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these obvious assumptions our predictions are
rather general and include the critical dynamics
as mell as the asymptotic temperature dependence
of properties such as the central-peak half-midth.
In microscopic treatments, on the other hand, just
the critical. dynamics are usually neglected, due to

insurmountable diff jculties. '
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In the ferromagnetic state of an electron gas where the energy bands are spin split, the

charge potential produces a spin polarization besides a charge polarization and a magnetic
field produces a charge polarization besides a spin polarization. Thus, in a ferromagnetic
electron gas, besides the spin susceptibility to a magnetic field X and the charge suscepti-
bility to a charge potential X, we introduce two nondiagonal susceptibilities, the spin re-
sponse to a charge potential y

' and the charge response to a magnetic field X~. We present
a general formulation for these four susceptibilities and discuss them within the Hartree —Fock
or random-phase approximation, taking into account the long-range nature of the Coulomb
interaction properly. The importance of the nondiagonal susceptibilities in analyzing observed
spin and charge polarization around an impurity is pointed out.

I. INTRODUCTION

As a physical model of a metal, the electron gas
has been studied extensively in recent years.
Most of the studies, however, are restricted to
the paramagnetic state of the electron gas. Com-
pared with the large amount of work on the magnetic
and electrical properties of the paramagnetic elec-
tron gas' there is very little on the magnetized
state (either ferromagnetic or spin-density wave)
of the electron gas. For instance, until very re-
cently we did not have a proper expression for the
wave-number-dependent magnetic susceptibility for
an electron gas in the ferromagnetic state in which

the energy bands of the electron gas are spin split.
In this paper we intend to discuss the magnetic

and electrical responses of the electron gas in

the ferromagnetic state. In the ferromagnetic
state besides the ordinary magnetic susceptibility

and the electrical susceptibility X"or the
dielectric constant c, we obtain equally important
nondiagonal responses y

' and X™,whichare, re-
spectively, the magnetic (spin) response to the elec-
tric disturbance and the electric (charge) response
to the magnetic disturbance. Note that X

' and

vanish in the paramagnetic state of the electron
gas, and they become finite only in the ferromag-
netic state. This comes from the fact that in the
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FIG. 1. Density of states of an electron gas in the
ferromagnetic state. Generally the densities of states of
up- and down-spin electrons at the Fermi surface, N, (0)
and N„(0), are different.

spin-split state of an electron gas the spin polari-
zation accompanies the charge polarization and

vice versa.
This can be easily seen from Fig. 1. In the

ferromagnetic state of the electron gas, the den-
sities of states of up- and down-spin electrons at
the Fermi surface, N, (0) and N (0), respectively,
are different. Thus the Zeeman shift of each
spin band due to an external field tends to produce
a change in the number of electrons besides the
spin polarization. This situation may also be ex-
plained by considering the response to a 5-function-
type magnetic field. As is well known, the up-
and down-spin electrons are polarized in the form
of Ruderman-Kittel oscillation in response to the
5-function-type magnetic field. In the paramag-
netic state the amplitudes and wavelengths of these
up- and down-spin electron density oscillations
are the same but the signs are just opposite. Thus
in the paramagnetic states the magnetic field does
not produce any charge polarization. In the ferro-
magnetic state, however, due to the difference
between N„(0) and N (0) both the amplitudes and
wavelengths of the Ruderman-Kittel-Kasuya-
Yosida (RKKY) oscillations of up- and down-spin
electrons are different. Thus the cancellation of
charge polarization as we saw in the paramagnetic
state does not occur, and an oscillating charge
polarization is produced by the 5-function magnetic
field. Similarly, it is easy to see that in the ferro-
magnetic state of an electron gas, spin polariza-
tion is produced by a charge potential ~

The nondiagonal susceptibility X 'was first con-
sidered by Friedel for the case of zero wave num-
ber, and the general properties of the charge and
spin density correlation in the ferromagnetic elec-
tron gas were recently discussed by Rajagopal,
Brooks, and Ranganathan. Although our approach
in obtaining the susceptibilities is different, our

result concerning the correlation between the
charge and spin polarization is essentially the same
as the result of Rajagopal, Brooks, and Rangana-
than.

