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The magnetic form factor of the induced moment in TmSb has been measured with polarized
neutrons. Thulium antimonide is a singlet-ground-state system, i.e., it has no spontaneous
magnetic moment, but under the conditions of the experiment the magnetization develops
through the mixing of the ground state with the first excited state. The experiments were per-

formed on a single crystal at 5 °K and an applied field of 12.5 kOe. Measurements were taken
with T Il (100) and fl (110). The theoretical magnetic form factor has been derived using the
tensor-operator technique of Johnston, Lovesey, and Rimmer, and the nonrelativistic wave
functions of Freeman and Watson. The experimental form factor with il {100) is essentially

a smooth curve as a function of sind/A, while for fill (110) considerable anisotropy is observed
at high scattering angles. This anisotropy arises from the nature of the ground state and is
determined by the crystal field acting on the rare-earth ion. The present technique may there-
fore be useful in investigating the ground states of the many compounds with unquenched orbi-
tal moments and appreciable crystal field interactions. The experimentally observed anisot-
ropy is in complete agreement with theory. Previous polarized-neutron experiments on rare-
earth metals indicate that the spatial extent of the 4f electrons is more expanded than given by
the nonrelativistic calculations. The observed form factor in TmSb does not agree with the
form factor calculated with nonrelativistic wave functions. Good agreement is obtained by
using the 4f radial distribution as determined from polarized-neutron measurements on thu-
lium metal. A set of {#") integrals has been derived from the experimental radial densities.

I. INTRODUCTION

Over the last three years the polarized-neutron
technique has been used successfully to measure
the magnetic form factors of the heavy rare-earth
metals gadolinium, ! thulium, 2 and terbium,

These measurements indicate a major discrepancy
between the experimentally deduced spatial density
of the 4f electrons and that calculated with nonrel-
ativistic wave functions.? The advent of relativis-
tic calculations®® appears to remove at least some
of this discrepancy, although the problem of under-
standing the conduction-electron polarization still
remains. In addition, measurements on the ionic
system Gd,O,' indicate an unexpected agreement
with the form factor derived from nonrelativistic
wave functions. The rare-earth pnictides have
been extensively studied recently, and the metallic
compound TmSb (NaCl structure, @,=6.076 A) pro-
vides an excellent candidate for a polarized-neu-
tron investigation for the following reasons: (a)
Very accurate single-crystal magnetization experi-

ments have been performed on TmSb by Cooper
and Vogt, ” and Foner et al.,® and used to derive
the crystal field parameters. Additional magne- -
tization experiments’ on the Tm,Y;.,Sb system indi-
cate that the exchange is negligible in TmSb. The
results of Cooper and Vogt show that TmSb is a
singlet-ground-state system, and that the induced
moment at 4.2 °K is isotropic in fields less than
15 kOe. Inelastic-neutron measurements® have
further refined the crystal field parameters, con-
firming the model proposed by Cooper and Vogt.
(b) From an experimental point of view, TmSb is
ideal for accurate form-factor measurements since
a magnetic moment of ~1uz per Tm atom can be
induced with a field ~ 10 kOe at helium tempera~
ture. (c) Polarized-beam measurements have been
reported on thulium metal? and a comparison of
the 4f electron wave functions in the two environ-
ments can be made.

The theoretical calculation of the magnetic form
factor is also of interest since this is a singlet-
ground-state system without exchange, and the form
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factor should be capable of reflecting the mixing
of the wave functions that characterizes the Van
Vleck susceptibility. The first calculations by
Trammell'® of the magnetic form factor in the lan-
thanide series introduced the functions {4;) and
{g;> relating to the spin and orbital parts of the
magnetization density, respectively. An alterna-
tive method is the tensor-operator method proposed
originally by Johnston, ! and reviewed by Lovesey
and Rimmer.'? In the present experiment in which
the electron configuration depends on the precise
values of the crystal field parameters, the direc-
tion of the applied magnetic field, and the sample
temperature, the power of the tensor method is
particularly well illustrated. A brief account of
the resulting “crystal field effects” has been pub-
lished. '3

The calculation of the magnetic cross section for
TmSb is described in Sec. II, For the usual po-
larized-beam conditions, in which the scattering
vector lies in the plane perpendicular to the applied
magnetic field and direction of the neutron polar-
ization, the magnetic form factor is a well defined
quantity. The magnetic form factor at a scattering
vector ¥ may be written

F@) =g +c3€da) +€4{is) +€6{da)s 1

where (j;) are the radial integrals discussed in
Sec. V, and ¢,, ¢4, and cg are coefficients defined
by the electronic structure of the magnetic ion,
which, in turn, is a function of the crystal field
potential acting on the ion and the external condi-
tions of appli<d magnetic field and temperature.
These coefficients are calculated in Sec. II. The
experimental details are given in Sec. III. A very
severe extinction problem was encountered in the
single crystal of TmSb (this difficulty caused the
experiment to be abandoned two years ago), and
the corrections applied are described in Sec. IV,
along with the experimental results. The deriva-
tion of the (j;) radial integrals is discussed in Sec.
V. This section also contains a reanalysis of the
polarized-beam measurements on thulium metal, ?
and a comparison between the 4 f-electron densities
in the metal and the antimonide. The conclusions
and possible extensions of the present work are
summarized in Sec, VI.

II. THEORY

To calculate the elastic magnetic scattering cross
section for TmSb we have used the tensor-operator
method. ¥ The conditions under which this meth-
od is advantageous are that (a) the unpaired elec~
trons all belong to the same shell, (b) the electron~
ic configuration of the ion is spectroscopically well
characterized, and (c) the magnetization density is
well localized. Clearly all these conditions are
fulfilled in the case of the Tm* ion in TmSb. The
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triply ionized thulium ion has 12 well-localized 4f
electrons, with a spectroscopic ground state des-
ignated by *Hs. The crystal field potential acting
on the free-ion wave functions is extremely well
known from other work, "® and the exchange inter-
action is negligible. In accordance with magne-
tization experiments on TmSb, and indeed on all
rare-earth pnictides and chalcogenides, we assume
that the magnetic moment arises entirely from the
unpaired 4f electrons. The tensor-operator meth-
od, with particular reference to the rare-earth
metals themselves, has been discussed by Balcar
et al.,™ and the present authors.'® The extension
to include crystal field effects is quite straightfor-
ward. However, the formulas appear at first
sight rather formidable and, since no detailed cal-
culations (or experimental measurements) of the
magnetic form factor in similar compounds has
been published, we have considered the derivation
in some detail. To give an over-all view of the
calculation we have started from the final formula,
which is the well-known expression for the magnet-
ic elastic scattering of polarized neutrons. Com-
putational details are omitted but certain parts of
the derivation, in particular, the relationship be-
tween the symmetry of the wave functions under the
operation of the crystal field potential and the final
terms in the cross section, are discussed in de-
tail.

The elastic magnetic Lcross section for a neutron
beam with polarization P scattered from an ion
with a nuclear scattering length b is given by

do/deoc b2 - pP.E + 1E.E. (LR7.14) (2

(Equation numbers preceded by LR refer to those
in Lovesey and Rimmer.!?) The magnetic scatter-
ing length is defined as a vector fl, with spherical
components E, given by

(2072/m) Eq =, | Th () 194, (LR7.5) (3)

where the electron wave functions are represented
by ¥,, and Tg(e) defines a tensor operator. The
polarized-beam cross section is often expressed
as

do/dye b® + 2bp PgP + ¢°p?, (4)
where p is the magnetic scattering amplitude and
d=kx@xk),
where fj and & are unit vectors in the direction of

the magnetic moment and scattering vector, re-
spectively. The amplitude p is defined as

P =(0.2696x107%) u (%) cm,

where u is the magnetic moment in Bohr magne-
tons, and (k) the magnetic form factor. Equation
(4) was originally derived in the absence of orbital
moment; however, the same structure may still
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be valid even with the orbitial moment present. If
we consider the neutron polarization parallel to the
magnetic moment then Eq. (2) becomes

do/dy< b? — bP Ey+ 5 (E2 — 2E_E,) (5)

and has the same structure as (4) only if E_,E, =0.
This condition is fulfilled when the scattering vec-
tor is perpendicular to the magnetic moment (i.e.,
¢*=1). In the present experiment the majority of
measurements do therefore have a form factor that
may be separated out of Eq. (2). The special case
|
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of the upper-layer reflections (¢*#1) requires the
evaluation of the terms E_; and E; and, in principle,
the measured polarization ratio R of the two neu-
tron spin states rather than the form factor should
be compared with that calculated.* For TmSb,
however, Eq. (4) may be written

do/d < b2 + 2bpPq? + ¢%p% + ¢*(1 - ¢%) ApP.

