + 0,005 0.00989 + 0,00005
=4 =6.52 ~0¢ (2.472+ 0.002) /75

®Relative to any arbitrary spintaken as origin (see Fig.
1).
bAs defined in Eq. (1). The crystal field and higher-
order interaction terms are estimated to be completely
negligible except for b} which makes a small contribution
(®=—0.02 = 0.01 K).

cCalculated from g2pd/73 using lattice parameters given
in Sec. ITA and g=1.992+ 0.001 (Sec. IIIA).

dAssumed to be negligible.

°y, in K when 7, is units of A.

to 6y, C,, and C, by a graphical method which has
the advantage of giving a ready insight into the
importance of the different experimental uncertain-
ties, and it also provides a convenient plot for com-
paring other experimental results with the final fit.
This is shown in Fig. 11 in which we have plotted
the expressions for 6, C,, and C; given in Egs.
(6a), (15a), and (15b) as a function of J; and J;, put-
ting J,=0.004 K and using the “experimental” val-
ues given in Table II. Corresponding to the ex-
perimental uncertainties, each term sweeps out a
band of values and the final solution must lie with-
in the area covered simultaneously by all the bands.
It can be seen that the final computer fit, shown in

‘the figure by P, satisfied this condition, as it must.

If J3 had not been so small, we could have drawn
a series of such figures for different values of J3
until the proper simultaneous fit is obtained. The
procedure of taking successive sections with one of
the parameters held fixed can be very useful when,
as in the present case, one of the parameters (here
dJ;) is well determined, but there is some uncertain-
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S
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FIG. 10. Flow chart for deter-
mination of the interaction con-
stants as explained in text.
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I

FIG. 11. Graphical solution for
the exchange constants J; and J,
from the high-temperature series-

expansion coefficients assuming J3
=0.004 K. (The curves would not
be visibly different if we would set
J3=0 or indeed anywhere within the
range 0.004 = 0,005 K.) The bands
in the figure include all of the solu-
tion within the error limits of the
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expansion coefficients given in Table
II as determined from Eq. (15a) for
C,=4.09+ 0,05 K? (band a); Eq.
(15b) for C3=—4.2+ 0.7 K° (band b);
Eq. (6a) for 67=0.02+ 0,10 K (band
c); and Eq. (29) for By, — By, =1.15
+0,15 K? (band d). The region of
simultaneous overlap corresponds

ty about the two remaining parameters. Thus a
similar plot of J, vs J3 for several fixed values J;
close to the value indicated by the different com-
puter solutions may be helpful in resolving questions
about the possible number of solutions allowed with-
in the experimental uncertainties.

Of course this method presupposes that we al-
ready have “experimental” values for the expan-
sion coefficients 8, C,, etc., and as we have seen
this generally involves an iterative procedure which
itself requires knowledge of the interaction param-
eters. However, it may often be possible to obtain
reasonable estimates of the expansion coefficients
from a purely empirical analysis of the data, and
in such cases the present graphical method may
then provide a simple and convenient way of solv-
ing for the individual interaction parameters.

D. Test of Fitted-Interaction Parameters

If the set of interaction parameters shown in
Table III is indeed correct and complete, it should
be useful for predicting observable properties
which were not used in the fitting procedure. Such
comparisons are useful for checking the over-all
consistency of the analysis and they also provide
confidence in the accuracy of some of the experi-
mental methods.

1. Susceptibility at Helium Temperatures

Using the parameters in Table II we can cal-
culate the variation of xr and x7 at temperatures
well below those over which the fit to 8, was made,
and in Fig, 6 we compare the results with the low-
frequency measurements made at helium tempera-
tures. In view of the fact that there are no adjust-
able constants in this comparison, the fit may be
regarded as very satisfactory.

The small discrepancy at the lowest temperatures

to the computer solution given in
Table III, as indicated by point P.

is readily explained by the omission of higher-or-
der terms in the expansion and it can be removed
by empirically adding one extra term for each
direction: By,=1.1+0.5 K* and B, =2.1+1.0 K*,
Such values are quite reasonable, though one should
probably also consider other higher-order terms.

2. Anisotropy at Helium Temperatures

A more sensitive test is provided by the anisot-
ropy of the susceptibility which may be charac-
terized by the function A(1/xr)=1/xr-1/Xr. As
shown in Sec. VE 2 this should follow a law of the
form given in Eq. (26) with A8 independent of the
exchange interactions and determined only by the
anisotropic terms in xr. Comparing the experi-
mental value (A6)e,,:=~2.29+0.10 K (Sec. VE 2)
with the value (A8).y.= —2.28+0. 14 K calculated
on the basis of magnetic dipole and crystal field
interactions, we can see that any neglected aniso-
tropic interactions must in fact be very small.

