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High-temperature-low-field susceptibility series for the exchange-interaction model of
ferromagnetism are analyzed by means of a reexpansion technique to obtain the ordering tem-
perature. In particular, for all two-sublattice decomposible structures (e. g. , linear chain,
plain square, simple cubic, body-centered cubic) the formula k~T&/J= (12/5) (z —5/2) {4$+3)-
reproduces our numerical results.

I. INTRODUCTION

Bogoliubov-type arguments have been used to
rule out the possibility of a "phase transition" in
two-dimensional lattices for a wide class of iso-
tropic interaction Hamiltonians. ' On the other hand,
Stanley and Kaplan have shown, using high-tem-
perature series, that the numerical evidence for

a phase transition in the two-dimensional (2-d)
Heisenberg model (HSB) is just as convincing as for
the three-dimensional (3-d) case. The major criti-
cism of their result seems to have been that the avail-
able series are too short to yield reliable evidence
for 2-d systems. A theoretical resolutio~ to this
dilemma has been proposed by Stanley and Kaplan
who point out that one must be clear in distinguish-
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ing between the existence of a spontaneous mag-
netization in which case the zero-field correlation
function is finite in range M ~ lim„„(8sS„)4 0 and
the weaker condition for a phase transition where
the correlation function is sufficiently long-ranged
that the zero-field isothermal susceptibility di-
verges yr ~ g, (SsS„)= ~. The purpose of the pres-
ent paper is to present what we feel is convincing nu-
merical evidence for the existence of a phase tran-
sition, in the latter sense, for a 2-d exchange-inter-
action ferromagnet (EX). To do this we have made
an extensive reexpansion analysi. s of the known4

high-temperature susceptibility series for the ex-
change-interaction model (eight terms for general
crystal lattices) and the existence of a finite Tc is
exhibited.

II. THEORY

We consider a ferromagnetic system containing
N particles of spin S with isotropic nearest-neigh-
bor exchange interaction. The exchange-interac-
tion Hamiltonian is given by

n

3C = —cT Z Pgg -'gp~ii'Q $
g=i

Here P&& is the Schrodinger exchange operator and
is a polynomial of degree 2S in S, ~

5& .
2S

P,q
= Z A„(S)(S, ~ S~)", i' . (2)

eo

The coefficients A.„are determined from the prop-
erty that P&& exchanges, or permutes, the spin
coordinates of two atoms labeled i and j:

p, q O(i, j)= O(j, i)pgq,

where O(i, j) is any operator which contains the
spin operators of atoms i and j. Typical forms for
the operator P~& are

Po — s+ 2(S) S)); S= s

= —1+ (S). Sg)+ (S( ~ S)); S= 1

I s (Sg'Sg)+ gs (S&'Sg) + f (S&' Sy);

S = -', ~ etc. (4)

Due to the permutation property of the Schroding-
er exchange operator P&&, high-temperature series
can be extended further with less effort for this
model than for the Heisenberg model. For the case
8= & the two models are identical. Chen and

Joseph obtained eight terms in the low-field-high-
temperature susceptibility serves for arbitrary
spin and general crystal lattices. The high-tem-
perature-low-field susceptibility series can be
written in the form

where K=8/ksT. If one assumes that near the
critical temperature y diverges as (Kc-K) ", one
then has for large n

a„/a„, -(1/Kc) [I+ (y- 1)nj . (6)

g~ Q b„(K*)", (6)

that by adjusting the parameter i, plots of k Jb„,
vs I/n can be made to behave quite regularly
From such plots one then obtains 1/~ and hence
1/Kc by using

1/Kc = 1/Kc i ~

Our method differs from that of Lee and Stanley
in two respects. First, we do not require a unique
value of t to be used for all lattices and all spins.
We sought, by computer techniques, the optimum
value of t for each situation. Secondly, we have
introduced the concept of a validity criterion for the
reexpansion-"the validity fraction V. " V is de-
fined as the ratio of the number of points on a
blab„, -vs-1/n plot which fall on a straight line (l)
to the total number of (data) points available (n),
e.g. , V= I/n. It is clear th-at V can range from
V= 2/n, representing the worst possible fit, to
V=1, where every point falls on the same straight
line. As a practical matter, we found that results
for which V&(l/n) (1+ —s'n) = s+ I/n implied that a
high level of confidence had been achieved. Results
for which V= & were also considered reliable but
anything with V& & was considered suspect. Figure
1 illustrates a typical t-parameter family and shows
how we obtained our "best" extrapolated critical
intercept. The numbers in parentheses are a re-
flection of the validity criterion just discussed.

Table I summarizes the results of our numeri-
cal analysis for ksTc"/Z for a wide variety of
1-, 2-, and 3-d lattices for spin values from I to
6. The numbers in parentheses refer to the validity
fraction.

HI. DISCUSSION

Consequently, one makes plots of a„/a„, vs I/n
and interprets the intercept I/n = 0 as 1/Kc. Fre-
quently, however, the series are too erratic to
obtain reliable results. A more sophisticated
method of analysis is hence called for.

