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The specific heat capacities of the quasi-Heisenberg antiferromagnets K2MnF4 and K2¹iF4
have been measured by means of ac calorimetric methods and, through a comparison with
the isostructural compound K2MgP4, the magnetic contributions extracted. The magnetic com-
ponents lie on a universal curve when plotted in units of g ln(2S+1) against the reduced tem-
perature T/T~~, where T, is the respective ordering temperature. It is found that the en-

tropy change of R ln(2S+1) is spread over the range 0.4 ~ T/Tc ~ 4 with a peak in the specific
heat at -1.5T, '. Smaller peaks are observed at the transition points and are attributed to
the crossover to anisotropic behavior. Models for the two-dimensional Heisenberg magnet
are discussed and a suggestion by Kuramoto is explored which produces good agreement with

experiment and a transition temperature which is proportional to the critical exponent g.

I. INTRODUCTION

Interest in the problem of the two-dimensional
Heisenberg ferromagnet and antiferromagnet has
been spurred by several recent developments: (i)
the rigorous proof by Mermin and Wagner' that no

long-range order can exist above T=0 K; (ii) the
suggestion, based on series-expansion analysis,
that the susceptibility (staggered for the antiferro-
magnet) diverges at the so-called Stanley-Kaplan
temperature

T,' '= J(z —l) [2S(S+ l) —l j /sks

for z neighbors of spin $ coupled by the exchange
energy 8; (iii) clear evidence from neutron diffrac-
tion ' that K~MnF4 and K~NiF4 have purely two-
dimensional correlations above their Noel tempera-
tures, but order abruptly in the third dimension
below.

Numerous theoretical treatments of the two-di-
mensional Heisenberg model have sought to investi-
gate further the physical properties of a system
which behaves according to points (i) and (ii). '
Since the simple random-phase-approximation
(RPA) calculation' supports the result that no long-
range order exists above absolute zero, efforts
to date have centered on modifications of the RPA
which lead to a divergent susceptibility at finite
temperature. Lines and Mubayi and Lange~

achieve this end by using decoupling schemes in a
Green's-function calculation which modify the
power spectrum in such a way as to achieve com-
plete short-range order without a concurrent ap-
pearance of long-range order. As we shall see,
both methods lead to results which are quite dif-
ferent from experimental results on the prototype

materials K~MnF4 and K&NiF4.
In view of the important role of the short-range

correlations in the behavior of two-dimensional .

Heisenberg systems, we believe that knowledge of
the behavior of the specific heat of the real Heisen-
berg-like systems will serve to guide the develop-
ment of a theory for this class of magnetic materi-
als. Accordingly, we have determined the specific
heat capacities of the antiferromagnetic salts
K,MnF4 and K&NiF4,

' the two-dimensional proper-
ties of which have already been discussed exten-
sively in the literature. 3' As a measure of the
lattice contribution, we have also determined the
specific heat capacity of the isostructural com-
pound K~Mg F4.

Our analysis shows that the three compounds
have very nearly identical lattice specific heat
capacities and that, after subtraction of the lattice
component, the magnetic contribution from each
salt can be scaled by the logarithm of the spin de-
generacy and the Noel temperature into a universal
curve which contains the entire spin entropy. Both
salts show, in addition, a small peak at the 'Neel

temperature which could be attributed to either the
onset of Ising-like correlations or a change to
three-dimensional ordering. Vfe find that the
anisotropy accounts well for the behavior of K,MnF4
but overestimates the width of the peak in K&NiF4.

Since earlier calculations do not agree with these
results, we turn to a quite simple modification of
the RPA scheme suggested recently by Kuramoto.
Using a more realistic expression for the wave-
vector-dependent susceptibility, he finds that the
transition temperature is proportional to the criti-
cal exponent g which measures the deviation from
Ornstein-Zernike critical behavior. ' %e have ex-
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tended this approach and find that such a calculation
leads to quite satisfactory results for the short-
range-order parameter and the specific heat.