The additional terms Ap are very small so that the
concept of a form factor is still useful.
The tensor operator Th(e) is defined by

(o] TE(e, ) |9) = g, 1(477%/m)(0. 54% 10™2) 25 (4m)*/2YE. (&)

K. '-Q'r

x Z}[ 2 0T M|, | 6TMY{AK", K")

8JM

1 qt
Ka oI M

This expression, although complicated, may be
simplified and handled in stages for TmSb to illus-
trate the requirements of the calculation. First,
note that the cross section is expressed in terms
of spherical harmonics Yg::(fc). The essential part
of the calculation is contained in brackets [ ] in Eq.
(6). Fortunately this summation is simplified if
only one SLJ manifold is being considered (as in
TmSb) and the term becomes

5 IM | 9,) .| IM Y {AK", K") + B(K"", K")}
MM

x(K'Q'IM’|IM). (7)

To perform the sum over M and M’ all coefficients
of the wave-function expansion ly,)=%;a;1JM;)
must be known. The terms A(K’’, K’) and B(K'', K')
are discussed fully in Lovesey and Rimmer!? (Sec.
5) and coefficients related to these terms are tabu-
lated in Refs. 14 and 15, although not in quite the
same form. These parameters depend on the f-
electron configuration in the free ion, as well as on
the radial part of the one-electron wave functions
through the integrals (j;). The A and B terms cor-
respond to the orbital and spin parts of the magnet-~
ic interaction with the neutron, respectively. As
discussed in Ref. 15 the spatial dependence of the
wave functions, i.e., the dependence on (j;), may
be separated out in evaluating the A and B terms.
For example AK'", K =A" (K", KV {(Gges1) +{Groa}s
where the A'(K’', K') are independent of the {j;)
integrals. The problem remaining before Eq. (6)
can be programmed is to obtain the complete wave
functions g, of the crystal field states. Each of the
i, states must then be treated as in (7), and the
ensemble average (Tg ) calculated according to the
population of each level.

+B(K",K')}(K'Q’J’M’[JM)](K"Q"K’Q’]KQ). (LR 4.60) (6)

i
The Hamiltonian 3C for an ion placed in a crystal
may be written

=3¢+ V,

where JCp is the Hamiltonian of the free ion and V
is the crystal field potential. In calculating the
magnetic properties, or the neutron scattering
cross section, an extremely good approximation
for most of the lanthanide ions is to consider only
the effect of V on the ground state of the free ion.
The effect of this potential on the rare-earth ions
in a cubic field has been analyzed by Lea, Leask,
and Wolf'® (LLW), and Hutchings.'” LLW have in-
troduced two parameters W and x, where W gives
the absolute value of the crystal field energy levels,
and x is related to the ratio of the fourth- to sixth-
order terms, and are the only two independent pa-
rameters for a field with cubic symmetry. Al-
though W and x have been used widely, they are not
the most convenient parameters, especially in the
framework of the tensor-operator method. Wy~
bourne!® has discussed this point and pointed out
the advantages of expanding the potential V in terms
of tensor operators C{® such that

v= 27 BXCM),, 8)
Ryayt
where the summation involving ¢ is over all the
electrons of the ion, and

CP = [4n/(2k + 1)/ 2 YR,

where Yﬁ is the spherical harmonic operator.
Specifically we require the coefficients BL‘, and in
the case of a cubic crystal with the quantization
along the cube edge the only nonzero parameters
are By, B;, BS, and BS. These are related to the
more familiar parameters A}, (see LLW) as follows:
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Bi=8A4%("), Bi=(EV70)A%0*),
BS=16A%¢r%), BS=(-8V14)A%(®),

where the (#") are the radial expectation values of
the 4f electron. The parameters Aj depend on the
ionic environment. For an octahedral array of
charges, as in TmSb, each of magnitude Z and at
a distance R from the thulium ion,

(9)

Al=% Z¢%/R® and Ad=# zZe*/R'. (10)

The relationships between W and x and the parame-
ters Bf and B are

By=8Wx/BF(4) and Bj=16W(1 - Ix|)/yF(6),
(11)
where B, y, F(4), and F(6) are defined in Lea,
Leask, and Wolf, ¢
In calculating the neutron cross section it is con-
venient to choose the common direction of the ap-
plied magnetic field and the neutron polarization
as the axis of quantization. The advantage in using
the B!’s defined by Eq. (8) then becomes apparent,
since the parameters for an arbitrary 2z axis can be
obtained easily from the coefficients defined for
the axis of quantization along a direction of high
symmetry. The new coefficients B.* are given by

k

&= 2 BiDk (@, B, ), (12)
where D{¥ (@, B, v) are the rotation matrices for
the Euler angles ¢, B, and v. The problem of de-
termining the rotation matrices is a standard one
in quantum mechanics, and is treated elsewhere,
e.g., Edmonds, ' Marshall, ? and Messiah.?! The
relationship between the various B: for the three
principal directions in a cubic system are given in
Table I. The matrix elements of the crystal field
interaction are given by

n R ’ 1
(JM|V|Im >—§Bq(quM |Jaa) B DT

X(FraSLT TP £ aSLI) (F ICP || £),  (13)

where the doubly reduced matrix elements may be
obtained from Eq. (6.5) of Wybourne'® and the tab-
ulation by Nielsen and Koster.? The important
part of this equation is the product B (kgJM'|JM).
The Clebsch—Gordan coefficient is zero unless
q+M'-M=0, or M~M"=AM=gq, so this acts as a
selection rule for the nonzero matrix elements.
For example, in the {100) direction the values of
B! have ¢ =0 and 4, so the off-diagonal terms in the
final matrix must have AM =4, In the {100) direc-
tion, however, AM =2. This feature of the crystal
symmetry is important in the derivation of the mag-
netic form factor, and will be reflected in the final
form of the cross section. The diagonalization of
the resulting matrix gives the familiar crystal field
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TABLE I. The normalized B? parameters for the three
principal directions in a cubic crystal system as defined

in Eq. (8).
{100) (110) (111)

B} 1.0000 —0.2500 —0.6667
B) 0.7906

B} 0.7968
B} 0.5976 0. 4482

B} 1.0000 -1.6250 1.7778
B —0.6404

B 1.0734
BS —1.8708 1.1693

B -0.9500 1.1257

energy levels and eigenfunctions published by Lea,
Leask, and Wolf.'® Following Cooper and Vogt’
the effect of an externally applied magnetic field
may be incorporated into the Hamiltonian by adding
the diagonal matrix

Ky==gugHMB sy, gy

where g is the Landé splitting factor and H the mag-
nitude of the magnetic field. The magnetization

at a field H and temperature 7 is calculated from
the eigenvalues and eigenfunctions of the Hamilto-
nian including the magnetic field,

M=g Tr[Me™ *T]/Tr[e™*/*T]. (14)

To obtain numerical results requires the values
of Bg and BS’ , or equivalently Wand x. In TmSb
the induced moment at low temperature and field
depends only on the splitting between the I'; ground
state and the first excited state of the T', triplet
[see Eq. (2.10) of Ref. 7]. This splitting, AT, is
given by Cooper and Vogt as 26.6 °K, correspond-
ing to a value of W=~ 0. 887 °K. The inelastic-
neutron experiments® give AT=25.8+ 0.2 °K
(W=-0.993 °K). The various determinations of
of Wand x are discussed by Foner et al., & who
point out that while magnetization measurements
define x as lying within the range — 0.6 to - 1.0,
inelastic-neutron-scattering experiments define
this parameter much more closely as x =~ 0.785
+0.02. Although the elastic magnetic cross sec-
tion is sensitive to AT, which essentially defines
the magnetic moment for a given field, the form
factor for TmSb at 4.2 °K (i.e., the k dependence
of the cross section) is insensitive to the magnetic
moment over a relatively wide range of applied
field. Similarly the variation of the form factor
with the parameter x is evident only at much higher
fields than are currently available. The choice of
W and x is therefore not particularly critical to
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this experiment, and we have used