We can also compare the measured and calculated
values of next-order term in the expansion of A(1/
Xr), AB,. On the basis of Eqs. (6b) and (7b) this
should be given by

AB,=7.04J, - 3.02J, - 1.99J5 - 0.13, (29)

and equating this to the experimental value (ABj,)gyp
=1.15+0.15 K® (Sec. VE2), we can plot another
“band” in the exchange-parameter plot. If we as-
sume that J; ~0,004 K, we obtain the two lines
shown in Fig. 11, and it can be seen that they are
indeed consistent with the previously obtained re-
sults. A similar comparison assuming the second
solution with J, ~0,010 K and J3 ~ - 0.020 K shows
no such consistency, and this provides additional
evidence for the first solution,
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3. Field Dependence of Cy,

As discussed in Sec. VD, no systematic study
was undertaken of the field dependence of Cy, but
we do have quite an accurate value for K;, the co-
efficient of the leading term in H* at one tempera-
ture T'=5.527 K. This may be compared with the
value calculated from the expression given by the
series expansion [Eqs. (6a)-(6c)]

- ()\/R)(Bgu+3B3"/T+- . .)
(T_0”+BZM/T+33"/T2+--.)2’

K1(T)'—' (30)
and substituting from Table II we obtain [Ky(T")]ca1e
=-0.0047+0.0008 (K/kOe)?, in excellent agree-
ment with the experimental value [K;(7")]oxpt
=-0.0050+0,0005 (K/kOe).

In more complex systems, a detailed study of the
field dependence of Cy, and Eq. (18) in particular,
could well be used to provide an important indepen-
dent piece of information for determining the in-
teraction parameters. In the present case it pro-
vides a convenient and gratifyingly accurate con-
firmation of the analysis previously used.

4. Comparison with EPR Pair Measurements

A series of very detailed EPR experiments has
recently been reported'’® for Gd** pairs in Y(OH),
and Eu(OH);. These experiments show that the
dominant anisotropic terms are indeed as given in
Eq. (1) and in particular they show that anisotropic
bilinear exchange must be very small, At the same
time, they do indicate that there are some small
additional biquadratic interactions of the form
Q'™ (1,2)0%? (1)0 2 (2), with@’s of the order of 0. 001
K, where the 0%’ (i) are normalized spherical-ten-
sor operators as defined by Smith and Thornley
and others.”™ "> However, an extension of the ex-
pansion formulas to include terms of this kind
shows that the contribution to both xr and Cj will
be entirely negligible and it justifies our neglect
of such terms in ',

The EPR experiments also give a measure of the
isotropic interactions, and in earlier analyses
these were simply interpreted in terms of the usual
bilinear exchange constants J. However, the ob-
servation of anisotropic biquadratic interactions in
the present case suggests that a biquadratic isotrop-
ic coupling of the form™" @ T (- 1)"0%%(1)0') 2)
may perhaps also be present, and this is difficult
to detect in the EPR experiments.!® In fact, a de-
tailed study of nearest-neighbor interactions has
shown that the EPR experiments are most sensi-
tive to a linear combination of J; and @, and in the
present case this combination happens to be J{
=J; —41Q,. Values of J; were determined for
nearest-neighbor pairs in both Y(OH); and Eu(OH);,
and interpolating to the Gd(OH); lattice spacings
we can estimate™
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J1=0.202+0.010 K.

Similar analyses of the next-nearest-neighbor
interactions in Y(OH); and Eu(OH); did not indicate
any higher-order interactions®® (1Q,! <10 K), and
again interpolating to the Gd(OH), lattice spacings
we can estimate’®

Jp=~0.017%0.004 K.

These values may be compared with the J’s given
in Table III and we may note a very satisfactory
similarity. In particular we can now verify that
the isotropic biquadratic term in.J; must in fact be
quite small and we can estimate

Q=- (5:6)x10™ K.

We may thus conclude that the biquadratic coupling
in Gd(OH); is indeed very small, as we might have
guessed. However, inthe absence of any quantita-
tively reliable theory for the interactions such a
conclusion cannot be regarded as trivial, and it
provides an important piece of information on the
adequacy of the Hamiltonian given in Eq. (1).

E. Characteristics of the Results

The results for Gd(OH); are in many respects
very similar to those found in other systems of in-
teracting S-state ions. Two factors make Gd(OH)g
relatively simple to analyze: the dominance of the
isotropic nearest-neighbor exchange, and the un-
usually small crystal field. On the other hand, the
magnetic dipole interactions are relatively more
important, and in Sec. VII we shall see how they
may actually dominate the nature of the ordered
state. Gd(OH), is thus both simpler and more com-
plex than other similar systems and it certainly
warrants a detailed study of its cooperative prop-
erties. The results obtained up to this point have
established the form and magnitude of all the signif-
icant interactions with some accuracy and we have
therefore reached the point at which the more in-
teresting, and in this case, much more difficult,
cooperative problem can be formulated unambigu-
ously. In Sec. VII we shall consider this problem
briefly, but we shall quickly see that the solution
is by no means trivial, and even though the com-
plete Hamiltonian is known with unusual certainty
a considerable amount of additional work is still
required.