II. EXPERIMENT

The specific heat capacity was measured as a.

function of temperature for each material using the
ac calorimetric technique described previously. "
Samples were cleaved from larger single crystals
(usual thickness 0. 15 mm), blackened on one side
with "dag" graphite suspension, and cemented to
25- p, Chromel-Alumel thermocouples which had
been flattened to 5 p, in the junction region. ' Be-
cause of the poor thermal conductivity of these
materials along the c axle (normal to the cleaved
planes) care was taken to operate at a sufficiently
low freIluency (f ll Hz) to maintain the samples
in internal thermal equilibrium.

Bulk crystals of K2MnF4 were prepared by one of
us (H. l. ) for use in neutron studies4 using tech-
niques described previously. Samples of K2NiF4
and KBMgF4 were obtained from a number of
sources and all gave nearly identical results; the
data presented here for K2NiF4 were taken on a
sample prepared by Sakamoto. As no differences
could be detected between cleaved and mechanically
polished samples, we conclude that strains do not

play an important role.
To calibrate the ac measurement it is necessary

to have an absolute value for the specific heat ca-
pacity at some reference temperature. As no pre-
vious measurements have been reported for these
materials, we have determined the heat capacities
of the bulk crystals from which our samples were
cleaved by means of the heat-pulse method.
Manganin heaters were cemented to the small crys-
tals (50 mg of K2MnF4 and 90 mg of KzNiF4) and

the temperature rise detected with a thermocouple.
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Measurements were performed at 295 K in the ac
calorimeter by evacuating the sample space. Heat
pulses of 10-100 mJ were applied, giving repro-
ducible temperature rises of 100-1000 mK. Since
measurements on such small samples are likely
to be i~accurate, we calibrated the system with a
sample of pure Cu, obtaining a specific heat ca-
pacity about 7% higher than accepted values, which

we take as an indication of our systematic error.
Analysis of data taken by the ac method over a

wide temperature range relies heavily on knowl-

edge of the thermocouple sensitivity. Thermo-
couples used were from the same source and un-
derwent identical mechanical and thermal treat-
ment. The major error in our data lies in the as-
sumption of standard sensitivity curves for our
thermocouyles, although in any case, the compari-
sons made here should remain valid.

III. RESULTS

The absolute specific heat capacities at room
temperature were determined for the magnetic
compounds with the results

C~(29 K)u'=43+ 1 cal/mole K (2)

C~(295 K)"= 42. 5 cal/mole K. (4)

In the analysis below a slight adjustment in the
room-temperature value of the K,NiF4 data, still
within the range (3), was made to improve the fit
to the universal curve.

The magnetic contribution to the specific heat is
spread over a large range of temperature as may
be seen in Fig. 1. There it may be noted that the
data for K~MnF4 and the reference material are
identical above 160 K which is 4T,"'(Mn), where

T,' '(Mn) = 42. 1 + 0. 1 K. (5)

C~(295 K)"'=42+1 cal/mole K, (3)

which are Iluite close to the Debye value of 42 cal/
mole K. No absolute determination of the specific
heat of K~MgF4 could be made as no large crystals
were available. It should be kept in mind that val-
ues (2) and (3) are very likely overestimates of the
actual specific heat capacities for bulk samples.
For comparison purposes, we have taken the spe-
cific heat capacities to be equal at 295 K with the
value
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Similarly, the data for K2¹iF4 rejoin the reference
curve near VO K, which is 0. VT,"'(Ni), where'

TI I(N1) =98.7+ 0. 1 K.
FIG. 1. Specific heat capacities of the planar com-

pounds K2MgF4 (solid line), K2MQF4 (squares), and
K2NiI'4 (circles). The deviation of the data from the
reference (solid line) is interpreted to arise from the
magnetic contribution.

We conclude that the magnetic contribution to the
specific heat capacity is important in the range
0. 7& T/T,I2I~4.