AT=26.0°K (W=1.015 °K) (15)

and
x=-0.80,

which are compatible with previous experiments.
In the (100) direction the parameters Bj and B§ are

then given by Eq. (11) as

Bi=663.2°K and B§=176.64 °K. (16)

If the quantization is along the cube axis the ground-
state wave function in zero field is

| )100(H=0)=0.6614|4) - 0.3536|0)+0. 6614| - 4),

1)
where the ket |JM) has been written as |M). This
is the I'; singlet, and clearly has no magnetic mo-
ment. On applying a magnetic field a moment is
induced on the ion because the ground state be-
comes a mixture of the I'y and I', states. At 5 °K
the contribution to the low-field magnetization
from the I'y state alone is negligible because the
splitting AT is much larger than the temperature.
With an applied field of 12,5 kOe, the magnitude
used in the experiment, the ground-state wave
function becomes

[ )100(H = 12.5) =0.7526[4)
-0.3493|0)+0.5581| - 4). (18a)

Similarly the ground states with the field applied
along the other two directions are

[ Y100(H=12.5)=0.4114|6) - 0.4718|4) + 0. 23922)

+0.5637|0)+0.2059|~2) - 0.3494|-4)
+0.2621|-6) (18Db)

and
| 9111 (H=12.5)=0.4884|6) +0.4167|3) +0.6170|0)

-0.3324|-3)+0.3110|-6). (18¢)

The quantization axis is chosen parallel to the field
in each case. At low fields the induced moment in
a cubic system is independent of the direction of
the applied field (see Fig. 6 of Cooper and Vogt), "
and we are essentially within this region. With H
=12.5 kOe the induced moment per thulium ion is
1.18upfor Hi{100), 1.19upfor Hi{110), and 1. 20u 5
for Hi(111). The structure of these wave functions,
i.e., the |M) valuesinvolved, maybe traced direct-
ly to the nonzero coefficients for that field direc-
tion in Table I.

&' Q'JM’ |JM) is zero unless @'=M -M' =AM, and
the previous restrictions on AM indicate that the mini-
mum values of 1Q’| are 4, 3, and 2 depending on
whether the applied field is parallel to (100), (111),
or (110), respectively. The majority of measure-
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ments in the present experiment have been taken
with the scattering vector perpendicular to the ap-
plied field so that only the term with @ =0 in Eq.

(8) will be discussed. The final Clebsch—Gordan in
Eq. (6) then implies @''+@'=0. The magnetic
form factor is expressed in terms of spherical har-
monics Y4, (®, &), where the angles @ and & define
the direction of the scattering vector. Terms with
Q''=0 have no ® dependence; i.e., the value of the
term depends only on the angle ® between the mo-
ment direction and the scattering vector, in this
discussion 37. The order of the radial functions
(j;) involved in any particular term is defined by
the parameter K’ in A(K’’,K’)+ B(K"’,K’). Terms
including (j,) require K'=1 or 3, {j,) require K’
=3 or 5, etc. For the (100) direction the minimum
nonzero value of [Q’'| and /Q’| (and hence K’’ and
K') is 4. The first term that appears with a & de-
pendence is therefore of the form Yj(3m, &) (j,).
This, of course, reflects the basic fourfold symme-
try when the crystal is viewed along the cube axis.
Similarly for the (111) and {110) directions the lead-
ing terms containing the ® dependence are Yi(zm, )
(j») and Y%(3m, ®) (j,), respectively. The value of
Y3(3m, ®) is zero, and for the (111) direction the
first nonzero term is Y3(3m, ®) (jg). As discussed
in Sec. V, for sin6/x <1.0 A™, the (j;) functions
for ¢>0 rapidly diminish in magnitude with increas-
ing order, and anisotropies involving (j,) and (jg)
are very hard to observe experimentally, The re-
sult, therefore, is that of the three principal direc-
tions reasonable anisotropies should be observed
only with the field applied parallel to the (110) direc-
tion. The experimental results on TmsSb fully con-
firm this expectation. We should emphasize that
the effects observed are a direct consequence of the
crystal field potential. In the fully ordered heavy
rare-earth metals, for example, the wave functions
are described by the single state M =J, which gives
the maximum possible magnetic moment using
Hunds rule and Russell-Saunders coupling. Clearly
for this situation no cross terms appear in Eq. (7),
i.e., AM=0, and the final cross section is com-
posed of terms in Y{f”, which do not include any

® anisotropy [see, for example, Eq. (8.20) of Love-
sey and Rimmer]. The coefficients of the various
terms in Y%..(®, &) and (j;) are, of course, only
found after the evaluation of Eq. (6). These are
given in Table II.

III. EXPERIMENTAL

All experiments were performed on a single crys-
tal with dimensions of 4.7 %X2,3x0,8 mm, with all
faces being (100) planes. For the first series of
measurements (H!{100)), the field was applied
parallel to the long axis of the crystal. During the
remounting of the crystal (for HII(110)) a small

.portion of the crystal was lost, reducing the long
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Coefficients for the magnetic cross section (@ =0 term only) for TmSb with the sample temperature T=5°K

and the magnetic field of 12.5 kOe applied in the (100) and (110) directions. The coefficients modify terms Y’é/" (®, &) (j1),
where ® and & are defined by the scattering vector and the field direction, and (j;) are the radial integrals (see Sec. V).

11 (100) H I (110)

K" Q" God Gz) Gad Go) G2) m G
0 0 0.3922 0. 2615 0.3978 0.2652

2 0 —-0.1754  —0.1344  —0.0064 -0.1779  —0.1140 0.0017

2 2 —0.0090  —0.0033

4 0 0.0130 0.0246 0.0031 —0.0034  —0.0046 —0.0005
4 2 0.0078 0.0177 0.0023
4 4 0.0055 0.0009 0.0027 0.0004
6 0 —-0.0165  —0,0259 0.0028  —0.0109
6 2 -0.0127 0.0039
6 4 ~0.0057  —0,0057 —-0.0028 —0.0105
6 6 —0.0040
8 0 0. 0205 0.0099
8 2 —0.0051
8 4 0. 0045 0.0093
8 6 0.0045

dimension to 3.4 mm. The field was applied at 45°
to the long axis.

Before starting the polarized-beam experiments
the intensities of four octants of Bragg reflections
with sin6/x <0.77 A" were measured at room tem-
perature with a four-circle diffractometer (x=1.05
A) at the CP-5 Research Reactor. These measure-
ments indicated a large amount of extinction, i.e.,
the intensities of the strong reflections were re-
duced in value relative to weaker reflections. How-
ever, attempts to account for the extinction were
judged successful (see Sec. IV), and the crystal was
therefore transferred to the polarized-neutron dif-
fractometer (A=1.05 .f&), also located at the CP-5
Research Reactor.

The polarized-beam technique yields, inprinciple,
the so-called flipping ratio

R=(1+7?/(1 - 7Y, (19)

where y=M/N, and M and N are the magnetic and
nuclear structure factors, respectively. TmSb has
the NaCl-type crystal structure and only two struc-
ture factors are present, for %kl all even, N,=brp,
+bsy, and for rkl all odd, N.=br,—bsy, where brp,
and bg, are the scattering amplitudes of thulium and
antimony, respectively. The magnetic structure
factor has the same form for all reflections and is
given by M= pouf(K), where p, is the constant
0.2696X107*2 ¢m, p is the magnetic moment per
thulium ion in Bohr magnetons, and f(ﬂ is the form
factor. In practice Eq. (19) has to be modified due
to incomplete incident polarization and imperfect
spin reversal. In the present experiment both the
neutron polarization and flipping efficiency were
0.992+0.003, and the resulting small corrections
have been made in all cases, although they are nor-
mally less than 2%. Other sources of possible er-

ror arise from neutron depolarization, half-wave-
length contamination, multiple scattering effects,
and extinction. Neutron depolarization has been ne-
glected since TmSb is an isotropic paramagnet.
Half-wavelength contamination was important for
the weak reflections (kkl odd), and flipping-ratio
measurements were made with a 2**Pu filter in the
incident neutron beam; this reduces the contamina-
tion of the $) component by a factor of 50. Multiple
scattering effects are difficult to eliminate totally,
but the good agreement between flipping ratios mea-
sured on equivalent reflections gives confidence
that these effects are small, or at least negligible
compared to the extinction. For a number of re-

flections the flipping ratio was examined as a func-

tion of the crystal-setting angle, i.e., measured
as the crystal was swept through a rocking curve,
and in no cases was any variation of the flipping
ratio observed.