The technique we have used is the method of con-
formal transformations as used by Lee and Stan-
ley with certain. modifications and extensions. Lee
and Stanley have shown that if one introduces the
tran. sformed variable

K*=K/(1+ iK),
in terms of which we may write

X~& a„K", In order to see if there was any systematics in
our results, various plots of Tc vs 8 and z (near-
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FIG. 1. (A) 1/Ez vs 1/n for various t for S=l, plane square; (3) 1/Kc-4. 51 vs t-4. 0 for S=l, plane square; (C)
1/Kc- 6. 11 vs t -4. 2 for S= 1, bcc; (D) 1/Xc —1.7 vs t —1.7 for S= s, linear chain; (E) 1/ffc-7. 51 vs t-4. 4 for S= 1,
fcc. In B-E, the numbers next to the points indicate the validity fraction V (see text for discussion): (1) V= 8; (2) V

l, (3) y 3

est-neighbor number)were made. In Fig. 2 we
show the variation of jgsTscx/t with (48+3) for the
various lattices considered. To within our preci-
sion the curves are all straight lines for 8& —,'.
These critical temperatures can be summarized in
the simple formula

ksTc (S, I )//=A(I )(4S+3) +B(L,); (lo)

here L denotes the lattice dependence. The result
of a least-squares determination of the parameters
A and B is given in Table G. A study of the de-
pendence of A and B on L showed that for those

TABLE I. k&T&/J for the exchange-interaction model for various spin values and lattices. The numbers in parentheses
indicate the validity fraction V (see text for discussion): (1) V~I}; (2) V= &, (5) V& 2.

l

1
3
2
2
5
2
3

4

6

Linear

o(1)
—o. lv5(2)
—O. 14(2)
—O. 12(2)
—o. lo(2)
—o. o9(2)
—o. ov5(2)
—0. 070(3)
—O. 055{3)
—o. o5(s)
—o. o45(a)
—o. o4(s)

o. 32(2)
O. 18(2)
o. lo(2)
0. 05(3)
o. oa(a)
o. ol(s)
o(3)

—o. ol(s)
—o. 03(a)
—o. o4{s)
—o. o45(3)
—o. o5(s)

O. 83(2)
O. 50(2)
o. 36(2)
O. 28(2)
O. 22(2)
O. 18(2)
o. 14(a)
o. 11(3)
o. o9(a)
o. os(s)
o. ov(s)
0. 06(3)

Honeycomb Diamond Plane square

O. 62(2)
O. 51(1)
O. 41(1)

o. ss(1)
O. 28(1)
o. 24(1)
O. 21(2)
o. le(2)
o. lv(2)
o. le(2)
O. 15(2)

O. 14(2)

Plane triangle

o. 8v(2)
o. vs(2)
o. ev(2)
0.60(2)
o. 5e{2)
0. 53(2)
o. 5o(s)
0.48{3)
o. 46(s)
o. 44(s)
o. 43(s)
o. 42(s)

sc

l. 69(1)
1.2O(1)
o. 9s(1)
o. ve(1)
O. 64(1)
O. 55(1)
o. 4s(2)
o. 43(2)
o. s9(2)
o. se(2)
o. as(2)
o. sl(2)

bcc

2. 53(1)
1.9O(1)
l. 4V(1)
1.2O(1)
l. O2(1)
0. 88(1)
o. vv(1)
0. 69(2)
o. 62(2)
o. 5v(2)
O. 52(2)
O. 49(2)

fcc

4. 01(1)
S.11(l)
2. ea(1)
2. 34(1)
2. 12(l)
1.96(1)
1.8S(1)
1.V5(1)
1.6V(1)
1.61(1)
1.55(1)
1.5O(1)
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ferent dimensionality. We believe this case amply
illustrates the treachery inherent in the blind ac-
ceptance of numerical results based on finite series.

For S= ~ (the Heisenberg case) there seems to
be no simple systematic behavior to the calculated
T&. In general, these points do not fall too far
from what Eqs. (10) and (ll) would imply, but they
are definitely outside the uncertainty limits that are
ascribed to these points.

Suzuki' has shown that in a "strict" sense (the
existence of a spontaneous magnetization) there are
no phase transitions in ideal isotropic ferromagnets
such as the Heisenberg and exchange models in
two dimensions. He does not, however, rule out
the possibility of other kinds of "weaker" phase
transitions, such as might be associated with the
divergence of the susceptibility. Furthermore,
based upon the greater degeneracy of the exchange-

models ground state —its higher symmetry and con-
sequent lower point of broken symmetry-he has
shown that any order parameter for the exchange
model must be less than or equal to that of the
Heisenberg model. If for example we consider the
critical point associated with the divergence of the
susceptibility T& then

EX ( yHSB
C — C ~

The present work based upon an eight-term
series, coupled with new reexpansion techniques,
gives what we feel is strong evidence for a phase
transition (in the weaker sense) for the exchange
model in two dimensions. Based upon the previous-
ly mentioned symmetry arguments, we believe
that these results supplement and strengthen the
direct evidence presented by Stanley and Kaplan
for such transitions in 2-d Heisenberg ferromagnets.
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A conjecture of Luttinger and Tisza on the ordering of classical spins on a lattice is proven
for a class of Bravais lattices with arbitrary spin-spin interactions, provided the interaction
obeys a simple symmetry, and is restricted to nearest neighbors only. The proof holds for
lattices in which all bonds lie along edges of stacked similar parallelepipeds.

The purpose of this paper is to discuss a con-
jecture of Luttinger and Tisza' about the ordering
of classical spins in a configuration which mini-
mizes the energy of a lattice of spins. Luttinger
and Tisza (LT) have considered, in particular, the
case of a simple cubic lattice with spins interact-
ing via dipole-dipole forces and conjectured that
the minimum-energy configuration is invariant un-

der any translation by twice the lattice spacing.
In this particular case, Onsager~ had hinted earli-
er that there is a proof for the lowest-energy con-
figuration, which indeed satisfies the LT conjec-
ture. More recently there has been some interest
on interactions via quadrupole-quadrupole forces, ~

which are relevant to ordering in molecular crys-
tals, and it was conjectured that the minimum-en-


