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tional broadening in our PrQ& spectra and the spectra of
Bent et al. (Ref. 6) is probably a result of a broader
source linewidth and the large velocity dispersion for the
backscattering geometry used. Kapfhammer et al. (Hef. 7)
also were unable to fit their spectra assuming a single
hyperfine field. They obtained their best fits using a dis-
tribution of. hyperfine fields.
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The ground state of cerous magnesium nitrate is determined using the assumptions that the spins are

coupled by purely dipolar forces, the magnetic structure is periodic after eight or less lattice periods, and

the spins can be considered as classical vectors. The ground state has a layered antiferromagnetic structure

as described in the text. A study is made to see whether this result is dependent on the assumption that the

g factor parallel to the crystallographic c axis is zero or almost zero for this specific salt. The conclusion

is that this is to a large extent not the case. The ground state lies at an energy —-1.867 mdeg K, using the

lattice constants as given by Schiferl.

INTRODUCTION

This paper describes the search for the ground
state of a dipolar-coupled spin system beyond the
simplest form of the Luttinger- Tisza calculation.
Its main application is to cerous magnesium ni-
trate (CMN) which seems to be an almost pure di-
pole system. We also investigate the question of
how our conclusions depend on the fact that in the
case of this specific salt, the g factor in the c di.—

rection is practically zero. The search for the
ground state of CMN is closely connected with ques-
tions concerning elementary excitations and crit-
ical behavior, since most theories for cooperative
phenomena use a preconceived idea for the ground
state. The long-range behavior of the dipole inter-
action makes it difficult to replace the interaction
by an effective field and the strong angle dependence
makes it difficult to decide whether the ground
state is ferromagnetic or antiferromagnetic. The
ground state can, in general, be approximated by

minimizing the coupling energy of a cluster but,
given the long-range nature of the forces, the clus-
ter would have to be quite large in order to obtain
a good approximation. In order to describe infi-
nite crystals one usually makes use of periodic
boundary conditions, The method of Luttinger and
Tisza' is acombinationof these two ideas: a cluster
that is periodically repeated. The spins in the clus-
ter consequently interact not only with the other
members of the cluster, but also with spins at
much larger distances; however, owing to the im-
posed periodicity, the dimensionality of the ma-
trix, that has to be diagonalized eventually, is
greatly reduced. A further simplification is ob-
tained by replacing the spins by classical vectors,
as well as a relaxation of the constraint that the
individual lengths of the spins should be conserved.
The gist of the Luttinger —Tisza method is the as-
sumption that a cluster of eight spins (2 && 2 x 2) is
considered to be identical within each periodically
repeated cluster. This superlattice structure was
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introduced to take the long range (actually the di-
pole forces have an infinite range) into account,
without having to solve the total N-body problem.

Previous work consists of the calculation of
Luttinger and Tisza', which was the first attempt
to obtain the ground state of dipolar systems in
general. There were several more attempts. 2

Finally, there is a paper specifically devoted to
CMN by Daniels and Felsteiner' and a paper by
Niemeijer' which gives an analytic solution to the
Luttinger-Tisza procedure for a 2 ~ 2 && 2 basic
cluster with an application to CMN, including a vari-
able exchange interaction between nearest neighbors.

The last two papers can be used to argue that
the ground state of the spin system of CMN is anti-
ferromagnetic, which it well may be. It was
shown, however, in Ref. 4 that the Luttinger-
Tisza method, using a 2 & 2 && 2 basic cluster, is
rather restrictive since it can give but two an-
swers: The system can be either ferromagnetic or
antiferromagnetic (although there are several anti-
ferromagnetic structures possible). Since nature
obviously provides us with a much larger number
of options, thequestion arises whether one canloosen
one of the major restrictions of the calculation,
namely, by choosing a larger superlattice, and
hence obtaining more possible arrays than in Ref.
4. We introduce the expressions "weak" and
"strong" following Ref. 1. The strong condition
means that all spins have a fixed length, the weak
(also called "spherical" ) condition means that only
the total spin has a fixed length. If we take a
2 && 2 x 2 cluster, it was proved in Ref. 4 that the
weak condition automatically implies the strong con-
dition, but if we take an N && N ~ N basic cluster,
with N= 2, 3, 4, ... , the extended number of pos-
sible arrangements need no longer fulfill the strong
condition if the weak condition is used in determining
the ground state. This means that if one determines
the lowest eigenvalue of the pertaining 3N && 3N ma-
trix, one should always check whether the corre-
sponding eigenvector satisfies the strong constraint,
i.e. , corresponds to a physically permissible situ-
ation. Since this does not need to be so for N&2,
the extrapolation of this procedure to larger super-
lattices does not necessarily lead to the actual
ground state.