It has been customary to use a 6-function-type
screened Coulomb interaction, ' instead of the
real Coulomb interaction, in calculating the para-
magnetic susceptibility of an electron gas whereas
one must use the unscreened Coulomb interaction
in discussing the dielectric constant or the motion
of the charge density. We will see how this situa-
tion comes about in the course of our discussion
later. Therefore, we are not allowed to use the
screened-Coulomb-interaction model in calculating
the magnetic, electric, or nondiagonal susceptibili-
ties for the spin-split state of the electron gas,
since even in the calculation of X the charge
density accompanied by the spin density is involved.
This is the reason why the previous calculation of

for the ferromagnetic state with the 5-function
interaction failed to conserve the number of elec-
trons and did not reduce to the well-known Stoner
result in the case of zero wave number. This
point about y was discussed recently by a number
of authors with slightly different results. ' " Our
result for X is the same as that of Schrieffer.
Accordingly, in this paper we start with the bare
Coulomb interaction and not the screened Coulomb
interaction.

Recently, data on the elastic diffuse scattering
of neutrons inferromagnetic transition metals with

impurities have been presented. These data
give us very detailed information on the spin polar-
ization of the host metal electrons around an im-
purity. One of the purposes of this paper is to
present a sound basis for analyzing these neutron
data.

II. DERIVATION OF SUSCEPTIBILITIES

The Hamiltonian of an electron gas is given as

K = ~ ~ctaclv+ 2 ~ V( )c~~cl'a'cl'-s, o' cl+x, v
l, , fy l ) l'~if

I +c ~ (2. l)

v(v)= 4' /v (2. 2)

and the prime on the summation indicates that
v= 0 is excluded from the summation. X is the
Hamiltonian of the electron gas without any pertur-
bation. Our problem in this paper is to discuss
the response of the electron gas to the magnetic

K„ the first term of the Hamiltonian, is the kinetic
energy of the conduction electrons, and c„is the
creation operator of a conduction electron with
energy e, and spin a (=+ or -). K, , the second
term of the Hamiltonian, is the Coulomb repulsion,
where
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t .[n'(q) —n"-(q) ]
X q =

H()
e [n."(q)+n (q)]

H(q)

(2. 5a)

(2. 5b)

which are, respectively, the spin and charge sus-
ceptibility to a magnetic field H(q), and

t»e [n.'(q) —n'(q)]
X (2. 5c)

e [n.'(q)+n'(q)]
—U(q)

(2. 5d)

which are, re spectively, the spin and char ge sus-
ceptibility to a charge potential U(q). The super-
scripts rn or e on the electron number density in-
dicate the nature of the perturbation, either K'
or X,'. Thus our problem is to calculate n, corre-
sponding to a perturbation X' where o'. is either m
or e.

In calculating n, (q) in this paper, we use the
double-time Green's-function method. ' The re-
tarded double-time Green's function of two fermion
operators a and bt is defined as

&a Ib'&~ = —t &[a(t), b'],& 8(t), (2. 6)

where [, ], is the anticommutator, a(t) is the
Heisenberg representation with the total Hamilto-
nian of the system K, and 8(t) is the step function
defined by

and/or charge disturbances. Since it is sufficient
to know the response to a general Fourier compo-
nent, with wave number q, of the disturbances, we
choose the perturbing potentials as follows:

K„' = —peH(q)p (c,,c, , „—c, c, ), (2. 3)
l

K,' = e U(q) Z (ct„c...+ c t c, , ) . (2. 4)

In the Hamiltonian of the magnetic disturbance
X', t»e (&0) is the Bohr magneton, and H(q) is the
Fourier component of the perturbing magnetic field.
In the Hamiltonian for the charge disturbance X', ,
e (& 0) is the charge of an electron, and U(q) is the
Fourier component of the charge potential. For
the moment we assume that q 4 0.

If there is no perturbation the electron density of
either spin is spatially uniform and the Fourier
component of the electron number density of either
spin vanishes for a finite wave number q 4 0. The
magnetic or charge potential with a wave number q
produces an electron density with the wave number
q. The four susceptibilities which we will discuss
in this paper are defined in terms of the perturbed
electron number density n, (q) as follows:

iltonian K is obtained from the Green's function
by the following relation:

&b'a) = —2„ f(&)[&a Ib'&".~0 —(a Ib')". ;0 ]d~
~ 00

f(+) Im(a Ib ) „0+de,
~ 00

(2. 8)

where f(&u) is the Fermi distribution function and

(a lb~&„" is the Fourier transform of (a lb "&",:

(a Ib')" = f (a Ib')", e '"'dt .