Because of the similarity in magnetic struc-
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ture, 3 4 we expect the magnetic specific heat capac-
ities of K~MnF4 and K3NiF4 to behave similarly
once account is taken of the differences in spin de-
generacy and exchange constant. Accordingly, we
have plotted the deviation of the specific heat ca-
pacity of each material from that of the reference
material, scaled by Rln(2S+1), as a function of re-
duced temperature T/T,'2' in Fig. 2. The spin on
the Mn" ion has been taken to be —,', while that on
the Ni" ion, to be 8=1 as determined in the spin-
Hamiltonian calculation of Lines. ' As mentioned
above, it proved necessary to set the room-tem-
perature specific heat of K~NiF4 to
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Cp(29 5 K)"' = 42. 8 cal/mole K,

which is within the range of values determined in

(3). At the maximum, the magnetic contribution
is on the order of 10-20% of the total heat capacity
of the samples. Therefore, the +0. 5% error for
each curve is reflected in the rather large scatter
of the points in this difference plot. Nonetheless,
we argue that the points lie on a universal curve,
the distinguishing features of which are (i) a peak
of =0.9Rln(2S+1) at 1.5T~+'; (ii) a finite specific
heat capacity of =0. 8Rln(2S+1) at T,'~'; (iii} a
tail which extends to -4T,'+; (iv) an entropy dif-
ference of (0.95+ 0.1)Rln(2S+1) over the range
0.4 —T/ TQ) —4

Because present theories are based on RPA tech-
niques, they share some common faults. None of
them predicts a spin dependence of the specific
heat so that none produces an entropy change of
R ln(2S+ 1). To compare these models with experi-
ment, we have integrated the specific-heat curves
to determine the entropy difference and considered
the curve which results from dividing the specific
heat by the entropy difference. The results are
plotted in Fig. 2.

At one extreme, the RPA models predicts no
transition at finite temperatures, mith a constant
heat capacity of 1.5R near T = 0 K. We have scaled
the temperature to the large S limit of (1) for the
quadratic layer structure

T,"'=1.2ZS(S+ I)/u, . (7)

Without normalization the entropy change in the
RPA model is 2. VR, corresponding to a spin in ex-
cess of S=6.

At the other extreme, a Green's-function mqdel
due to Mubayi and Lange~ predicts a divergence in
the susceptibility. at

FIG. 2. Differences between the specific heat capaci-
ties of K2MgF4, the reference compound, and K2MnF4
(squares) and K2NiF4 (circles). The data are scaled by
the expected entropy change Rln(2$+1) and are plotted
as functions of the reduced temperature T/T,",where
T, ' values are given in Eqs. (5) and (6). The error
bars represent only the noise contribution to scatter.
Theoretical predictions from Ref. 6 (solid line), Ref. 7
(dashed line), and Ref. 5 (dot-dash line) are also scaled
to the total entropy change for each curve.

+Lines

The same model predicts that the correlation
length diverges with the critical exponent v = 1, and
thus violates the scaling law

2v =2- cz (9)

This result seems to indicate that the cutoff pro-
cedure used in this model violates the scaling hy-
pothesis despite the fact that the cutoff wavelength
is proportional to the true correlation length.

In the vicinity of T~~' both KzMnF4 and KzNiF4
show a small peak in their specific heat capacities.
These are shown in Fig. 3 as a function of reduced
temperature to facilitate comparison of the curves.
The peak in KSMnF4 is larger in amplitude and
broader than that of K~NiF4. The temperatures of
the peak values are

temperature heat capacity by a factor of 2 or more.
The most complex of present models is due to

Lines~ and represents an improvement over earlier
calculations as seen in Fig. 2. However, the peak
in C~ above T,'+ is far too large (approximately
4.8 onthis scale} and occurs near 1.1f,'~', far
closer than experiment indicates. Near 7,' ', the
specific heat capacity increases linearly with
7.' —g,'~' which yields a critical exponent~

T,' ' = 8Js(s+ 1)/Sks (8) T~+'(Mn) =42. 1+0.1 K (5)

the molecular-field value. The low-temperature
behavior of the specific heat was determined for
this model for $= —,

' and is shown in Fig. 2 after
division by Rln2. The qualitative agreement is
good despite its overestimate of the size of the lom-

T,"'(Ni) =98.7+0.1 K (8)

for K2MnF4 and K2NiF4, respectively, values which
agree mell with the transition to three-dimensional
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TABLE I. Anisotropy and exchange constants for K&MnF4
and K2NiF4.

gruff H~ cT

k~ kg
(K) (K)

K ¹F 1.1"
K,MnF4 0.34"

55

T {cele) T (expt)
(K) (K)