VII. PROBLEM OF SPIN ORDERING IN Gd(OH);
A. Approximations to the Ground State

Given a completely determined spin Hamiltonian
it is sometimes possible to write down an exact
ordered ground state,79 or at least an approximate
ground state subject only to a small uncertainty due
to zero-point motion. . The simplest cases are
those in which one particular interaction is domi-
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nant and responsible for producing an ordered
state which can be visualized in terms of a self-
consistent molecular-field picture.

Problems arise when the physically largest in-
teractionis not sufficient by itself to produce long-
range order. In such cases, competition between
several of the weaker interactions may then result
in relatively complex situations, and these are
generally not easy to predict from knowledge of
the Hamiltonian alone. Well-known examples of
this type are the predominantly one- and two-dimen-
sional antiferromagnets®~® and the isotropic fcc
antiferromagnets. "% It would appear that Gd(OH),
is another complex system of this kind.

From Table III we can see that by far the largest
interactions in this system are those between near-
est neighbors, but since these couple only spins
within one-dimensional linear chains, they cannot
by themselves produce long-range order. Of the
interactions between the more distant neighbors
several are comparable in magnitude, and we must
therefore expect a subtle competition to determine
the actual state of long-range order. As we shall
see, this is further complicated by the high symmetry
of the hydroxide lattice,

To find an approximate ground state we shall ne-
glect the complication of zero-point fluctuation ef-
fects and we shall use simple molecular-field the-
ory to estimate the energies of a few reasonable
types of spin arrangements. We would hope that
this might produce a good starting point for more
accurate energy calculations, which will ultimately
have to refine both the details of the actual sublat-
tice structure and also improve on the approxima-
tions inherent in the molecular-field treatment.

1. Collinear Structures

From the sign of J; and the nature of the magnetic
dipole interaction, we can immediately guess that
the ground state can be reasonably approximated
by some arrangement or modification of chains of
antiparallel spins perpendicular to the ¢ axis, as
shown in Fig. 12. This arrangement minimizes
the large interactions between nearest neighbors,
and summing over all the spins in one chain it cor-
responds to a stable mean-field energy, * E,,(¢,)
=-2.79+£0.06 K, independent of the angle ¢, speci-
fying the orientation of the spins in the basal plane.
In this approximation there is no first-order cou-
pling between neighboring chains, since all the in-
teractions average out to zero by symmetry, as
may be seen in Fig. 13, and to obtain long-range
order we have to consider the contribution of next-
nearest-neighbor chains.

These are coupled only through relatively weak
interactions, and since these are primarily due to
magnetic dipole coupling they will be quite aniso-
tropic. To obtain an estimate of this coupling, the
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FIG. 12. Simple chain picture of Gd(OH); as a first

guess to the ordered state. The dominant nearest-neigh-
bor antiferromagnetic exchange interaction combined with
the dipolar interaction minimizes the energy with spins
ay, antiparallel and perpendicular to the ¢ axis. The total
interaction energy between one spin and all remaining
spins in the chain is independent on the phase angle ¢,.

energy of one particular configuration of two next-
nearest-neighbor chains was calculated by evaluat-
ing the corresponding lattice sums. The configu-
ration chosen corresponded to ¢,=¢.=¢, as shown
in Fig. 14. The result was found to be E,,+E. (¢, ¢)
with E,(¢, ¢)=[0.03+0.02 - (0.04+0,02) cos’p] K,
where the angle ¢ is measured relative to the in-
terchain direction. We may note that E,.(¢, ¢) is
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very much smaller than the intrachain energy E,,,
but as we shall see, it may still be quite signifi-
cant for the establishment of three-dimensional
long-range order, %%

Using this result we can now calculate the total
energies of various types of simple spin arrange-
ments consistent with the symmetry of the whole
lattice. Two of these are illustrated in Figs., 15

FIG. 13. Two nearest-neighbor chains aligned anti-
ferromagnetically, as in Fig, 12. To first order there is
no net interaction between two such chains for any orien-
tation of the phase angles ¢, and ¢,, since interactions
cancel identically by symmetry. (Consider, for example,
the interaction of ay with pairs of symmetrically placed
spins such as by and b_;.)
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FIG. 14. Two next-neavest-neighbor chains aligned
antiferromagnetically as in Fig. 12. The energy of in-
teraction of two such chains depends on the phase angles
¢q and ¢y Ego(dg, o), and it will generally be quite ani-
sotropic. To obtain an estimate of the typical next-
nearest-neighbor chain interaction energies we consider
the simple case ¢,=¢,=¢ shown here. For this we find
Egol¢, ¢)=1(0.03+0.02) — (0.04 +0.02) cos’¢] K, as given
in the text.