The necessary Green's function is obtained from
the equation of motion

(2. 9)

~&a Ib'&. = &[a, b'1.)+ &[a, &]b'&. , (2. 10)

+ ([c„,, K']Ict,) +([c„„„3C,]Ic~,& . (2. 14)

First we calculate the three commutators which
appear on the right-hand side of Eq. (2. 14). The
first two commutators with X~ and X' are simple:

where [ ~ ] is the commutator and we omit the super-
script r indicating the retarded Green's function
for simplicity. Note that throughout this paper we
take the chemical potential of the system as the
origin for measuring energy.

From the prescription given above [Eqs. (2. 6)-
(2. 10)] in order to calculate the electron number
density for each spin

o,'(e)=(Z cr,c„,,), a=m or e (2. 11)

we need to obtain the Green's function of the follow-
ing form:

„,I l..&
=- ([ '„.(t) l..].)8(t)

In Eqs. (2. 11) and (2. 12) the Hamiltonian to be
used in taking the thermal average or setting up
the equation of motion is

K —=$C +X', 0=m or e (2. 13)

where a should be chosen in accordance with Eq.
(2. 11).

In setting up the equationof motion of the form of
Eg. (2. 10) we should note that Z„' and X', [Eqs.
(2. 3) and (2. 4)] are not much different. In K' the
difference of the electron density operators of
either spins appears whereas in K,' the sum of the
electron density operators appears. This relation
enables us to handle the two cases, magnetic and
charge disturbances, by a single procedure. The
equation of the motion for our Green's function is
given as

(u(C, , Ic')„= 5„,+ (fc,.„,, 3C,]IC'„)

1 for t&0Bt
0 for t&0. (2. V)

The thermal expectation value (b a) under the Ham-

[C keq r» r Rk] =
»eq C k eq e»

w pe H(q)c», for o. =m
eU(q)c», for a=e .

(2. 15)

(2. 16)
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+p, eH(q) for o.'= m

eU(q) for a=e
(2. 17)

Note that Eq. (2. 16) can be rewritten by introducing
a notation

By inserting Eqs. (2. 15), (2. 16'), and (2. 18) into
Eq. (2. 14) we obtain

(~ —e, ) (c,.„,lc',„).= 6., o+ W."(q) (c» lc.',&.

+ Z v(~) {c,, ci „„,c, Ici„&„. (2. 19)

[c„,K']= W"c „. (2. 16')

(2. 18)
lyKgg

where the summation over 0' is for 0'= +.

The commutator with the Coulomb interaction is
given as

[c„,„x,] = Z v(ii)c,.c, „,.c„,„„,

The last term on the right-hand side of Eq.
(2. 19) introduces a new Green's function of higher
order. Instead of following the equation of motion
for this higher-order Green's function, we decouple
the Green's function by a random-phase approxi-
mation (RPA) or Hartree-Fock approximation as
follows:

V(~) {cia ci-K, Q'cll+0+Ir, kick, a&rd
= V(q) + (citr'ci+Q, IF'& {c»lc»&Id (1 —&a, o)

l, K, V' l i fy'

~e I
— ~ V(ii)(c'k.. ,.ck.a.k,.& (ca~%le»&~ — ~~ V(~)(CA.K, %ca,R~,B (C»l ac%&~ (2 2o)

=- V(0) Z' (c,...„„c,...„,,& (ca~, , lc»&„

= v(0)n, (0) (ci,~,, lc~,&„.
Note that the V(0) introduced does not diverge un-
like the original Coulomb potential V(q) at q = 0.
The first term of Eq. (2. 22) can be interpreted as
a weighted sum of occupied electron states with

(2. 22)

The principal approximation used in obtaining
Eq. (2. 20) is to replace the electron number den-
sity operators, with wave numbers q or 0, in the
Green's function by their expectation values and
factorize them out. As is easily seen if the approx-
imation of Eq. (2. 20) is used, Eq. (2. 19) for dif-
ferent k's and q's gives a closed set of equations
for the problem.

We discuss the physical meaning of each term on
the right-hand side of Eq. (2. 20). The first term
is rewritten as

V(q) ~ (c„.c„„,.) (c lc,)„
l,c'

= V(q)(n™(q) n (q)](c, Ic,)„. (2. 21)

Note that the above expression reduces to the form
of the second term on the right-hand side of Eq.
(2. 19). From Eqs. (2. 16), (2. 17), and (2. 19) it
is easy to identify that Eq. (2. 21) gives the contri-
bution of the Coulomb potential due to the perturbed
electron number density, V(q)[n, (q)+n (q)], which
is spin independent and corresponds to eU(q). It is
important to note that this term diverges as q ap-
proaches zero.