99.0
40.6

98.7
42. 1

0.01
0.008

EC
g ln(2$+ 1)

0.052
0.058

long-range order observed by other methods.
The origin of these small peaks in the specific

heat capacities at the ordering temperature can be
ascribed to two possible mechanisms: (i) close to

7,' ' the anisotropy energy becomes comparable to
the energy in spin fluctuations, causing a cross
over to behavior appropriate to an Ising system, '
namely, a logarithmic divergence in the specific
heat; (ii) near T 3' correlations within the plane
become large enough to induce correlations between
planes which then lead to the three-dimensional
phase transition. Neutron-diff raction results in

K2NiF43 show clearly that only the longitudinal sus-
ceptibility diverges, indicating that the phase tran-
sition is anisotropy dominated. No evidence of
three-dimensional critical scattering was observed.

On the other hand, consideration of the size of
the anisotropy in the two materials shows that there
should be little difference in the behavior near T,"'.
In Table I, we have listed the anisotropy energy

gpsH„/ks for each material's ~8 along with the
nearest-neighbor exchange constant J. Transition
temperatures calculated from (1) using these val-
ues of J are shown to be in excellent agreement
with the temperature of the peak in C~. Cross-
over'~ to Ising-like correlations should occur when
a'= T/T,' ' —1 becomes comparable to

4=gpsH„/kT, ' '

From Table I and Fig. 3, it is clear that the width

of the peak in K&NiF4 is smaller than predicted on
the basis of this argument. We note that the ampli-
tude of the specific-heat peak ~C scales with
ln(2S+ 1) as expected.

Neutron diffraction measurements3'4 indicate
that the correlation length diverges with a critical
exponent v =0. 57+0.05 for K,NiF4 and v =0. 50.
+0.08 for K2MnF4. Using these results in thescaling
law (9) we conclude that

0.76 ~ cy —1.16.

Owing to the extremely small amplitude of the
peak, it is difficult to determine the critical ex-
ponent; for K&NiF4 it is impossible. For K2MnF4,
using the baseline sketched in Fig. 3(a), we have
plotted the deviation vs q above the transition on
the inset to Fig. 3(a). While the data are insuf-
ficient to give us any confidence in the critical ex-
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FIG. 3. Behavior of the specific heat capacity near
T~ . (a) K2MnF4 data; inset shows the approximate
power-law behavior above the transition assuming the
baseline sketched in the figure and showing a critical
exponent near 0.87. (b) K2NiF4 data; the peak is too
small to permit even an estimate of the critical exponent.

ponent, it certainly seems to be reasonably close
to (11).

IV. THEORY

PP A (pcs+ -1)-1 (13)

A theory for the behavior of the two-dimensional
Heisenberg model must lead to a finite tempera-
ture at which the susceptibility diverges, but no

long-range order above absolute zero. ' Since
the RPA correctly predicts vanishing long-range
order at finite temperatures, attention has centered
on modifications which allow for a divergent sus-
ceptibility at the temperature T,' ' [Eq. (1)]pre-
dicted by high-temperature series expansion. The
problem can be discussed quite simply by consider-
ing the theorem

3NS(S+ 1) = ks TZ Xf-
k

where yk is the Fourier transform of the longitu-
dinal-spin correlation function which, in RPA, is
given by

~Reference 5. "Reference 13. where yo is the static susceptibility. For three-di-
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mensional lattices, the sum in (12) is well-behaved
and leads to a finite temperature at which yp - 0.
In two dimensions, however, (12) becomes (ap-
proximating the zone by a circle of radius v/g)

( 2+ ~2k2P/2

2Z (2 + k') (16)

where v ~ is the correlation length and we have as-
sumed that the parameters p and' g are small. At
the critical point where v vanishes, (12) becomes
equal to

q" I" dk
—.'s(s+ i) =

2~ .o k

which can be evaluated analytically. Thus, in the
approximation of a Brillouin zone of radius v/a,
we find that

4T/cTS(s+ 1)7I'
C

(18)

This result supports the observation made by

where k is measured in units of the inverse of the
lattice constant. Since the integral is divergent in
the limit that yp vanishes, the transition occurs at
T= 0 K in contradiction with the series-expansion
result. ~

In a rather bold move to modify this result,
Lines proposed to cutoff the integral at a wave vec-
tor k, which is temperature dependent. Elementary
substitution of the limit k, into (14) leads to the con-
clusion that the integral will remain finite so long
as

lim (2Jy2k2) =finite. (i6)
Xp" ~

Since in the RPA the true correlation length varies
as g2/, it was necessary to define the new length

k, ' to be some fraction of the actual correlation
length. While this is reasonable, the sharp cutoff
implied has no physical basis and the theory, as
we have seen, leads to results which are quite dif-
ferent than the observed behavior for quasi-Heisen-
berg systems.