and 16,

In the first one, which we shall denote as state I,
we consider all spins in a given basal plane paral-
lel and making an angle ¢ with one of the ¢ axes.
By symmetry the energy of this state must in fact
be independent of ¢, and summing over all chains
we can estimate E;=-2.70+0.19 K. This is
higher than E,,, the value for a single chain, and
we are led to conclude that this particular config-
uration will probably not stabilize long-range
order.” State II may be characterized by two pa-
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FIG. 15. Arrangement of spins
in ordered state I, showing the spins
(open circles with arrows) having a
net interaction with one another.
The remaining spins (shown as solid
circles without arrows) form a
second identical pair of antiferro-
magnetic sublattices which are un-
coupled from the first pair to first
order. In both pairs of sublattices,
all spins in a given basal plane are
parallel, and the energy is inde-

Co Co pendent of the phase angle ¢. With
Kd— ________ _R/ the interactions appropriate to
7\ /7 \ Gd(OH); this state is found to be un-
/ 0\ / 0\ stable relative to the single-chain
/ \ / \
/ \ / \ energy.
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rallel and four antiparallel next-nearest-neighbor
chains, and this has an angular dependence propor-
tional to cos2¢, The lowest energy corresponds

to ¢ =0, as shown in Fig. 16, and has the value
E;;(0)=-2.89+0,.09 K. This is only slightly lower
than E;, but it is lower than E,, and state II is
therefore stable.

It is of course quite possible that some more com-
plex arrangement of antiferromagnetically aligned
linear chains might produce a somewhat lower en-
ergy, but it seems unlikely that this would result
in any very significant reduction in the total ener-
gy, and in trying to improve our approach to the
true ground state we shall therefore look for other
kinds of modifications of the basic pattern which

we have established so far.
2. Simple Spiral States

Staying for the present within the mean-field ap-
proximation, we note that the only way of lowering
the total energy through the previously ineffective
next-nearest-neighbor interaction, is to remove
the strict cancellation imposed by the completely
symmetrical arrangement of alternately antiparal-
lel spins, There are many ways of relaxing this
constraint, but perhaps the simplest is to allow
the angle between successive spins along a chain
to be somewhat different from 7 (say 7-6), still
keeping the spins in a plane perpendicular to the ¢
axis. Such a flat helix will now have a finite inter-
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action with a similar helix at the position of the

neavest-neighbor chains, the energy depending on
the spiral angle 6 the relative phase angle between
the two spirals (¢4) (see Fig. 17), and the strength

of the interactions J,, a,, etc. If we make the
reasonable first approximation that the second-

nearest neighbors are dominant in determining the

relative phase angle, we find ¢4, = 37, and this i

/ /N e \ ¢
Co /7 4o \ (0]
/
c(—-—»—————,————-H ———————— N
\ / / \ \ /
\ ‘____7___.__\,__.__. /
\ / \ /
\ / \ /
\ / \ /
\ / \ /
\ / \ /
\ \ /
\ J N\ /

confirmed by minimizing the energy of all the in-

teractions in two adjacent chains.
If we now assume the same relative phase angle
between all nearest-neighbor chains, we obtain

state III shown in Fig. 18, and carrying out the cor-
responding lattice sums®® for different values of

S

the angle 6, we can estimate the minimum energy
Em(6=13°)=-2,79+0.19 K. It would appear that

FIG. 16. Arrangement of spins
in ordered state II. This is a modi-
fication of the state shown in Fig.
15, obtained by reversing the spins
in four of the next-nearest-neighbor
chains, consistent with the sym-
metry of the whole crystal. The
energy of this state depends on the
phase angle ¢ (see Fig. 12) and it
has its minimum value for the case
¢ =0 shown here: Ep(¢=0)=-2.89
+ 0,09 K. This is stable relative to
the single-chain energy.
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this energy is somewhat lower than that of state I,
and not as low as that of state III, but the error
limits overlap and it is really not possible to decide
unambiguously which is closest to the actual ground
state. The fact that all three states are so close to
the mean-field energy of the isolated antiferromag-
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FIG. 17. Simple spiral state for nearest-neighbor
chains. The spins in a plane are perpendicular to the ¢
axis and the angle between successive spins along a chain
is 7-6. The interaction energy between the chains is a
function of the spiral angle ¢ and the phase angle ¢, be-
tween the chains as discussed in the text. The minimum
energy is obtained with ¢, =3.
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netic chains suggests that we are probably quite
close in energy to the true ground state but not
necessarily to the actual spin configuration, which
could well be some even more complex modification
of the basic patterns which we have considered
here,

Evidence that the energy estimate is approximate-
ly correct is provided by the experimental value of
Uy(0)/R=-3.22£0.15 K (Sec. VC), which is al-
most within the calculated range of values for Ey;
=-2.89+0.09 K. This does not rule out more com-
plex modifications of the ordered state which might
lower the energy further, but we can be fairly cer-
tain that the energy associated with any such
changes will be small compared with the terms
which we have already found.