We have applied the Luttinger- Tisza method
with N= 3, 4, .. . , 8 to CMN and neodymium mag-

,

nesium nitrate (NMN) ~ All lattice sums were taken
over all points inside a sphere. The size of the
sphere was chosen to be proportional to the size
of the superlattice. The actual method of comput-
ing the lattice sums has been described by Meijer
and O'Keeffe.

SYMMETRIES

The "interaction matrix" is of dimension 3N3,

where N is the number of steps in the superlattice.

We consider for the moment a matrix of dimen-
sion N made up of 3 x 3 matrices as elements.
This matrix consists of rows (columns) that can
be considered as permutations of a given row (col-
umn). This is the result of the fact that the rela-
tive distances between certain pairs of lattice
points are equal both in length and in orientation.
For low-N values this can be done by visual in-
spection of a three-dimensional picture. Since
this gets tedious in the long run, we designed a
little algorithm, suited for the computer.

If we take, for example, the case N=2, we have
eight points, labeled 1- 8. This label number mi-
nus 1 can be considered as base-2 numbers: 000,
001, 010, 011, 100, 101, 110, 111, and these dig-
its can be interpreted as the integers in front of the
basic translation vectors a, 5, and c. (In fact, this
seems to be exactly the choice Daniels and Fel-
steiner used in their Fig. 1.) The distance be-
tween two given locations L and L is always equal
to a distance from the origin to a point L . To de-
termine L for given L and L one subtracts the
numbers, digit by digit, and considers them modu-
lo N, if they are negative. The label L is the re-
sult rewritten on base 10, plus 1. The result is,
for N=2, the following matrix:

1 2 3 4 5 6 7 8

21436587
34127856
4 3 2 1 8 7 6 5

56781234
65872143
7 8 5 6 3 4 1 2

8 7 6 5 4 3 2 1

The general procedure is as follows. The label
L of the N' points that make up the unit cell in the
N & N && N superlattice is written as a base-N num-
ber, by taking the integer values

n, = [N (L —1)],

n2=[N (L —1-n&N ],

n3 = L —1 —nqX —ngN.2

The relative distance between two points L and L
is equal to the distance between L and the origin,

tt tt tl tlwhere I is given by n~ B +n~ Ã+ n, + 1, where
tl t

n, =mod (n& —nq) for i= 1, 2, 3. The resulting
table has the following property. Each column
(row) is a permutation of another column (row).
Let us take the first column in the order 1, R;
then we find the others by operating with the fol-
lowing permutation operators:
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Ps=(1, 2, .. . , N) (N+ 1, . .. 2N)

... (+((N —1)N+1], . . . , N'),

TABLE I. Lowest eigenvalue in mdeg for superlattices
sizes N for cerous magnesium nitrate using a =10.9857 A,
c = 17, 034 A (Ref, 7) gk= 1, 828 ~ aud g)) = 0. 032,

as well as by those that have a similar structure,
namely, N cycles of length N. To write the num-

bers in each cycle one may use the same method
as was used in the computer algorithm: Each label
equals 1 plus a three-digit base-N number, and

one should cycle each of the digits independently.
When the pertaining lattice sums have been per-
formed for a special choice of N, the effective
Hamiltonian of the basic cluster can be written as

2
3
4
5
6
7
8

Lowest
energy

—l. 915
-1.862
—1.916
—1.896
—l. 916
-1.906
—l. 917

Corresponding
k value

(o, o, 1)
(0, 0, 1)
(o, o, 2)
(o, o, 2)
(0, 0, 3)
(0, 0, 3)
(o, o, 4)

~i'a I 4t~
f I ~ B ~ Xsgsg

~/
where R and R run over the basic cluster and $„-
(o.=x, y, z) are the Pauli spin operators of the
spin at site R. The matrices J-„R. are translation-

s ~ ~i
ally invariant, i.e. , depend only on R- R, and so
can be broken up in 3 && 3 matrices, since n and P
still run over x, y, and z, by a Fourier transfor-
mation

oftt ogA. .. , = Ak exk ' (k~n~+ kkk + k,n, )),

where the set of integers (n„ns, n, ) is labeled R,
and 0&, ka, and k3 takeonthevalues 0, 1, . . . , N- l.
This result was already observed by I ax in his
paper on the spherical model of classical dipoles
on a lattice. Indeed, the weak constraint is an-
other name for sphericalization. The procedure
of the paper actually consists in selecting a sub-
set of spherical-model eigenvalues, examining the
lowest, and ascertaining that the state correspond-
ing to the lowest eigenvalue obeys the strong con-
straint. The expression above was computed for
all N' cases and the set of three-dimensional ma-
trices diagonalized one after another. At the same
time the eigenvalues were determined.