Quite recently, Kuramoto2 pointed out that a
more realistic expression for yg will lead to finite
T,' ' within the framework of the usual RPA method.
We have extended this idea and find that it predicts
behavior of the short-range correlation function
and the specific heat whi. ch is quite similar to ex-
perimental results. The parameters which lead to
a value of T,' ' in agreement with (1) also seem to
be reasonable choices in the light of both 1sing-
model results and experimental values.

We proceed by choosing the Fisher-Burford'
(FB) approximant for gf:

Kuramoto that a finite and positive value of g leads
to the Stanley-Kaplan transition. Similar conclu-
sions have been reached for the spherical model
with an interaction having an y '~' ~' dependence,
and for the ideal Bose gas in two dimensions'9 with
an energy dispersion relation of the form ka ". In
all of these cases, it is the presence of a power
less than 2 in the dispersion relation which leads
to a nonvanishing transition temperature.

Substituting (16) into (12), assuming q and q are
constants, we obtain the temperature dependence
of the correlation wave vector which we may then
use to evaluate the related integral for the short-
range-order parameter '

(S2 ~ S ) 3k2T 1

(io)
to find the nearest-neighbor correlation function
(S2' S,). As above, we approximate the zone by a
circle of radius v/a and find that

(82 S,) 3k2 T FS

S(S 1')
=

2 S(S 1) dk F2(k) y2

where J~(k) is a Bessel function of zero order.
This approximation introduces errors into our re-
sults as does the use of ka in the FB approximant
(16) rather than a function K(k) which reflects the
lattice structure. We have used the present ap-
proximations in the interest of obtaining the transi-
tion temperature (18) in closed form.

In Fig. 4 we have plotted the results for the
nearest-neighbor correlation function calculated in
this approximation for two values of g holding y
constant. As g is reduced, the transition tempera-
ture decreases as shown by (18) and the value of the
correlation function at T,' ' increases. In the limit
g- 0, we return to the RPA result with T,'3' = 0 K
and with (S2 S,) reaching S(S+ 1). In the present
approximation the temperature scale is expanded
considerably over that of Lines, ~ owing again to
our use of k rather than 2- cosk~ - cosk„u. The
values g = 0.25 and y = 0.03 are appropriate to the
two-dimensional Ising model. ~

Since the transition temperature is known from
series expansion, we may choose values of q and

q which agree with (1). Taking the large-S limit
of (1) given by (V) and comparing it with (18), we
find that

4gv' "/3p"=1.2

leads to the same transition temperature for the
two calculations. In Fig. 5, we have plotted curves
for the derivative of the nearest-neighbor correla-
tion function with respect to temperature for sev-
eral values of the parameters which satisfy (20).
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T (2)
I.O—

+

(f)

f(n

The choice

g=0. 19, @=0.03 (21)

appears to be favorable since the peak in the deriv-
ative is close to the peak in the observed specific
heat and the value at T,' ' is approximately the
same fraction of the peak value found experimen-
tally. Further, this value of g is close to that de-
termined from neutron-diffraction data ' away
from T,"' and y is appropriate to the two-dimen-
sional Ising model.

The result for the short-range correlation func-
tion (80 8, ) for values (21) is shown in Fig. 6. At

T,'a', (Sa ~ 8,) reaches 64% of its maximum possible
value; this is approximately the maximum spin pro-
jection possible even at absolute zero owing to
zero-point motion. s Also shown in Fig. 6 is an es-
timate of the short-range-order parameter for

Ol l I I I I I I I I

0 1.0 2.0 5.0 4.0 5.0 6.0 7.0 8.0 9.0
5k~T/2JS(S+ I)

FIG. 4. Nearest-neighbor correlation function calcu-
lated from the Fisher-Burford approximant to the wave-
vector-dependent susceptibility for two different values
o f g and with p = 0. 03.