An examination of Eq. (19) and the values of y
involved indicates that for the parameters p=1,2up
per Tm ion, bp,=0.72x107% cm,?® and by, =0. 564
%1072 em, %! v=0.25f(k) for even kkl, and v=2.1f(K)
for odd hkl. The polarized-beam method is particu-
larly sensitive for y <0.7, when the instrumental /
corrections, except extinction, are relatively un-
important. The majority of measurements were
made on the strong reflections (k! even), and only
a few of the low-angle odd reflections were mea-
sured. These are weak, e.g., the spin-down in--
tensity of the (111) reflection with the Pu filter in-
serted was ~ 40 counts/min on top of a background
count of ~ 10 counts/min, and are very sensitive to
the quantity b5, - bgsyl. In fact, together with the
unpolarized-neutron results, our measurements de-
fine this difference, and hence b relative to bg,,
exceedingly well.
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All measurements were made at helium tempera-
ture in a magnet assembly with an applied field of
~13 kOe. Figure 1 gives the theoretical variation
with temperature of the magnetic moment (assuming
a constant applied field). The choice of crystal
field parameters, W and x is discussed in Sec. II,
and is compatible with previous experiments.7=®
Such a moment behavior is implied from Fig. 3 of
Cooper and Vogt," and indicates the singlet-ground-
state nature of the Tm ion. Figure 1 also illus-
trates the importance of keeping the temperature
below ~ 5 °K if the induced magnetic moment is to
be truly temperature independent. Using a carbon
resistor in contact with the sample, variations of
temperature between 4.2 and 5.4 °K were mea-
sured, implying a variation of +0.8% from the mean
value of the magnetic moment. The applied mag-
netic field was constant (<0, 2% variation) through-
out the experiment, and was measured with a Hall
probe as 12,5 kOe. Unfortunately the Hall probe
samples a larger area in the plane perpendicular to
the field than the crystal and, as a result, the field
measured with the Hall probe is a lower limit; the
applied field is estimated to be in the region of
12.5-13.0 kOe. Small demagnetization effects are
expected to reduce the magnitude of the effective
field by ~ 200 Oe in the case of the symmetrical
situation with H{100), and ~ 300 Oe when HI(110).

IV. RESULTS

Extinction

The problem of extinction in single crystals has
been treated in detail by Zachariasen,? and it ap-

BRUN, AND VOGT n

pears from numerous reported structure refine-
ments using both x-ray and neutron diffraction that
this method gives a reliable correction for extinc-
tion. Modifications to include anisotropic effects®
and severe extinction in neutron diffraction®” have
also been made, but are not included in this paper.
The basic Zachariasen formula for the neutron case
may be written

Ins/Io=v=1/(1+2gQ1) "2,

where I, and I, are the observed and calculated
intensities, f is the effective path length through the
crystal, g is the extinction parameter, and @ is the
crystallographic reflectivity given by @ = x*| F,12/
(V®sin26), where F, is the calculated structure
factor, V is the volume of the unit cell, and 6 is the
Bragg angle. Equation (20) represents a simplifi-
cation of the Zachariasen formula, since it assumes
that extinction is either type I or type II (see Ref.
25 for a discussion of these terms). We believe
type-II extinction to be the more likely in view of
the relatively severe extinction found (y parameters
as low as 0.6). In this case g is proportional to

the mean radius 7 of small perfect domains in the
crystal (g=7/1), and the degree of extinction is not
related to the mosaic spread of the crystal. Chang-
ing the mosaic spread, even if possible for such a
brittle material as TmSb, would have little, if any,
effect on the extinction. The observed rocking
curves were board (full width at half-maximum
greater than the experimental resolution) and
showed considerable structure, but the flipping ratio
was independent of the rocking angle, as expected
for the type-II extinction.

(20)

FIG. 1. Temperature dependence
of the magnetic moment in TmSb
with an applied field of 12.9 kOe.
The crystal field parameters Bﬁ
and Bf (or equivalently W and x) are
discussed in the text.

T I T r T I I
1.2 TmSb —
W= -I.OI5°K} B3 - 663.20°K}
- 6 _ o
€ 1ol X = -0.80 BS = 76.64°K
N H=12.9 kOe
®
3
= 08—
P4
[57)
=
o
= o6
o
’_
2
Z 041
<
=
0.2
O i l | | | I 1
0 20 40 60

TEMPERATURE, °K

80



1 POLARIZED-NEUTRON STUDY OF THE INDUCED...

The shape of the TmSb crystal in the present ex-
periment is particularly suitable for examining ex-
tinction effects, since the path lengths ¢ differ by
up to a factor of 3 for equivalent reflections. The
path lengths were calculated using a standard crys-
tallographic absorption program with an absorption
coefficient of 1.29 cm™. After correcting for reg-
ular absorption the unpolarized-neutron results
were refined with a least-squares routine that in-
corporated the Zachariasen correction. The weak
reflections (k%I odd) were not included in this re-
finement. An isotropic temperature factor of 0.55
zu\'a, corresponding approximately to a Debye @
of 210 °K,?® and scattering amplitudes of 0.72x102
and 0.564%10% ¢m for thulium and antimony, re-
spectively, were used. This refinement of 251
measured reflections with two adjustable parame-
ters, an over-all scale factor S, and the extinction
parameter g, resulted in a residual R (= 3| | Fusl
- | F /3| F,l, where F,,, and F, are the observed
and calculated structure factors, respectively) of
0.014. The value for g was 2660 +150, and the
correlation between g and S was 0.93. A represen-
tative sample of the calculated and observed struc-
ture factors and the y values for each reflection is
given in Table III. By comparing the intensities of

TABLE III. Representative results of the least-squares
refinement of the unpolarized study of the TmSb crystal.
f is the path length, F,isthe calculated structurefactor,

y is the reductionin intensity calculated from the refined
‘extinction parameter (g=2660 + 150), Fis the observed
structurefactor, and Sisthe refined scalefactor (27.2
+0,1), 251 reflections were used in the refinement and
an isotropic temperature factor of 0.55 A2 was used.

¢ F,
nel 26 (cm) (10 cem) y Fg/S Fyll?
020 19.95 0.187 5.060 0.61 3.95 3.94
020 0.188 0.61 3.97 3.94
200 0.079 0.76 4.21 4,41
200 0.080 0.76 4.26 4,41
002 0.145 0.65 4.28 4,09
222 34,91 0,105 4,912 0.81 4.39 4,41
222 0.104 0.81 4.31 4,41
222 0.105 0.81 4.41 4,41
222 0.105 0.81 4.28 4,41
240 45.57 0.149 4,774 0.80 4.24 4,25
420 0.092 0.86 4.33 4,42
042 0.148 0.80 4.28 4,25
402 0.082 0.87 4.41 4,45
024 0.185 0.76 4,25 4,16
204 0.082 0.87 4.49 4,45
482 105.05 0.104 3.756 0.92 3.64 3.60
842 0.129 0.90 3.62 3.57
284 0.098 0.92 3.61 3.61
824 0.114 0.91 3.64 3.59
248 0.168 0.88 3.60 3.52
428 0.128 0.90 3.75 3.57

1995

the weak (2%l odd) and strong (kkl even) reflections
the ratio |byy, = bspl/ |bpy+ bgyl =0.114+0,003,
Assuming bgy,= (0. 5640, 001) %1072 cm?* the value
of br,, determined from this ratio is (0.708 +0.005)
x10™% ¢m. Values published for br,, are (0.69
+0,02)%10™*% cm®® and (0.720+0.006)x107*? cm, %
Our determination of br, assumes the sample is
stoichiometric. Any departure from stoichiometry
in the rare-earth pnictides is expected to result

in vacancies at the anion sites. We have no reason
to expect anion vacancies in the present sample
but, if present, the by, deduced from our measure-
ments would be lower than 0.708 X102 cm,