Possible modifications of the structure include
spirals with spins no longer perpendicular to the ¢
axis (e.g., restricted to a lie on a cone), or struc-
tures with more than one periodicity. Such com-
plications have previously been observed in rare-
earth metals, ® but in those cases detailed analyses
were hampered by lack of precise knowledge of the
complete interaction Hamiltonians., We would hope
that the rather complete information which we have

‘been able to obtain on the interactions in Gd(OH),

would make this an unusually attractive case for
further detailed study, even though it is clearly
complex, involving competing effects of weak long-
range interactions.

3. Correlation Effects

One complication which will have to be considered
in any more detailed study is the possibility that
correlation effects, which have been neglected in
the present mean-field calculations, may make
contributions to the energy which are comparable
to the small energy gains resulting from more com-
plex spin configurations. Since both the exchange
and dipolar interactions have off-diagonal terms
which are quite large, we must certainly expect a
significant zero-point contribution to the ground-
state energy, and this contribution will not cancel
out even in the highly symmetric states. Unfor-
tunately, it is not trivial to calculate the size of
these effects, but this may be quite comparable to
the weak long-range dipolar contributions and in a
more detailed analysis they should certainly be
considered.

4. Further Experiments (?)

For the present we can conclude that Gd(OH); is
almost certainly an antiferromagnet with spins
approximately perpendicular to the ¢ axis, even
though there is little direct experimental evidence
for this. Further study is clearly called for, and
a number of possible experiments suggest them-
selves. These include neutron diffraction, NMR
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FIG. 18. Simple spiral state
in Fig. 17 (with ¢z =%n) ex-
tended to all nearest-neighbor
chains (state Ill), The total in-
teraction energy is a function of
¢ and the minimum energy is
obtained for §=13°; Ej;(6=13°)
==2.79+0.19 K. This energy
is not as low as that of state II
(Fig. 16), but the uncertainty
limits overlap and either could
be a stable ground state. In
reality the true ground state is
probably more complex than
either II or III, but its energy
will probably not be very differ-
ent.

on the protons of the OH™ groups, and a detailed fairly detailed analysis will be required.
single-crystal study of M and C, as a function of Perhaps a more promising first step would be an
H and T in the ordered state. However, the rel- improvement of the present theory, using the fact
atively low-ordering temperature, high neutron- that the complete Hamiltonian has been determined
absorption cross section of natural Gd, and the with unusual certainty. In any case, the problem
small size of the available crystals will make any of the ordered ground state of Gd(OH); stands as a
of these quite difficult. Moreover, if the ordered clearly defined challenge to both theory and experi-

state is really as complex as it would appear, a ment which may perhaps lead to further insight in-
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to more general questions relating to competing
interactions.

B. Region of the Phase Transition

In the absence of a clear picture of the ordered
ground state, it is obviously impossible to give a
detailed discussion of the onset of order, but we
may note a number of qualitative features which
can be understood in the light of the previous anal-
ysis.

Thus, the correspondence between C, and
3(x rT)/9T is now seen to be consistent with the
behavior of a predominantly but not completely
nearest-neighbor antiferromagnet. Similarly, the
large amount of short-range order above Ty, as
evidenced by the broad bump in the specific heat
and the corresponding contribution to the entropy,
is explained by the relative importance of the in-
trachain interactions, and the surprisingly low-
ordering temperature is seen to be a result of the
relatively weak interchain coupling,

It is of interest to compare the observed order-
ing temperature Ty=0.94 K with the value cal-
culated on the basis of the molecular-field approxi-
mation for the “best” of the spin configurations
(state II), considered above. In mean-field theory
the relation between the energy per spin and Ty is
given by'®

(T i)t = = (E)me2(S+1)/35], (31)
and substituting for S and E; we find
(TN)mf,II: 2,47 K.

It is not surprising that this is considerably higher
than the observed Ty and in fact the discrepancy
provides additional confirmation of the pseudo-one-
dimensional character of Gd(OH),.