In the second term on the right-hand side of Eq.
(2. 20), we introduce the effective exchange inter-
action V(0) by the following relation:

Z v(K)( cit+&+a, &cA+z+z~+& (ciim & lc»&~

momentum k+ q+ ic with the weight V(i&). The
weight V(a') diverges as I/ic near ic= 0 but this di-
vergence is cancelled by the K which comes from
the density of states. Thus V(0), the average
weight, is a finite constant. Now from Eq. (2. 22)
it is easy to recognize that the second term on the
right-hand side of Eq. (2. 20) manifests the effect
of the uniform exchange field which gives rise to
the spin splitting of the electron energy band. This
point will become clearer later.

The bracketed quantity in the last term on the
right-hand side of Eq. (2. 20) is rewritten by the
same way as we did in Eq. (2. 22), as

5 v(~) (ct„„,ci„„„,&(c» lc~,&„

-=V(q) n."(q)(c» IC»&. (2 23)

By the same argument that we gave for Eq. (2. 22)
the effective exchange interaction V(q) does not
diverge for small q. Equation (2. 23) resembles
Eq. (2. 21) but is different in that in the former the
effective interaction V(q)n, (q) depends on the spin
since n, (q) 0 n'(q). This term represents the
effect of the exchange field associated with the
wave number q component of the spin density due
to the magnetic or charge disturbances.

By inserting Eqs. (2. 21)-(2. 23) into Eq. (2. 20)
and then Eq. (2. 20) into Eq. (2. 19) we obtain

[& —&„—V(0)n (0)]("....Icl..&-

I

6&, 0 + W+&zi (c» ]c»&~

+ V(q)[n. (q)+ n- (q)] (c

(2 24)

In Eq. (2, 24) n, (q) and n, (0) are to be determined
self-consistently through the procedure [Eq. (2. 8)]
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with the Green's functions {c„„„Ictee&„and
(ce, Ic~&„. Thus Eq. (2. 24) for different k's and
q' s constitutes a closed set of equations. Note that
in obtaining Eq. (2. 24) we used only one approxi-
mation contained in Eq. (2. 20). In order to obtain
the four susceptibilites defined in Eqs. (2. 5a),
(2. 5b), (2. 5c), and (2. 5d), we only need to know
the perturbed electron number density up to the
first order in the perturbation. Thus as the sec-
ond (and last) stage of our approximation we lin-
earize Eq. (2. 24) with respect to the perturbing
potential as follows:

(~ e„—e)e{c„«Iece e&„= 5e, o+ w,'(q) (ca, lcee&„

+ V(q)[:( )+ -(q))(

—V(q)n,'(q) (c~ Ici,)o (1 —5„o), (2. 25)

e, , -=e, —V(0)n, , (2. 26)

where n, is the number of (t) spinelectrons inthe
unperturbed state. From Eq. (2. 25), for q=0, it
is easy to see

(cee lcee&„= I/((e) —ee„+f0 ) (2. 27)

Now by inserting Eq. (2. 26) into Eq. (2. 25) we
obtain the explict expression for the Green' s func-
tion:

where the superscript 0 indicates to calculate the
quantity without the effect of' the perturbing poten-
tial X' and the quantities without the superscript
0 are supposed to be calculated up to the first order
in X', and we introduced the one -particle energy of
an electron with the exchange self -energy as

0 1 1

'1 1
+ V(q) [n, (q)+n (q)], , (1 —5, o)

—V(q)n, (q) . , —— . , (1 —5„o) . (2. 28)
1 1

d(e)f((e)) Im(ce~, e Ice, e& . o = —VV:(q)Fe(q) —V(q)[n:(q)+n- (q))F.(q) + V(q)n."(q)F.(q),
(2. 29)where

The electron number density is immediately obtained by applying the procedure of Eq. (2. 8) to Eq. (2 ~ 28):
f

n, (q) = ——Q
W

E,(q) = —Z deaf(w) ™ (). .().)«oo (d —E& ~+ 10 (d —E& ~+ $0

d~f(~) 5(~ —~„.„,) +p p
El, , 4) 6l,

fe, e fe+
E hL

—Ca+0
(2. 30)

is the I indhard function, where f)ee=f(ee„) and we assumed q x 0, For q= 0 the problem is much simpler as
can be seen from Eq. (2.28). Since our result for qe'0 gives the correct q=0 result in the limit of q-0
as will be discussed in Sec, II, we do not consider the q = 0 case here.