For experiments measuring magnetic as well as
nuclear elastic scattering, the reflectivity @ in Eq.
(20) has to include both the nuclear and magnetic
structure factors, N and M, respectively. In the
special case of polarized neutrons and measure-
ments made in a plane perpendicular to both the
direction of the magnetic moment and neutron spin
(as are the majority of the present measurements)
Q" contains the term |N+M|? and Q" the term
IN-MI|% Clearly two different extinction cor-
rections " and y~ are needed to correct the intensi-
ties measured in the two spin states, and

o L5 97 1+22Q E\!/*
Robs_l- _Ic- - "Rcorr 1+2gQ+'{ ’ (21)

obs

where R, is the observed flipping ratio and R,
the flipping ratio in the absence of extinction.
Equation (21) has also to be modified for certain
instrumental effects but, although they were con-
sidered in processing the data, they have been
omitted for the sake of clarity in this discussion.
Such effects are very small in the present experi-
ment. We have defined an apparent ratio y,,s and
a corrected ratio Y., from Eq. (19) using R, and
R.,.., respectively. Unfortunately Eq. (21) cannot
be solved directly for ¥¢.rr» Since the quantities @*
and @ also contain M and N, and hence 7y, but
the equation may be solved readily by an iterative
procedure. As an example of the extinction effects
consider the (200) and (020) reflections as mea-
sured with Hi[001]. For both reflections Q"= 2. 69
%107 cm and @ =1.04%10"° cm. Assuming g=2500
for the (200) with #=0,079 cm, then y*=0.70 and
y7=0.84. The ratio Ryps/Reorr is then 0.827; for
the (020), with £=0.187cm, thisratiois 0.749. The
errors arising from neglecting extinction are there-
fore very appreciable, in some cases exceeding
20%. Since the flipping ratio can be measured
easily to an accuracy of 1%, the extinction cor-
rection must be known accurately if the full power
of the polarized-beam technique is to be utilized.
A common method used for investigating the de-
gree of extinction is to vary the incident neutron
wavelength, Consider, for example, the incident
wavelength reduced from 1.05 to 0.85 A, The re-
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flectivities are then reduced, so that @ =1.76
x10™% cm and @ =0.68x10"% cm. I g, the extinc-
tion parameter, is assumed constant at 2500, then
for the (200)y"=0.77 and y =0, 89, with a ratio of
0.865. Thus, although the extinction on the strong
spin-up intensity is decreased by ~10%, the cor-
rection to the flipping ratio: is decreased by only
4%, and is still a sizable 14%. In practice the
situation is likely to be worse, since with type-II
extinction® the parameter g is inversely propor-
tional to the wavelength, and by decreasing the
wavelength to 0, 85 A we expect g to increase to
~3100. For the same reflection, R us/Rcopr Would
then be 0.846 for A=0.85 A, compared to 0.827
for x=1.05 A, Clearly no advantage would be
gained by reducing the neutron wavelength., As an
alternative we have looked for consistency between
equivalent reflections with different path lengths as
a judge of the reliability of the extinction correction
This is illustrated in Table IV, in which the values
of veorr calculated with three different values of g
are tabulated. The agreement between equivalent
reflections is good provided that g is in the range

=3

2000-3000. Changing g in this range acts very
much like a scale factor on all reflections, but any
other value of g fails to give agreement. The
column Y, corresponds to g=0 (i.e., assuming no
extinction) and for this value of g the differences

in the {200} and {400} equivalences are very marked.
A g value of 2500 has been chosen as this gives the
best agreement with the absolute value of the mag-
netic scattering length, and is also consistent with
the value of g derived from the unpolarized-neutron

experiments.

Experimental Results

The results for HI[001] and Hi1[011] are given in
Tables IV and V, respectively. With HiI[01i] no
differences occur in the path lengths for equivalent
reflections in the (011) plane. For some of these
reflections the theoretical form factors are very
nearly the same as for HlIl [001], and in those cases
good agreement between ¥, for the two field
directions is obtained using the g value of 2500.

In Table VI the weak (%kl odd) reflections are
presented. With Hi{100) none of these reflections

TABLE IV. Results for the polarized-beam measurements on TmSb with the field applied parallel to [001]. ¥ is the
path length, R is the observed flipping ratio; Yo is derived from R, using an incident polarization and flipping efficiency
of 0.992+ 0.003. The corrected y values are derived for different values of the extinction parameter g. The final
column (f) oory is derived using g=2500, and with scattering lengths by, =0.705x 10-1%cm and bgy,=0.564 x 10-'2 cm.

sinf f corrected y (UF) cger

hkl A cm) R Yobs £=2000 g=2500 £=3000 (pp)
B O 0w woser  Odedsi  osm  osa  opm 109
20 T 005 dewar  oaess1  oso1  oser oy 09828
o % oNs dmsas  awer  oars  oas oase  0S00
do %% ohm damas  oumer  oaes  oam om0
a0 %% s iewas  omlesr  oam  oasms  oas 06999
@ %4 ohis amoss  oweer oz oam  oam 000043
0 OO ow alsiess  oa6e1  oaz  oss  os 578
B O O wawse  oowaz  oos ool oaos 041313
g0 6% oo wlsereia  o.omes om0y oo 04110
0 OO a0 imiiis oomiz  oos oo oosw 040010
@ 0% olm  Lmsi; ooeesz oot om0 oo OST0%1
840 0.736 0.128 1.286+ 7 0,064+ 2 0,072 0.073 0.075 0.344+ 14
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TABL_I;] V. Results for the polarized-beam measurements
with HIl [0T1]. The columns are the same as in Table IV,

sino 22500 (e
hkl A (cm) Reps Yobs Yearr (up)
200  0.165 0.188 1.911£8  0.163£2 0.232  1.09247
gi_‘: 0.233  0.079 iggiig 0.173+1  0.207  0.975%5
zzg 0.285  0.093 i:::i:i 0.158+1 0.188  0.885%5
%gg 0.320  0.144 i;ggi; 0.141£1  0.175  0.824%6
gz 0.403  0.136 ;:gigig 0.126+1 0.150  0.706%6
gg 0.466° 0.084 ig‘;gi; 0.112£2  0.126  0.59346
ggg 0.494 0.113 i:gg:g 0.109£1 0.126  0.59346
;ﬁ 0.494  0.091 ig;gi;’ 0.10551 0.119  0.560+7
ggz 0.546  0.133 iﬁggj; 0.09551 0,110 0.5186
%ﬁ 0.570  0.119 i:igg:il 0.087£2  0.100 0.471%6
ggg 0.658  0.094 ig;‘g:g 0.075£2 0,085 0,400 7
gﬁ 0.679  0.149 1:;:;:1110 0.06442 0,075 0.353:8
gis 0.698  0.100 128;:1? 0.068:£2 0,076  0.358+8
ggg 0.698 0.099 1;223 0.060£2 0,067 0.31548
;gg 0.717  0.107 1;;2*;3 0.055:2 0,062 0.292+8

can be measured in the plane perpendicular to the
applied field, and we have used the elevated coun-
ter technique.? In this case the square of the mag-
netic interaction vector qz is different from unity,
and Eqs. (19) and (21) must be modified. The ex-
tinction corrections for these weak reflections are,
of course, much smaller than for the strong re-
flections, but they veduce Yops, i.€., Rons/Reorr
>1; a consequence of a y being greater than unity.
For the weak reflections the experimental form
factor corrected for extinction is calculated from

(Wfcorr = [')’corr(bTm - bSb)/O- 2696 % 10-12] KB,

The value of v is clearly sensitive to the dif-
ference in the scattering amplitudes, and is given
in the table as a function of br,, assuming bg,
=0,564%x107%% cm. This sensitivity to by, implies
that the values of f.,., are uncertain unless bz,

is known accurately, even though the corrections
arising from extinction are small, On the other
hand, the over-all agreement between foo, and foac
does allow us to derive a reasonable value for bry.
The best fit is obtained with by, = (0.697 +0.005)
%1072 ¢m. This measurement is independent of
the unpolarized-beam result, apart from the fact
that both experiments were done on the same crys-

tal. We conclude, therefore, that the correct scat-
tering amplitude of thulium is (0.705+0,005) %1072
cm, relative to bg,=(0.564+0.001)x1072 cm,

and we have used this value throughout,

The experimental results are given in Tables
IV-VI in terms of the quantity (uf)eorr, Where the
magnetic moment u is a constant for a given ori-
entation, applied field, and temperature. As dis-
cussed in Sec. III an accurate measurement of the
applied field is rather difficult, the estimated value
lying between 12.5 and 13.0 kOe. The parameter
1 may therefore be considered as a scale factor
with an uncertainty of ~4%. In calculating the form
factor in Eq. (1) we require the ¢; coefficients and
(j;) integrals. The derivation of the coefficients
is discussed in Sec. II, and the values for the two
field directions given in Table VII. The (j;) inte-
grals are discussed in Sec. V. The best fits be-
tween the experimental and theoretical form fac-
tors are found with magnetic moment values of
(1.208+0.014)p5 and (1.191+0,014)up per Tm
atom in the (100) and (110) orientations, respective-
ly. These values correspond to applied field of
12.9£0.15 kOe with Hil (100) and 12.5+0.15 kOe
with HI {110), which are within the expected range.
Table VIII gives the final results for theoretical
and experimental form factors for the strong (kkl
even) reflections in both orientations. Figure 2
shows the experimental form factor in the (100)