K~NiF4 determined from an analysis of the F' nu-

clear resonance and the prediction of I ines's
theory. The analysis of the NMB data assumes the
divergence of the exchange frequency , at T,' '

manifested by the increasing NMB linewidth of F
nuclei having only one Ni neighbor. The presence
of thermodynamic slowing down would reduce both

~, and the size of the short- range-order parameter
near T,'3', The present calculation is clearly an
improvement over the Lines model, and could be
improved further by forcing the dispersion curve
to approach the zone boundary with zero slope, thus
compressing the temperature scale somewhat.
Vfe note that there is some inconsistency between
the NMB data and the specific-heat results, since
the NMB data indicate that the maximum slope of

(80 ~ 8, ) (peak in C~) occurs above 2 T~'.
The specific heat capacity is related to the de-

rivatives of the nearest-neighbor correlation func-
tion shown in Fig. 5 through the expression

(22)

As with previous calculations, the specific heat de-
termined in this way is spin-independent and must
be normalized to the entropy change before com-
parison with experiment. In the present ease, ,

however, the specific heat is finite at the transi-
tion, leaving an unknown fraction of the total en-
tropy change below T,'@. For the parameters (21)
16% of the magnetic energy density has been ac-
quired below T,"', as can be seen in Fig. 6, in-
dicating that a similar fraction of the total entropy
change also occurs below the transition. There-
fore, we take the entropy change calculated from
the specific-heat curve above the transition to be
64% of the total. The specific-heat curve calculated
using the values (21) is plotted as a function of re-
duced temperature in units of the entropy change in
Fig. 7 along with the experimental data from Fig.
2. The agreement is quite satisfactory in the in-

1.0Ii-
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FIG. 5. Temperature derivative of the nearest-neigh-
bor correlation function using the Fisher-Burford approxi-
mant. Values of q and y were chosen to produce a criti-
cal temperature which agrees with the prediction of
series-expansion analysis.

0
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2
REDUCED TEMPERATURE (T/Tc

FIG. 6. Nearest-neighbor correlation function for the
choice q —-0.19 and @=0.03 (solid line). Estimated ex-
perimental values (Ref. 20) are shown as circles and the
prediction of Ref. 6 as a broken curve.
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FISHER —BURFORD APPROX I MANT

q = 0.19 $ = 0.05

from the Hamiltonian and further, does not clearly
display the physical interpretation of the parameter
Qo

V. DISCUSSION AND CONCLUSIONS

0
u

Z 00 P
3
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2
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FIG. 7. Specific heat capacity calculated for @=0.19
and y = 0.03. Representative data from Fig. 2 are super-
imposed for comparison.

termediate temperature range, with a peak of ap-
proximately the correct size occurring at 1.5 T,' '.
The long tail on the calculated curve can be reduced
by a more realistic behavior of yg near the zone
boundary. Using 2 —2cosk rather than k in (16),
for example, we obtain similar curves to those
in Fig. 5, but with compression of the high-tem-
perature portions of the curve by approximately
20/p. The calculation does not satisfactorily pre-
dict the behavior near T,"', a feature noted in the
analysis of neutron data3 where g appears to change
from 0.4 to-0. 2 in going from T,' ' to 1.1T',3'.

Below T,' ' there is no long-range order in the
absence of anisotropy. This follows in the RPA
from consideration of the integral equation which
defines the long-range-order parameter $,

In a sense the present experiment is a negative
result: there is no singularity of the specific heat
at the ordering temperature T,' '. Rather thandis-
prove the occurrence of a Stanley-Kaplan transi-
tion in K2MnF4 and K,NiF4, this should be taken as
additional evidence in its favor since the series-
expansion results seem to indicate that there is no
infinity in the specific heat. ~' In the usual sense,
then, the Stanley-Kaplan transition is not second
order. In fact, there is little to distinguish the be-
havior of the specific heat of the two-dimensional
Heisenberg system from the one-dimensional Ising
model, where there is no transition, except for the
weak peak accompanying the crossover to aniso-
tropic behavior. In view of the smooth behavior
and the large temperature range involved, it seems
likely that the high-temperature expansion would,
give a reasonable approximation to the actual be-
havior with a limited number of terms. We urge
that such calculations be performed and compared
with the universal curve we have extracted from
our data in Fig. 2. Unlike the models discussed
here, the series-expansion results should reflect
the proper spin-dependence and would predict the
true size and position of the peak in the specific
heat.