Equation (2. 29) is acoupledequationforn, '(q) and n (q). By solving these coupled equations we obtain the
electron number density for each spin:

—F.(q)[1+ V(q)F. (q)] yV:(q)+ V(q) F.(q)F-(q) IV:(q)
1+ V(q)[F,(q)+F (q)]

(2. 31)

where we introduced the exchange-enhanced Lind-
hard function F,(q) as

F, (q)
1+ V(q)[F,(q)+ F (q)1

(2. 3lb)

F,(q) = F.(q)i[I —V(q) F.(q)] (2. 32)

( )
F,(q)+2V(q)F, (q)F (q) ~( ) (2 31 )1+ V(q)[F,(q)+ F (q)]

If we use the explicit expressions for magnetic and
charge disturbances, Eq. (2. 17), we obtain n, (q)
and n,'(q) as'

It is straightforward to obtain the four susceptibili-
ties defined in Eqs. (2. 5a)-(2. 5d) from Eqs.
(2 ~ Sla) and (2. Slb):

o F,(q)+F (q)+4V(q)F, (q)F (q) (2 33)
1+ V(q)[F*(q)+F (q))

em me F (q) —F (q) (2. 34)X (q) —X (q) —PB
1 V(q)[F (q) F (q))
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z E,(q)+F (q)
1+ V(q)[E,(q)+F (q)

' (2. 35)

We will discuss these results in detail in Sec. III.
Although in this paper we discuss only the static

susceptibilities, the dynamic susceptibilities
(q, ~), where n, n'=m ore, corresponding tothe

above four static susceptibilities x"" (q) are given
simply by replacing the static Lindhard function
F,(q) by the corresponding frequency-dependent
Lindhard 'unction F,(q, e) defined as

In calculating X (q, &u) from the Kubo formula, for
instance, if we use the approximation shown in
Eqs. (2. 20) and (2. 23) starting from the bare
Coulomb interaction, Eq. (4. 20) of Ref. 6 is re-
placed by

[6a.(q), &.]= V(q) (~a„,.-~a.)~ er. (q)
la'

—V(q) (n&„,—&~)Z 8 &,(q),

F ( ~) p a&a a+aa (2. 36) where Ha, (q) = c„,,c~. This replacement in Ref.
6 leads to

E„(q, e)+ I" (q, v)+ 4V(q) F,(q, &u) F (q, &u)

1+ V(q)[E, (q, &u)+F (q, ~)] (2. 33')

where

F,(q, ~) = F,(q, ~)/[I —V(q) F,(q, &u)] . (2. 32')

HI. IMSCUSSION ON SUSCEPTIBILITIES

In this section we discuss various interesting
aspects of the four susceptibilities x (q), x' (q)
=X"(q), and X"(q).

A Xm m(0)

First we check that X (q) reduces to the well-
known formula in the paramagnetic state of the
electron gas. Since in the paramagnetic state there
is no spin splitting of the band, the Lindhard func-
tion becomes independent of spins:

F,(q)= F (q) =F(q)

(3. 1)

By inserting Eq. (3. 1) into Eq. (2. 33) we obtain

F(q)
Xyara(q)= i B I V( )F( (3. 2)

» x (q)=u'=+
, o F,(0)+F (0)

1 1
2 f.„(o)

' x (o)
(3. 3)

where &,(0) = F,(0) are the density of states of (+)
spin electrons at the chemical potential. Although
we do not know the explicit q dependence of V(q),
from Eqs. (2. 23) and (2. 24) it seems natural to

which is the familiar wave-number-dependent ex-
change-enhanced susceptibility of the electron gas. '

Another interesting case is the q- 0 limit.
Since V(q) diverges as 1/q' as q approaches zero,
whereas F,(q) do not, from Eq. (2. 33) we obtain 1 x"(q) e""d'q .