We are now also in a position to understand the
striking difference between GACl; and Gd(OH)s.
This can be seen to result from {wo changes in the
corresponding exchange interactions: an increase
in strength of the nearest-neighbor coupling and a
decvease in the next-nearest-neighbor coupling.
Such opposing changes appear puzzling at first,
since GdCl; and Gd(OH); are isostructural with
both the ¢ and a lattice constants about 14% smaller
in the hydroxide. However, a recent analysis of
a number of different Gd*'-Gd* exchange constants
has shown that the interactions may themselves
result from several competing contributions, so
that the J’s need not scale uniformly with homoge-
neous changes in the lattice distances. In GdCl; the
ferromagnetic next-nearest-neighbor exchange just
happens to dominate, while in Gd(OH), the nearest-
neighbor interactions have to combine with several
weaker interactions to produce a complex antifer-
romagnetic state.

|3

VIII. SUMMARY AND CONCLUSIONS

The principal results of the present study are the
thermodynamic series expansion coefficients given
in Table II and the corresponding microscopic in-
teraction parameters given in Table III. From the
consistency of several empirical cross checks we
have been able to conclude that all other interactions
must be quite small, and we have thus been able
to determine the complete interaction Hamiltonian
with unusual precision.

The largest single interaction is the nearest-
neighbor isotropic exchange J,=0.180+0.005 K,
which tends to align nearest neighbors antiferro-
magnetically. The next—nearest-neighbor ex-
change is ferromagnetic but much smaller, J,
=-0,017+0,005 K and the third-nearest-neigh-
bor exchange is zero within the limits of error
(J3=0.004+0, 005 K), consistent with the much
larger separation in the lattice.

There is no theory at present to account for the
magnitudes of the observed J’s, but the three fitted
parameters explain, within experimental error,
an extensive series of magnetic and thermal mea-
surements and they are consistent with indepen-
dent EPR experiments on Gd*'-Gd® pairs in dia-
magnetic host lattices. "%

In addition to the isotropic exchange interaction,
there is the usual magnetic dipole interaction,
which can be calculated from the g factor and the
lattice parameters. This turns out to be quite
weak compared to the nearest-neighbor exchange
interaction, but two factors make it unusually im-
portant in determining the properties of Gd(OH);.
Firstly, it provides almost the entire source of
anisotropy, the crystal field and anisotropic-ex-
change contributions being negligible in compari-
son, Secondly, it provides a means of coupling
the more distant neighbors and this may turn out
to be decisive in choosing between different pos-
sible ordered states.

The problem of long-range order is complicated
by the predominantly linear-chain character of the
interactions (nearest-neighbor exchange plus di-
pole), which would favor an antiferromagnetic ar-
rangement with spins perpendicular to the ¢ axis.
Such a one-dimensional system is of course not
stable, but to couple neighboring chains one either
has to remove the first-order cancellation imposed
by the high symmetry of the hydroxide lattice or
invoke longer-range interactions.

Both these possibilities have been considered
briefly and the energies of a number of different
states based on arrangements or modifications of
simple antiferromagnetic linear chains have been
estimated. It was found that the total energy was
rather insensitive to the details of the local-spin
arrangement and it seems clear that the actual
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ground state of Gd(OH); will be determined by a
subtle balance between several relatively small
effects. Inasmuch as the interaction Hamiltonian
itself is really quite simple and completely known,
this should provide an interesting challenge to the
theory of cooperative transitions with competing
interactions.
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APPENDIX A

The general expressions for the high-tempera-
ture expansions for the susceptibility and specific
heat for magnetic systems with arbitrary symme-
tric tensor interactions between all pairs of spins,
have been worked out by Marquard. 1 With the
Hamiltonian in Eq. (1), the first coefficients in
each expansion are given in Eqs. (4a)-(4c), (14a),
and (14b),'® and we shall here give the explicit
expressions for the lattice sums symbolized by
the Z’s and the A’s,

The lattice sums over pairs of spins are

d q
Bpe=22 ) (_‘“s ) ,
i Vij

Tpe=2d5) (-%*)t <§£9_S_z.(9t ) - 1>’
p

Yig 2

where d=+g%u%. 7, is the distance between ions
i and j and 6;; is the angle between 7;; and the ¢
axis. The sums are taken over all distinct pairs
of ions ¢ and j with ion ¢ fixed as center and j run-
ning over all remaining ions.