-
Tmsb Hll[001]
0.8} —

0.6 -1

0.4 —

MAGNETIC FORM FACTOR

o) | | |
o] 0.2 0.4 0.6 0.8

sin 67X, A

FIG. 2. The magnetic form factor of TmSb with the
field applied parallel to [001]. The smooth curve is the
theoretical form factor for the M =4 state and with Z,
=2.89 (see Sec. V). The size of the experimental points
is an indication of the uncertainty in the measurements.
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TABLE VI.

magnetic interaction vector, with ¢g?=1, A Il [0T1], otherwise fill foo1].
bsb)/o 2696 so that the value of f.. depends strongly on (bqy, ~

For these reflections (uf) =y X (b, ~

columns of fou, correspond to different values of bry, assuming bgy=0.564 (all x 10712 cm).

using parameters defined in the text (see Table VIII).

Results for the polamzed—beam measurements of the weak (nkl odd) reflections.

LANDER, BRUN, AND VOGT 7

q2 is the square of the
Rpss Yonss and Yoy are as in Tables IV and V.
bsy. The three
The last column gives fou,

siné T £=2500 Jearr

A (cm) 7 R Yobs Yecer brm=0.690 by =0.705 by =0.720 fou,
111 4.97+5
4 0148 0.110 /3 Yoe.. 23062 2.24 0.867+7  0.970+8 1.073+9  0.916
M1 6143 0.089 o 830E9 5 062 221 0.867+7  0.971%8 1.07449  0.916
11T 6.31+6
ﬁ% 0.273  0.105  10/11 9.1+5  1.85+3  1.84 0.712+11 0.796+13  0.881+15 0.752
3L 73 0.146 Lo 22149140 1.88 0.738+8  0.8269 0.914+11 0.755
311 9.4+3

direction over the whole angular range measured.
The solid curve is the form factor for the M= |4)
state of the Tm® ion given by f(k)= (jp) +0.7248(j,)
+0.0909(j,) —0.0955(j¢). This form factor is sym-
metric in the plane perpendicular to the applied
field, and is very close to that expected for HH(lOO)
because the contribution to the cross section from
the matrix elements between the |0) and |+4) states
is small compared to the contribution from the diag-
onal elements [see Eq. (18)].

Figure 3 illustrates the high-angle reflections for
TmSb in the two orientations, and the same M= |4)
form factor as in Fig. 2. The results in Table VIII,
and particularly Fig. 3, indicate that the over-all
agreement between theory and experiment is re-
markably good.

V. WAVE FUNCTIONS

The theoretical form factors calculated in Sec.
II (Table II) require an evaluation of the (j;) inte-

gralsao that depends on the spatial extent of the
single-electron 4f wave function. The first non-
relativistic Hartree—Fock (HF) calculations of
these wave functions for the tripositive rare-earth
ions was given by Freeman and Watson* (FW) in
1962. Subsequent work®'% restricted to nonrelativ-
istic HF calculations has not resulted in radial
distribution functions that are substantially different
from those given by Freeman and Watson. The
latter used a linear combination of four hydrogenic
orbitals as a basis set for the radial part of the
4f-electron wave functions.

The radial part of the wave function is given by

Uyslr E Cirie™r, (22)
where the normalization condition is
SO ar=1. (23)

The coefficients C; and Z; are given in Table I

All entries are for the scattering vector perpendicular to the applied

TABLE VII. Coefficients ¢, ¢4, and cg in Eq. (1).
field. @ is the angle in degrees a direction makes with the [100] axis.
H Il [001] H Il [0T1]

[nr0] & cy cy cg [nkk] o cy cy cg

100 0.0 0.7248 0,1450 0.1423 100 0.0 0.7241 0.1440 0.1400

410 14.0 0.7248 0.1210 0.1212

310 18.4 0.7248 0.1060 0.1081
411 19.56 0.7080 0.0931 0.0168
311 25.2 0.6978 0.0634 -0,0316

210 26.6 0.7248 0.0756 0.0814

320 33.7 0.7248 0.0527 0.0613
211 35.3 0.6758 0.0072 —0.0724
322 43.3 0.6559 —0.0357 —0.0540
111 54,7 0.6276 - 0.0826 0.0176
122 70.5 0.5954 —-0.1164 0.0952
133 76.7 0.5870 -0.1218 0.1041

110 45,0 0.7248 0.0366 0.0472 011 90.0 0.5793 —-0.1254 0.1055
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of Freeman and Watson, * and the {j;) integrals are
obtained from

Gir= )" Uas)jster)dr, (24)

where j;(k7) is the usual spherical Bessel function.
The integrals {j;) required for the neutron scat-
tering cross section have been evaluated numerical-
ly for the FW radial functions by Blume, Freeman,
and Watson, *

Before continuing to a more detailed comparison
between the calculated and observed form factors,
a number of general points need to be emphasized.
The experiments on the rare-earth metals'~® indi-
cate that the FW wave functions do not agree with
experiment, except at high scattering angles, and
that the 4f moment obtained from the high-angle
data is too small. In the case of gadolinium1 at
96 °K the 4f moment determined from the FW wave
functions was 5.63up, whereas magnetization data
gave 6.99up5, the difference being too large to at-
tribute to the conduction electrons. A similar sit-
uation occurs in Tm metal as well as in the pres-
ent study on TmSb. The comparison between the
FW wave functions and the experimental form fac-
tors suggests that the inner regions of the 4f radial
density, which give the greatest contribution to the
form factor at high scattering angles, are accu-
rately represented by the FW nonrelativistic calcu-
lations, but the outer regions are expanded. Re-
cent relativistic calculations® for both atomic Gd

TABLE VIII, Observed and calculated magnetic form
factors for TmSb. The family of planes {1%I} refers only
to those with scattering vector perpendicular to #f in the
respective directions (see Tables IV and V).

sing Hll [001] HI[0T1]

{nki} ) Soare Feate Sear Feate
200 0.165 0.910&5 0.905 0.917+6 0.905
220 0.233 0.813+4 0.826 0.819+4 0,812
222 0.285 0.743+4  0.747
400 0.329 0.706+4 0.703 0.692+5 0,703
420 0.368 0.657+4 0,651

422 0.403 0.594+5 0.596
440 0.466 0.529+4 0.529 0.498%5 0,498
600 0.494 0.497+4 0.502 0.498+5 0.502
442 0.494 0.471+6 0.468
620 0.520 0.475+4 0,472

622 0.546 0.435:5 0.435
444 0.570 0.395+5 0,391
640 0.593 0.388:11 0,394

800 0.658 0.347+8 0.343 0.336x6 0,342
820 0.679 0.331+8 0.323

644 0,679 0.297+7 0,297
660 0.698 0.307+11 0.301 0.265+7 0.264
822  0.698 0.301+7 0.301
662  0.717 0.245+7 0,251
840 0,736 0.283+12 0.276
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FIG. 3. The high-angle form factor for TmSb with both
applied field directions. The smooth curve is the M=4
form factor as in Fig. 2.

and Gd* are in good agreement with the experi-
ment, and the principal effect of the relativistic
treatment is the contraction of the s and p inner
shells giving rise to an.expansion of the 4f shell.®
Relativistic calculations for Tm®* are unfortunate-
ly not available at present, so we have chosen to
vary the nonrelativistic FW functions to obtain
agreement with the experiment. The basis set
used by FW is very convenient, since the integral
in Eq. (24) can be solved analytically. The solu-
tions are