(2v)
(3. 4)

When the electrons do not interact with each
other and they are at the paramagnetic state the
susceptibility to be used in Eq. (3. 4), xo(q), is sim-
ply

Xo(q) = 2pzF(q), , (3. 5)

where the Lindhard function F(q) is given by Eq.
(3. 1). In this case we obtain the RKKY spin
polarization

assume lim, „oV(q)= V(0) in Eq. (3. 3).
Equation (3. 3) agrees with the Stoner suscepti-

bility for the spin-split electron gas. The wave-
number-dependent longitudinal susceptibility from
the spin-split bands was first discussed by
Izuyama, Kim, and Kubo based on the 5-function-
type screened-Coulomb-interaction model. Their
result, however, did not reduce to the Stoner
expression [Eq. (3.3)] in the limit of q-0. This
difficulty can be attributed to the use of the 5-
function interaction instead of the bare Coulomb
interaction. When the charge polarization is in-
volved, as it is in the present case, the long-
range nature of the Coulomb interaction must be
properly taken into account to ensure charge con-
servation. Note that there are a number of differ-
ent ways' " to impose charge conservation as to
reproduce the correct q = 0 limit of the magnetic
susceptibilities. Schrieffer's result is the same
as our x (q), Eq. (2. 33).

The spatial behavior of the electron spin polar-
ization g(x) due to a 5-function-type magnetic field
at the origin of coordinates, H(x) =H5(y), can be
written in terms of the longitudinal susceptibility
as

4a™(r)=p [n. (&) —~-(&)]



SPIN AND CHARGE SUSCE PTIBILITY OF A. . .

O. I 0

a, magnetic impurity in Pd' was explained by the
fact that the spin split of the Pd-host-metal bands
depends on the concentration of the impurities. "
Although in these earlier 'analyses, ' ' we used

(q) of Ref. 6, the use of the proper y™(q)[Eq.
(2. 33)] changes our earlier results very little. 3

A

0.05

The first thing to note is that in the paramagnetic
state of the electron gas

&,(q)=& (q)=+(q), x"(q)=x"(q)=o,
as it should be.

Corresponding to Ecl. (3. 4}, the spin density
produced by a charge potential U(3 ) at the origin
of the coordinates can be given as

~ &'(~)=~ I~;(~)-~-'(~)l

I I I

2 3 4 5 6 7
2kFr

FIG. 2. Spin polarization of a ferromagnetic electron
gas due to a g-function-type magnetic field Hg(y) in the
direction of the z axis. for various values of the sponta-
neous magnetization of the electron gas M = (n, -g )/
{yg, +g ), where g~ is the total number of the (+) spin elec-
trons in the unperturbed state of the electron gas. Here
and in Figs. 3-6 we assume a parabolic electron band,
where N(0) V(0) are determined self-consistently for
various values of M: M = 0, N (0) V(0) = 1.0000; M = 0.25,
N (0) V(0) = 1.0047; M = 0.50, N (0) V(0) = 1.0206; M = 0.75,
N(0) V(0) = l.0553; and M =1.00, N(0) V(0) = 1.1906. These
values for M and N(0) V(0) are obtained from a self-con-
sistent treatment of Eq. (2. 27). kz is fixed at 0.5
x 10 /cm and the q dependence of V(q) is neglected. We
assumed H= [N(0)pzj for the strength of the g-function
magnetic field.

1

(2w)
U(q) X '(q,)e""d'q, (3. I)

where U(q) is the Fourier transform of U(3'). Note

that if we assume a charge potential of U(r) = Ze/3,
its U(q) is given as

U(q) = 4qiZe/q' . (3. 8)

0.0 I 2

g B

0.008'

In Fig. 3 we show a typical behavior of o'(r) in the
electron gas. Note the marked difference in the
spatial behavior of 0 (r) [Fig. 2] and a'(r) [Fig. 3].

B cRKKY(+)
2 3 XO(q)
HO

t iqr 3

27T

(2~)' J
r(q) e'"d'q . (3. 6} 0.004

When the electrons are interacting, although still
in the paramagnetic state, X„„(q)[Eg. (3. 2)]
should be used for y (q) in Eil. (3.4). Then the
spin polarization is no longer the simple BKKY
type. '

Further, when the electrons are in the ferro-
magnetic state, y (q) [Eq. (2. 33)] is the proper
susceptibility to be used. This point was empha-
sized by us' recently, and the range of the spin
polarization around a magnetic impurity observed
by the elastic diffuse scattering of neutron was
related to the degree of the spin splitting of the
host metal conduction bands as is shown in Fig. 2.
Further, the marked impurity concentration de-
pendence of the range of spin polarization around

0

—0.002

2 5 4 5 6 7.
2kFr

FIG. 3. Spin polarization of a ferromagnetic electron
gas due to a unit point charge U(q) =-4m'/q as a function
of M. Note for small M, the magnetic response is small
but very long ranged resulting in a large net induced
spin. For M close to 1, e2(y) is short ranged and os-
cillates in the HKKY manner, resulting in a small net
induced spin.
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FIG. 4. Plot of the spin-dependent dielectri. c constants
q, (q) and e (q) for different M's. The dielectric constant
of the minority spin electron e (q) shows singular be-
havior and becomes negative for small q.