Because of the threefold rotational symmetry of
the lattice, there is a relation between the sums
needed for the susceptibility parallel (xr) and per-
pendicular (x7) to the ¢ axis:

(qu)1= (qu)n ) (E;q)lz - %(E,;q)n-

The double-center sums involving three ions form-
ing triangles are

- e d 32573
Ay =225 (J(r1)J(1‘2)T ‘23—'Q> )
>k : 73 2 symmetrized

3 cos®(yps) — 1)
2 symmetrized ’

. X 2
A,=2 J
2 JZ>>k ( (&) (7’27’3)3

- dZ
Ap=225 (JT) —s
2 I>k( (r1) (r273)

x[3(322 - R?) + 5(32% - 72)7%]) ,

symmetrized

= -> -
where R=rpXrj;

1 d®

Aga = — —
037 G jz;;z (m {9 cos(y 1) cos(y3) cos(ys;)

- 3[0052(7’ 12) + cos?®(y 23)+ 0052(731)] +2},

d®  (8cos¥(y) -1 B3Zi-43
Al = 2 12 3 3
03 ,Z>>,, (r17973)°\ 2 275

>5Ymmetrized

We have here introduced {Ty, Ts, Ts}=4F:;, T Trif
and 7,, as the angle between T, and ;. The sums
are taken over all distinct triangles with ion ¢

fixed as center and j and & running over all remain-
ing ions. In the symmetrized sums a cyclic per-
mutation of the coordinates is taken and the total
divided by three.

As in the case of the Z’s we can relate the coef-
ficients used for the susceptibility parallel and per-
pendicular to the ¢ axis:

(qu)xz (qu)n, (Ap'q)].: - %(A;a)ll-

The evaluation of all the lattice sums was per-
formed using the Yale IBM 7040-7094 computer.
Special care was taken to avoid double counting or
other time consuming steps.!% All the sums were
evaluated within series of spheres of increasing
radius R until an adequately accurate extrapolation
for the infinite sum could be made. The most slow-
ly convergent was the first-order single dipole sum
41, and this was evaluated for various R’s up to
100 .f\, corresponding to a sum over 70 000 spins.
The sum for an infinite sphere was then estimated
as the asymptotic value of the partial sums plotted
as a function of 1/R as 1/R~0. The estimated
accuracy of the extrapolated value was £0.2%. The
other single-center sums Z,, and Z}, are more
rapidly convergent, and presented no difficulty.

The double-center summations in 4,, and 4;,, on
the other hand, were more troublesome, and in
particular, the triangular dipole sums 4y and Ag,
included many small but significant contributions
which had to be summed with care. The extrapo-
lation of the partial sums in this case was found to
be more rapidly convergent when plotted as a func-
tion of 1/N, where Ny isanorder of neighbor corre-
sponding to the radius R. This procedure gave Qg
and Al; accurate to about 0. 2% for Ry.= 20 A.

All the computer sums were checked against the
published results for GACl;*" by substituting the
appropriate a and ¢ values and putting J3=0. In
all cases agreement was perfect within the esti-
mated accuracies.

Numerical values for the various sums appropri-
ate to Gd(OH); were substituted into Eqs. (4a)-(4c),
(14a), and (14b), and the final expressions are
shown in Egs. (6a)-(7c), (15a), and (15b).'%®
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APPENDIX B: LATTICE SPECIFIC HEATS OF
Gd(OH); AND La(OH),

There are two usual methods of estimating the
lattice contribution C to the total specific heat Cr
in calorimetric measurements. One is to mea-
sure an isostructural diamagnetic material as sim-
ilar as possible to the magnetic system and to
scale the result by a uniform factor determined
either from entropy considerations, ' or from the
ratio of the atomic masses assuming the form of
the Debye theory. 105 The second is to assume a
specific form for the temperature dependence of Cy
and Cp, and then fit the corresponding functions to
measurements of Cy on the magnetic material it-
self. It is of some interest to compare these two
procedures in the present case, since the results
will illustrate that quite serious errors can occur
if great care is not used.

The most common method of analysis is the sec-
ond, assuming a variation of the form

Cr/R=aT®+b/T?, (A1)

and using a graphical method one then plots C;7T2/R
as a function of 7° to look for a straight line of
slope a. Such a plot for the case of Gd(OH); is
shown in Fig. 19 and it can be seen that the re-
sults do indeed fall on a fairly good straight line,
with a=(3.4+0.3)x10° K™ and b=4.2+0,4 K2,

Of course this particular procedure precludes the
possibility of determining small higher-order
terms in the expansion of C, [Eq. (13)], and even
worse, it is quite sensitive to small deviations
from the simple 7 law, which is really valid only
at very low temperatures. In the present case,
the Debye temperature ®p~190x5 K, '% and we
would therefore not really expect a simple 72 law
above about 3.5 K (~&®p).'® The fact that the
plot in Fig. 19 appears to follow a straight line

to much higher temperatures must therefore be
treated with some caution. If, as a result of this,
we were to concentrate instead on the low-tempera-
ture part of the plot, we would run into the dif-
ficulty that the higher-order terms in C, might
then not be really negligible, and again an uncertainty
in the analysis would result.