4
(o= 27 Nyy(1 =1X,;+1X%,-X3,))/(1+ X, )8,
i,J=1

4
(jad= 22 Ny 6X;;(1 30X+ X2))/(1+X,,)%,
§,9=1
(25)
4

(ar= iZE_INU%gX%j (1-FX,)/(1+X )%,

4
(o) = 24 Nyj18X3%,/(1+X,,)°,
i,d=1
where the normalization gives
4 4
8!C,C
20 Nyy=23 m—tbs=1 26
g 41 (Zi+2)) (26)

and

2
K
X“‘(Z,+Z,> :
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Care should be taken that k is in the same units as
Z;. If the parameters C; and Z; of Eq. (22) are
known, the (j;) integrals may be evaluated for a
given scattering vector k. Although in principle
all eight parameters in the FW formalism could be
varied in an attempt to fit the theoretical and ex-
perimental data, the high correlation between the
coefficients prevents the success of such an attempt.
An alternate method is based on the observation
noted above that the shape of the experimental form
factor at high scattering angles is identical to that
derived from the FW calculations., The hydrogenic
orbitals of Eq. (22) are such that their maximum
in real space occurs further from the nucleus with
increasing order of Z;, The experiments suggest,
therefore, that a first attempt at fitting should con-
sider the modification of Z, alone, since this de-
termines the most expanded orbital in real space.
The C;’s are then renormalized and the method,

if it works, is a one parameter fit. The experi-
ments give a value for the product (1 f) so a value
of the magnetic moment u must be known before
the experimental and theoretical form factors can
be compared. The choice of a magnetic moment
is not necessarily easy, since it may lead to an un-
warranted assumption about the magnetization dis-
tribution of any conduction electrons. For any
choice of u an optimum value of Z, may be found,
although the extent of the over-all agreement be-
tween the experimental and calculated values lim-
its the possible range of Z, and 1. For TmsSb the
uncertainty in the magnitude of the applied field
introduces a corresponding uncertainty in the val-
ue of the induced magnetic moment. By varying
the magnetic field, and hence the moment, we

have attempted to obtain the best fit with the FW
wave functions. The result of this procedure may
be conveniently measured by the sum

s=(iE Wi foore -fcm)%) /n, (27)

where W;=1/Af% .. and the sum is over all  re-
flections. With the FW wave functions the lowest
values of s are given in Table IX and the corre-

sponding fields are 12.5 for HiI{100) and 12. 1, kOe

TABLE IX. Values of the parameter Z;, Eq. (22), and
the applied field H which give the best fit [as measured
by the minimum of s, Eq. (27)] between the theoretical
and experimental form factors. The Freeman and Watson
value is Z4=3.035.

Z, 2,80 2.85 2.90 2.95 3.035

(100} H (kOe) 13.3 13.0 12,9 12.8 12,5
4,06 2.31 1.60 2,05 4,32

(110) H (kOe) 12,9 12,8 12,6 12.4 12.1
s 1.45 0.86 1.61 2,18 4,90

LANDER, BRUN, AND VOGT

=3

for HI{110). These values of H are low, and the

fit is unsatisfactory. The Z, value for thulium from
the FW wave functions is 3.035 (see Table I of FW).
By varying Z, the lowest values of s are with Z,
=2.90 for the (100) direction with H=12,9 kOe,

and with Z,= 2. 85 for the (110) direction with H
=12.75 kOe. The best value is then Z =2, 89 (with
an estimated error of +0.05) giving Hi{100)=12.9
kOe and Hi(110)=12.5 kOe. The least-squares
residuals s are 1.60 and 1,21 in the two cases;

a significant improvement over values (~4.5) de-
rived with the FW wave functions.

The above analysis, i.e., changing Z, to improve
the agreement between the experimental and theo-
retical form factors, may also be applied to thu-
lium metal, for which polarized-beam measure-
ments have been published.? We first note that the
experimental values of (Lf),s (see Table I of Ref.
2) are derived using a coherent nuclear scattering
length of 0.69%107'2 cm, and that they are lin-
early dependent on this term. In the present ex-
periment we have concluded that the scattering
length by, = (0,705+0,.005) %107 cm and the thulium
metal (Wf),ps should be correspondingly increased
by 2.2%. Adjusting Z, and the ordered moment p
results in values of Z,=2,80 and u=0.98up per
Tm atom, with s=1,41, This fit is illustrated in
Fig. 4, which also includes the form factor cal-
culated with the FW value of Z,(=3.035). As dis-
cussed in Ref. 2, the saturation magnetization val-
ue for thulium metal is (7.14+0.02)up per Tm
atom, the 0,145 (2%) excess over the free-ion val-
ue of 7up being attributed to conduction-electron
polarization. At low fields the measured moment
from magnetization experiments is (1.001+0.005)up
per Tm atom (thulium having the 4+, 3- ferrimag-
netic structure) and with a 2% conduction-electron
polarization a 4f moment of 0,98u s per Tm atom
would be expected, in good agreement with the
analysis of the experimental data. The direct cor-
relation between u and by, is such that the latter
should be better determined before any great
weight is attached to this agreement., The impor-
tant point, however, is that the value of Z, is much
reduced from the FW value, and shifts of 2-4% in
u and by, result in only very minor changes
(£0.05) in Z,. Taking into account the uncertain-
ties in b, and p we estimate the error on Z, in
thulium metal as 0.05, i.e., Z,=2.80+0,05,
Figure 4 serves toillustrate the analysis performed
in Ref. 2. By scaling down the full curve (FW
wave functions), i.e., adjusting b1, and p, good
agreement can be obtained with the high-angle re-
flections, but the low-angle reflections are then
above the theoretical curve (see Fig. 2 of Ref. 2).
The resulting localized moment taken from the
high-angle reflections is 0.904up (based on by,
=0.705x10"% cm), still leaving a discrepancy of
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FIG. 4. The magnetic form factor for thulium metal.
The smooth curve is the form factor using the Freeman
and Watson nonrelativistic wave functions, the broken
curve that using expanded wave functions with Z,=2.80
(see Sec. V). The experimental points are taken from
Ref. 2 using bpy,=0.705% 10712 cm and p=0. 98up per Tm
atom,

0. 1up between the neutron and magnetization mag-
netic moments. In view of this contradiction, and
the evidence from gadolinium® and terbium® that
the FW wave functions are definitely too contracted
to account for the experimental results, we feel
that the analysis with a varying Z, is more reliable
than postulating a very large (~10%) conduction-
electron polarization. An examination of the two
lowest-angle reflections in Fig. 4 illustrates that
the experimental and theoretical form factors are
in agreement. In galdolinium1 the discrepancy be-
tween experiment and the relativistic form factor
at low angles leads to the assumption of a “diffuse”
form factor attributed to the conduction electrons.
At sinf/x =0 the magnitude of this diffuse form
factor is equal to the discrepancy between the Rus-
sell-Saunders free-ion moment gJ and the mea-
sured saturation magnetization. For gadolinium
these values are 7.0up and 7.55u 5, respectively,
and for thulium they are 7.0u. 5 and 7.14up. If the
diffuse part of the form factor in thulium resembles
that in gadolinium, the discrepancy between theory
and experiment for the innermost reflection in thu-

lium is expected to be much less than in gadolinium.

In thulium metal the uncertainties in both the experi-
mental results and in the above analysis do not al-
low us to draw any conclusions about a “diffuse”
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part of the magnetization density.

The changes in (j,) and {j,) by varying Z, from
3.035 (FW value) to 2.80 are shown in Fig. 5.
Small changes of course also appear in {j,) and
(jg) but even at the highest value of sinf/x ob-
served in the Tm or TmSb experiments (j,) and
(jg» are only ~ 40 and 14% of (j,), respectively.

A direct consequence of the expansion of the
wave functions is that the {#") integrals may be
reevaluated.®® These are given for thulium with
Z,=3.035 (FW value) and Z,=2.80 (Tm metal) in
Table X.

VI. DISCUSSION

From an experimental point of view the measure-
ment of flipping ratios for TmSb at 5 °K and H,,,
=~ 13 kOe presents no special difficulties. The
problem of extinction, however, has meant that
relatively large (=15%) corrections have been ap-
plied to the experimental data, As discussed in
Sec. IV we have followed the Zachariasen method
for obtaining these extinction corrections. The
over-all agreement, both for equivalent reflections
with different path lengths, and between theory and
experiment, is a strong indication that these cor-
rections are valid. The normal method for elim-
inating extinction is either to mechanically work the
crystals (e.g., in the rare-earth metals) or to use
very thin sections in transmission (e.g., in the
iron series elements and compounds). Neither of
these methods is applicable to the large class of
compounds that are brittle, cleave easily, and in
which single crystals are very rare, for example,
TmSb. We believe, therefore, that the success in
using the Zachariasen extinction correction is not
only interesting in its own right, but has signifi-
cance for a much wider class of compounds that
could be investigated with the polarized-neutron
technique.