RESULTS

In each set of 3N' eigenvalues one looks for the
lowest and the next lowest. The result of the com-
putations for CMN is given in Table I. Note that
the values given are in millidegrees. To check
our computations we first inserted the lattice con-
stants used in Ref. 3; the results are obtained by
using Schiferl's low-temperature values. It turns
out that all eigenvalues correspond to (0, 0, 2 n)
(n= 1, 2, . .. , N) in )I, space, for N even. These
values are always degenerate with (0, —,'n, 0) and
(-,'n, 0, 0). This property is the consequence of
the symmetry of the lattice in k space.

For odd values of N we find that the lowesteigen-
value is obtained for (0, 0, —,

' (n+1)) and its two
counterparts (0, s (n+ 1), 0) and {—,

'
(n + 1)). The

+ sign refers to two statds that are identical, since

they differ by n. While the previous set of states,
for even n, did obey both the strong and the weak
constraint, these states do only fulfill the weak
constraint.

The main conclusion of the table is that the anti-
ferromagnetic state seems to be always the lowest,
since one finds (almost) the same value for the
lowest eigenvalue for (0, 0, —,'n) for each even N.
Hence this state, which in the previous calcula-
tions was just one choice out of eight, persists
even if one has a priori the choice out of 512 pos-
sibilities. If we compare (0, 0, 1) for N=2, with

(0, 0, 2) for N=4 and (0, 0, 4) for N= 8, we find a
slight lowering of the eigenvalue. This is mainly
due to the finite radius R = 8 a units (the lattice
constant in the plane), which we had to choose in
order to keep the N= 8 run within reasonable time
limits. Admittedly, this radius is not very large;
in order to obtain an idea about the error we made
runs with R = 3 and the answers changed by less
than 1% for N=4. Since in the larger-N values the
number of points participating in the sum is much
larger (about 5000 lattice points), we obtain a more
accurate result for the eigenvalue.

Some attention should be given to the states somewhat
higher than the ground state, since the energy differ-
ences are rather small. One such state is, for instance,
(0, 0, 2) for N=5 or (0, 0, 1) for N=3. Such states
are associatedwithspinstructures that canbe de-
scribed by the same antiferromagnetic planes as
were used by Daniels and Felsteiner, ' but the ori-
entation of each sucessive plane is rotated over a
certain angle (3- s or —', s). If these were possible
states, then this result would give an indication
that the coupling betzeeen the planes would be rath-
er loose. It is obvious, however, that these states
do not satisfy the strong constraint, and if a simi-
lar state obeying the strong condition does exist, it
may either have a much higher energy and the cou-
pling between the planes is not so weak or, if the
energy is not that much higher, the previous con-
clusion that the coupling between the planes is weak
stands as before. The only way we can determine
whether the strong constraint will increase the en-
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ergy considerably is to do a complete quantum-me-
chanical calculation. This issue is of importance
as soon as we begin to develop a spin-wave theory,
since another set of low-lying levels will affect the
calculations. %e have repeated the same calcula-
tions for NMN, assuming that it has the same lat-
tice constants as CMN (which is reasonable, since
LaMN is known to have practically the same lattice
constants as CMN). The g factors of the Nd ions
are g~=2. V2 and g„=0.45. The results are given
in Table II.

As can be seen, we have in principle the same
situation as for CMN; i.e. , the ground-state con-
figuration found with N = 8 is the same as the ground
state configuration found with N= 2 and N= 4. The
slight variation in the energies is due to the fact
that we have used B= 3 for all values of ¹ It ap-
pears that the ground-state configuration is exactly
equal to that of CMN, which means that the fact
that we have now g„=0.45 instead of zero has no
influence. These results indicate that the true
classical ground state for CMN as well as NMN

probably is the state obtained with N= 2 and 0
= (0, 0, 1), and one might speculate this to be a gen-
eral property of classical systems of dipoles on a
Bravais lattice.

To see what would be the influence of a larger
change of g„we have determined the ground state
for a number of values of y=g„/g~ in the range
Omym1. 6. It is found that for 0+ y +0.85, the
ground state is exactly the same as that of CMN.
For 0. 85 + V& 0.9& there is a different sublattice
structure withparallelspins on lattice sites 1, 2, 7,
and 8 and antiparallel ones as lattice sites 3 —6
(see Ref. 4 for the labeling of the lattice sites).
For 0. 98+y+ 1.6 one again has the same sublat-
tice structure as for CMN, but now the spins lie
in the y-z plane (see Note added in proof).