We have extended the suggestion made by Kura-
moto which places central importance on the critical
parameter q in two dimensions. Of course it is
clear that, since g is defined through the long-
range behavior of the correlation function, for
x=0,

] $
dP y th

$E (23)
(SpS„) R (24)

Here E(k) is the dispersion curve for excitations in
the system. As noted above, when 4 is large com-
pared with the correlation wave vector ~, the dis-
persion curve is no longer quadratic, the fact
which leads to the Stanley-Kaplan transition in the
present model. However, at low temperatures,
we are clearly in the spin-wave regime where the
dispersion relation is quadratic, and (23) requires
that S = 0 for all finite T. The presence of anisot-
ropy modifies this result as has been discussed
by Lines.

We conclude that a satisfactory explanation of the
properties of the two-dimensional Heisenberg mag-
net results if a more realistic form of the wave-
vector-dependent susceptibility is appended to the
theory. This approach is unsatisfactory in that it
does not produce the transition in a natural way

where d is the dimensionality, if rj is important at
all, it is of most importance for d = 2. In the case
of the two-dimensional Heisenberg model, Stanley
and Kaplan' noted that even at low temperatures
the correlation function (24) might decay with a
small inverse power of R, a possibility which
would account for the absence of true long-range
order while the susceptibility, which is the sum of
(24) over all R, continues to have a divergence.
These observations would indicate that a model for
the two-dimensional Heisenberg magnet should
focus on the exponent g and include the possibility
of a temperature dependence.

From an experimental point of view, we have
been fortunate in the selection of K~MgF4 as a ref-
ference material, and in the fact that all three
salts have very similar lattice specific heat capa-
cities. No adjustments of the temperature scale
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to reflect different effective Debye temperatures
seem capable of producing the curve in Fig. 2,
nor of giving an entropy change of flin(28+ l) for
each material. The ac method has been essential
for the observation of the extremely small peaks
at the ordering temperatures and the high resolu-
tion possible has facilitated the extraction of the
broad magnetic contribution to the specific heat.

We conclude that thermodynamic measurements
give further evidence that the ordering of the planar
antiferromagnets K2MnF4 and K3NiF4 is of the
Stanley-Kaplan type, with the anisotropy and three-
dimensional nature of the ordered phase making
only minor modifications in the over-all behavior.

Note added in Proof. Yamada has recently ob-
tained similar results for the two-dimensional
Heisenberg ferromagnet K2CuF4. The specific
heat of that material does not fall on the curve of
Fig. 7, but rather, resembles the curve of Fig. 5
with q=0. 25.
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Recent NMR and specific-heat measurements have revealed the presence of magnetic phase transitions in

CswiCl, at 4.85 and 4.4'K. Previous neutron-diffraction studies have revealed only one transition and we

have, therefore reexamined a single crystal of CsNiC1, in the temperature range 1.6-5.0 'K by means of
0

this technique. The use of neutrons of wavelength of 2.46 instead of 1.03A gives improved resolution and

peak-to-background ratio, and our study confirms the presence of two magnetic phase transitions. The first
of these corresponds to the onset of antiferromagnetic order and the second is interpreted as a 90'
reorientation of the basal-plane component of the magnetic moment. In addition, the triangular structure
observed at 1.6'K has been found to undergo considerable modification as the temperature approaches
4.4 'K.

I. INTRODUCTION

Pr evious neutron-diffraction studies' of
CsNiC13, which exhibits many of the characteristics
of a one-dimensional antiferromagnet, have re-

vealed a magnetic structure in which there are
linear antiferromagnetic chains along the hexagonal
c axis coupled together in a triangular array with
the moments lying in a plane perpendicular to the
basal plane. The Noel temperature derived from