To avoid these difficulties, we can consider in-
stead the procedure involving measurements on a
similar diamagnetic material, and in Fig. 19
(curve b) we show some results for La(OH);. For
comparison these are plotted in the same way as
those for Gd(OH);, though we would here expect
b=0. It can be seen that there is a marked sys-
tematic difference, which cannot be removed by
any simple scaling procedure. In fact scaling the
La(OH); results by the factor [MLmma/1146(,(0,“3]'3/2
=1.21 indicated by the Debye theory!®® makes the
discrepancy even worse.'” Moreover, the results
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FIG. 19. Calorimetric specific heat of La(OH); (o)
and Gd(OH)3(®). Curve a is the best fit for Gd(OH)5 as-
suming a law of the form Cz/R= aT®+b/T? and it corre-
sponds to a=(3.4% 0.3) x 10~ K** and 5=4.2+ 0.4 K2,
The corresponding fit to the results for La(OH); (curve b)
gives (@) 15omy, = (8.9% 0.3)x 10 K3, though it can be
seen that there is a systematic curvature which cannot be
fitted by the assumed form. Curve c represents the dif-
ference between the total specific-heat measurements on
Gd(OH); and the final estimate of the magnetic contribu-
tion based on an analysis of the combined calorimetric
and high-frequency measurements (Sec. VA). It corre-
sponds to the “best” estimate of the lattice specific heat
(CL/R)Gd(OH)S =(3.4+0.3) x10™° 7%,

are clearly not on a straight line over the entire
temperature range, in agreement with our pre-
vious fears that a simple 7° law would be valid only
at very low temperatures. We must conclude that
the measurements on the diamagnetic isomorph
may do no more than give a rough indication of the
lattice specific heat of GA(OH); and it raises the
more general question of the applicability of this
whole procedure.

One should perhaps add another word of caution
at this point to note that the kind of comparison
shown here is critically dependent on absolute ac-
curacies of two sets of measurements, each of
which may involve sizable corrections, and there
is always a possibility of undetected systematic
errors.

In the present case one can largely resolve these
difficulties by combining the calorimetric measure-
ments of Cy with the high-frequency measurements
of Cy, which are quite accurate in the region above
5K (see Sec. VB). Taking the difference, we
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find curve c in Fig. 19 which can be approximated
quite well by a straight line over the entire tem-
perature range between 5 and 15 K with slope
a=(3.4+0,3)x10° K™, This is in fairly good
agreement with the value found previously and we
conclude that (Cy, /R)aaomg = (3.4+0.3)x1077*

2089

which is the value used in the main text.

It would seem clear that the proper allowance
for the lattice contribution to the total specific
heat is quite a difficult problem, which requires
very careful treatment if accurate estimates of
Cy are required.
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The complete set of six third-order elastic constants of RbMnF; has been determined from
measurements of hydrostatic-pressure and uniaxial-compression derivatives of natural sound

velocities.

Measurements were made at room temperature using an ultrasonic pulse-super-

position technique. The results are Ci41 == 18. 4, Ci13== 2. 4, Ci3=+t 0. 4!, Cig4 == 0.6, C1i55

=-1.8, and cge=—0.5 in units of 10'* dyn/cm

. The results are interpreted to mean that

the third-order elastic constants are predominantly determined by the Mn-F interaction. The
significance of this for the mechanics of RbMnFj is discussed.

L. INTRODUCTION

Ultrasonic studies of rubidium manganese tri-
fluoride (RbMnF;) have been reported recently by
several authors. Properties studied include sec-
ond-order elastic constants (SOEC) and their tem-
perature dependence, ' magnetoelastic coupling, >'®
nuclear acoustic resonance, *'° nuclear magnetic
resonance, ® and ultrasonic attenuation near the
Néel temperature.”® Results of the first study of
the nonlinear elastic properties of RbMnF;, )
namely, the third-order elastic constants (TOEC),
are reported here.

RbMnF; belongs to the Pm3m = O} space group and
has the familiar perovskite-type cubic crystal
structure. All O, point groups have six indepen-

dent TOEC.® These constants were determined
directly from measurements of the hydrostatic-
pressure and uniaxial-compression derivatives of
natural sound velocities in a single crystal. This

is believed to be only the second report of a com-
plete set of TOEC for a perovskite-type crystal
structure; TOEC of SrTiO; were previously obtained
by combining the pressure-derivative data of Beat-
tie and Samara'® with the second-harmonic-genera-
tion data of Mackey and Arnold.!!

II. EXPERIMENTAL PROCEDURE AND RESULTS

A RbMnF; single crystal was obtained from Iso-
met Corp., Oakland, N. J., in the shape of a 1-cm
cube. Faces of the cube were near {001}, {110},
and {110} planes; misorientations of the respective