= p, eo'(q= 0)

= —4mZe lim 3 y '(q)
p g

F.(o) —F (o)
F,(0)+E (0)

N, (0) —N (0)
N, (0) + N (0) —2 V(0) N, (0)N (0)

'

(3. 9)
The result of E(l. (3. 9) can be understood very

intuitively. As will be shown in this section in
discussing y "(q), when we introduce an extra charge
Ze, the source of the potential, into an electron
gas, the potential produces a screening charge

Recently we pointed out' that combination of a (r)
and o'(x) can account for some of the observedcom-
plicated behavior of spin polarization in the ferro-
magnetic iron. This point, as will be discussed
more fully in a separate paper, 2P gives a veryuseful
basis for studying the band structure of ferromag-
netic transition metals.

Finally, let us examine how much conduction-
electron spin polarization is produced by the
screening charge around an excess charge Ze by
integrating gee'(r) over all the space:

Ze ~& 4n
p,, "v'(~)d'r= — —, , y '(q)e""d'qd'r

(27()' q'

=xt):(q)I- &.(e))=xt)i(v) ),e~ q

where yo,'(q)=e F,(q) and

(3. 10)

.(q) = [1 —V(q) F.(q)){1+V(q)[F.(q)+F (q)]I
(3. 11)

Equation (3. 10) defines an effective dielectric con-
stant in the ferromagnetic electron gas for each
spin and can be used in a consistent manner to ob-
tain the charge response of each spin band sepa-
rately.

As is easily seen from E(l. (3. 10) the spin-de-
pendent dielectric constant e, (q) can be negative
for small q in the ferromagnetic state of an elec-
tron gas. If we assume a parabolic electron band,
for instance, the dielectric constant of the minority
spin electrons, e (q), is negative for small q as
is illustrated in Fig. 4. The spatial behavior of
(a) spin screening charges n,'(r) around a unit posi-
tive charge is given in Fig. 5. The net screening
charge n,'(q = 0) which can be obtained by integrating
n,'(y) of Fig. 5 over the space is given in Fig. 6.
There we find the minority spin electrons are as a
whole repulsed by a positive point charge due to
the negative dielectric constant. As is seen from
Fig. 6 this explains why in the linear response
susceptibilities more than 1p.~ per unit charge can

polarization, and the amount of the total screening
charge is exactly —Ze. Of this screening charge
of —Ze some are with up spins and the others are
with down spins. It is natural to expect that the
numbers of (a), spin electrons are porportional,
respectively, to the densities of states (e), spin
electrons N, (0). This kind of consideration' leads
to a total induced magnetization,

—Z(ue [N.(0) —N (0)] [N, (0)+N (0)] ',

which is different from our correct results of Eq.
(3. 9) for the interacting electrons. As can be
seen from Fig. 6 the conduction-electron spin
polarization associated with the screening charge
is greatly affected by the presence of the interac-
tion term in the denominator of Eq. (3. 9). The
most remarkable fact is that the magnetization
associated with the screening chargearoundaunit
point charge can be larger than 1p,~. This point
is discussed more fully in Sec. III C. "

c. x-(q)

In the ferromagnetic state the spin responses
are different for each spin. This can be seen
better from E(l. (2. 31b) rather than E(l. (2. 35).
We can rewrite Eg. (2. 31b) to obtain '

en', (q)

F,(q)
[1—0'(q) F,(q)]{1+V(q) [F,(q)+ E (q)]]
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0,002

n+(r)
0.00 I—
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n (r)

+0,00 I—

0.90

constant in Eq. (3. 10) we get for the paramagnetic
case

&.(q)= e (q)= &o(q),

&o(q) = 1+ [2V(q) —V(q)]F(q) .
(3. 14)

The effect of the exchange interaction on the di-
electric constant was first discussed by Hubbard 2

and its effects on the spatial dependence by Langer
and Vosko. 3

It is very convenient to define e, (q) by Eg. (3.10).
Another possible defining equation of the dielectric
constant could be

A 0

-0.00 I

In this definition, exchange effects are accounted
for in F,(q) and

e(q) = 1+ V(q) [E,(q)+F (q)] . (3. 14')

e".(q)= eE.(q—) U. (q)= eF.(q—) (3. 15)
e(q)

be induced in the screening charge around a charge
potential.