The scatter of points about the smooth curve in
Fig. 3 is very reminiscent of form-factor measure-
ments of 3d transition elements and compounds,
in which the scatter of points about a smooth curve
is a consequence of the asymmetry in the spin den-
sity.34™%® For the 3d series the crystal field poten-
tial is larger than the spin-orbit coupling, with the

TABLE X. Values of the radial expectation integrals
(") for thulium derived from the 4f wave functions. The
Freeman and Watson values (Ref. 4) correspond to Z,
=3.035, and the experimental values (as deduced from
the magnetic form factor) correspond to Z,=2,80 (all in
atomic units).

z, oy ot @)
3.035 0.65 1.06 3.67
2.80 0.83 1.97 9.33
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result that the orbital moment is usually “quenched,’
and the spin direction is independent of the electron
wave functions, which are constrained by the crys-
tal symmetry. The spin density, as determined
from neutron scattering experiments, is thus a
function of the angle between the crystallographic
axes and the scattering vector, but not of the an-
gle between the axes and the resultant magnetic
moment of the system. The spin direction is un-
coupled with the spin density, and follows the ap-
plied magnetic field. A consequence of this un-
coupling is that experiments on these materials
are often performed with the crystal slowly rotating
around the scattering vector in order to minimize
multiple scattering effects. ¥

For the heavy rare-earth ions, however, the-
situation is quite different because the spin-orbit
coupling is much stronger than the crystal field.
The magnetization densities of the fully ordered
heavy rare-earth metals (except gadolinium) are
ellipsoids of revolution, with the direction of the
magnetic moment parallel to the unique axis of the
ellipsoid. This aspherical magnetization density
cannot be observed with a conventional polarized-
neutron experiment, inwhich the scattering vector
is confined to the plane perpendicular to the com-
mon direction of the magnetic moment and the neu-
tron polarization. The situation is illustrated in
Fig. 6(a). The moment is along the unique axis z

X

W s by,

FIG. 6, Schematic representation of the magnetization
density for the two field directions in Tme On the left
(a) with HlI 7 the situation corresponds to Tl [001]. The
over-all density is anisotropic, but the projection onto the
xy plane is a circle and gives rise to a form factor with
no dlrectwnal dependence in the xy plane. On the right

) with HIlZ " the system has been rotated 45° so that
HII[011]. The magnetization density may be viewed as
the resultant of two lobes constrained by the crystal field
along the nearest cube edges. The projection onto the
xy’ plane is then an ellipse, giving rise to a & dependence
in the form factor.
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of the ellipsoid. The projection of the magnetiza-
tion density onto the xy plane is a circle, and mea-
surements in this plane give no information on the
over-all asphericity of the density. To observe
the aspherical nature of the magnetization density
the normal-beam technique, in which measure-
ments are taken out of the xy plane, must be used.
Such measurements have been reported for thulium
metal.? A consequence of the strong LS coupling
in the saturated heavy rare-earth ions is that the
direction of the magnetic moment is also the uni-
que axis of the ellipsoid. Therefore, in a form
factor study on a fully ordered rare-earth ion, no
additional information can be obtained by aligning
the magnetic moments in more than one crystal-
lographic direction.

To study the effect of the crystal field on the mag-
netization density a nonsaturated ion must be cho-
sen. The present experiment on the induced mo-
ment in a paramagnetic system is a good example.
In some senses the low-field properties of TmSb
are opposite to those of the fully ordered metals,
since in TmSb the magnitude of the induced moment
is independent of the field direction, whereas the
magnetic form factor depends on the angle the
crystallographic axes make with both the scattering
vector and the moment direction. The magnetiza-
tion density in TmSb for the two field directions is
drawn schematically in Fig. 6. For H1[001] the
density resembles that calculated for a free thuli-
um ion in the M =4 state, and is shown in Fig. 6(a).
(The asphericity is greatly exaggerated.) The
magnetization density for HI[011] is illustrated in
Fig. 6(b). The system has been rotated about the
x axis so that the field is in the [011] direction. The
resultant J vector is parallel to the field, as LS
coupling requires for an isotropic system, but the
magnetization density is constrained by the crys-
tal symmetry, and may be viewed as the resultant
of two axially symmetric densities. The projection
of this density on the xy’ plane (i.e., perpendicular
to the applied field) is then an ellipse. The change
in the magnetization density as a function of the
applied-field direction leads to an interesting ex-
perimental effect. If we measure the (660) re-
flection with HII[OOl], the calculated form factor is
0.301. By rotating the crystal about the scattering
vector until Hi[011], the induced moment remains
the same, but the (660) form factor is reduced to
0.264. The experimental confirmation of the @
anisotropy is illustrated in Fig. 3, and the theoret-
ical and observed values for the magnetic form
factor are in complete agreement. Note that if we
had chosen an (%200) reflection the form factor would
have been almost independent of the field direction.
In the limit of infinite field, the form factor anisot-
ropy, as measured in this experiment, would tend
to disappear (since the ground state tends toward
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the fully ordered state), whereas the anisotropy
of the bulk magnetization increases.

The variation of the magnetic form factor with
the direction of the applied magnetic field is a re-
sult of the crystal field interaction. Clearly, the
present technique may be applied to the problem
of determining the ground state in the many mate-
rials that are not as well understood as TmSb. The
method may also be used with ordered systems, in
which the exchange rather than the applied field
must be considered. Uranium dioxide is a good

‘example of such a problem, and the measured form

factor®® exhibits considerable scatter about a smooth
curve.

The expansion of the single-electron 4f radial
wave functions, relative to the nonrelativistic cal-
culations of FW, has been discussed in Sec. V.
Within our experimental uncertainties the spatial
extent of the 4f electrons in TmSb is the same as
that derived from the polarized-neutron study of
thulium metal.? These radial wave functions are,
however, considerably expanded as compared to
those of FW, and we attribute this difference to
relativistic effects.’® The (") radial integrals
may then be reevaluated (Table X), and the absolute
value of the crystal field parameters examined.
From Eqgs. (9) and (16),

A}(r*)=82.9°K and AJ(®)=4,.8°K. (28)

The point-charge estimates of Ag and Ag are given
by Eq. (10) and are

AYGrty=21.70*) Z °K,
AJ(r®)=0.07°) Z°K,

where (") are in atomic units, and Z is the effec-
tive charge on neighboring ions. From (28) and (29)
we have

'Yz =3.8, ¢*Z®=68.86.

Using the (") values in Table X for the FW wave
functions the effective charges from the two terms
are Z¥~ 3.6, and Z‘®~ 19. With the experimental
¢") integrals Z®~ 2 and Z‘®~ 7. Birgeneau et al.®
have argued that the simple point-charge model

is at best qualitatively correct for TmSb, and the
fact that Z4’ (derived with the FW wave functions)
lies outside the range 2 <Z <3 indicates that the
conduction electrons are not as effective in shield-
ing the crystal field as expected. The present ex-
periment significantly improves on their conclusions.
Crystal field spectroscopy yields a value for the
product A%{+"), but the polarized-neutron experi-
ments give an indication of the (#") integrals
separately. The result, as we have seen, is that
the agreement between the simple point-charge
model in TmSb is even better than Birgeneau et al.
had realized. The sixth-order term is still larger
than the theory predicts, but by reevaluating (%)

(29)
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we have decreased the discrepancy from a factor
of 10 to about 33, which, in view of the small ab-
solute value of this term, is very reasonable.
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FIG. 6. Schematic representation of the magnetization
density for the two field directions in TmSb. On the left
(a) with HIIZ the situation corresponds to HIll [001], The
over=-all density is anisotropic, but the projection onto the
xy plane is a circle and gives rise to a form factor with
no direct_:’ior_l‘gl dependence in the xy plane. On the right

) with HIl Z’ the system has been rotated 45° so that
HI [011]. The magnetization density may be viewed as
the resultant of two lobes constrained by the crystal field
along the nearest cube edges. The projection onto the
xy’ plane is then an ellipse, giving rise to a ¢ dependence
in the form factor.