'Mfe can calculate the total screening charge pro-
duced around a point charge Ze noting U(q)=4oZe(
q

2 ~

e [n', (r)+n'(r)]d r= —,)1, y"(q)e' d qd'r
(2m)'JJ q'

= —4oZe lim y "(q)
two q

= —Ze (3. 12)

Namely, the amount of the screening charge is
just opposite in sign to the point charge Ze, and
this result is independent of the magnetization of
the electron gas.

We consider 1t "(q) in the paramagnetic state
where E,(q)=E.(q)=F(q). In this case Eq. (2. 35)
reduces to

2F (q)
Xgkl'I (q) I 2 V( )E(

= 2e2 E(q)
1+ [2V(q) —V(q)]F(q)

' (3. 13)

Note that if there is no interaction at all among
electrons, the charge susceptibility yo' is simply
the Lindhard function:

xo'(q) = 2e'E(q) .

Using the definition for the effective dielectric

0 2 4 6 8
2kFr

FIG. 5. Spatial behavior of the perturbed electron
density p,'.(z) around a unit positive point charge for dif-
ferent magnetizations. Note there are large spat;ial re-
gions near the positive point charge where the (-) spin elec-
trons are repelled.
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FIG. 6. Total screen-
ing charge of (+) spins
around a unit positive
point charge. Note that
the minority spin electrons
are repulsed by a positive
point charge. Thus al-
though the total screening
charge is just unity [p, (q
=0)+g~(q=0) =1], the in-
duced magnetization
p&~'(q =o) = p~(n.'(q=o)
—n (q=0)) can be larger
than 1p~.

Infinities are obtained in e,(q) and in e(q) for
q=0 and for a finite q (see Fig. 4). The infinity
at q =0 is nothing other than charge conservation
which prevents q= 0 disturbances. The infinity at
q4 0 for a given magnetization indicates that an ad-
ditional wave vector besides q= 0 cannot produce a
response in a ferromagnetic metal.

D x' (q)

As we have done with the other three susceptibili-
ties, we can study the charge polarization due to
a magnetic disturbance by employing y' (q). One

important thing to note is that our y' (q) does not
break the electron number conservation. Let us
suppose a 6-function-type magnetic field is applied
at the origin of the coordinates in the electron gas
of the ferromagnetic state. Then similar to Eqs.
(3. 9) or (3.12), the total amount of charge polar-
ization is given as

e [n,"(q= 0) +n (q = 0)]= lim H(q) y (q) = 0,
(3.16)

where P(q) = H = const for the 5-function-type mag-
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netic field. Namely, net charge polarization is
zero as it should be.

Note that Eq. (3. 16) is due to the divergence of
V(q) in the denominator of y' (q) as q- 0. We can
obtain y™(q)from the screened-Coulomb-interac-
tion model but in that case V(q) does not diverge
for small q and the charge conservation is broken.

IV. CONCLUSIONS

In this paper we discussed the spin and charge
responses of a ferromagnetic electron gas to a
magnetic field or a charge potential. Not only the
magnetic and charge susceptibilities in the ferro-
magnetic state, y (q) and y"(q), are different
from that in the paramagnetic state, but in the
ferromagnetic state there appear entirely new non-
diagonal susceptibilities y' (q) and X '(q). We
discussed the fundamental properties of these four

susceptibilities and emphasized the importance of
the nondiagonal susceptibilities, For instance,
recently we noticed that the concept of the nondiag-
onal susceptibilities X '(q) helps relate the neutron
scattering data with the band structure of ferro-
magnetic transition metals in a very crucial man-
ner. ' Also the observed negative g shift in the
paramagnetic resonance of Gd ' in Pd seems to be
explained by the concept of X '. We feel these
nondiagonal susceptibilities y '(q) and y' are very
useful in a variety of problems.

Due to the simplicity of our formulation, we
obtained these four susceptibilities using a single
unified procedure. The various roles the Coulomb
interaction plays are very clearly presented in our
derivation of the susceptibilities. We believe the
formulation given in this paper is useful in under-
standing the mutual relationship between various
response functions of an electron gas.
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