A paper giving a quantum-mechanical extension
of the Luttinger- Tisza method is in preparation.

SHAPE DEPENDENCE

The interaction energy in a dipolar system is de-
pendent on the shape of the sample. This is due to
the fact that the summation over the dipole interac-
tion is a conditionally convergent summation; that
is, if the summation were to be extended to infinity,
the result would depend on the order of the summa-
tion. In this case we utilize a finite summation in-
side a sphere of radius about 6¹,as indicated
above. The length a is the distance between two
cerium atoms in the plane perpendicular to the z
axis. We assume that beyond this distance the
contribution to the sum is equal to the contribution

TABLE II. Lowest-eigenvalue for neodymium mag-
nesium nitrate {isotope without nuclear spin) with the
same lattice constants and g&= 2. 72 and g„=O. 45.

Lowest
energy

-4. 237
-4.119
-4, 240
-4.194
-4.239
-4, 217
-4.241

Corresponding
k value

(0, o, 1)
(o, o, 1)
{o,o, 2)
(0, 0, 2)
(0, 0, 3)
(0, 0, 3)
(o, o, 4)

The authors should like to thank Professor
J.N. J. van Leeuwen for discussions and one of
us (P.H. E.M. ) thanks Professor J.M.J. van
Leeuwen and Profssor B.S. Blaisse for providing
the opportunity to make a short visit to the Tech-
nische Hogeschool, Delft, in order to finish this
work.

of a continuous dipole distribution, which is zero
if (a) the sample has the same shape as the surface
beyond which the distribution was considered to be
continuous (that is, since the surface was chosen
to be a sphere, the sample should also be a sphere)
and (b) the summation sphere lies inside the sam-
ple. Those spheres that do not fulfill this last con-
dition lie in the surface layer. The volume of the
surface layer can always be considered small com-
pared to the volume of the remaining part of the
sample.

The above argument no longer holds if the sam-
ple is not homogeneously magnetized but breaks
up in domains. In the ferromagnetic case we will
have an additional contribution to the energy. It
was already shown, however, in Ref. 2 (pp. 290
and 291) that the energy of the ferromagnetic state
is lowered in this way, but that it still lies above
the energy of the antiferromagnetic state. This
holds, of course, irrespective of the size of the
basic unit cell and we conclude that the ground
state is antiferromagnetic.

Note added in proof. We found that, looking at
004, etc. , the matrix A has only two off-diagonal
elements that are nonzero: A"=A" &0 and that the
lowest eigenvalue is given by A"". Increase of the
g, factor will increase both A" and the nonzero
off -diagonal matrix elements. This increase will
spread the two coupled eigenvalues apart, without
affecting the A"". At a certain moment there will
be a crossing and the A"" is no longer the lowest.
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The magnetic form factor of the induced moment in TmSb has been measured with polarized
neutrons. Thulium antimonide is a singlet-ground-state system, i.e. , it has no spontaneous
magnetic moment, but under the conditions of the experiment the magnetization develops
through the mixing of the ground state with the first excited state. The experiments were per-
formed on a single crystal at O'K and an applied field of 12.5 kOe. Measurements were taken
with 0 II (100) and Hll (110). The theoretical magnetic form factor has been derived using the
tensor-operator technique of Johnston, Lovesey, and Rimmer, and the nonrelativistic wave
functions of Freeman and Watson. The experimental form factor with H(l (100) is essentially
a smooth curve as a function of sine/A, , while for Hjl (110) considerable anisotropy is observed
at high scattering angles. This anisotropy arises from the nature of the ground state and is
determined by the crystal field acting on the rare-earth ion. The present technique may there-
fore be useful in investigating the ground states of the many compounds with unquenched orbi-
tal moments and appreciable crystal field interactions. The experimentally observed anisot-
ropy is in complete agreement with theory. Previous polarized-neutron experiments on rare-
earth metals indicate that the spatial extent of the 4f electrons is more expanded than given by
the nonrelativistic calculations. The observed form factor in TmSb does not agree with the
form factor calculated with nonrelativistic wave functions. Good agreement is obtained by
using the 4f radial distribution as determined from polarized-neutron measurements on thu-
lium metal. A set of (P) integrals has been derived from the experimental radial densities.

I. INTRODUCTION

Over the last three years the polarized-neutron
technique has been used successfully to measure
the magnetic form factors of the heavy rare-earth
metals gadolinium, ' thulium, and terbium.
These measurements indicate a major discrepancy
between the experimentally deduced spatial density
of the 4f electrons and that calculated with nonrel-
ativistic wave functions. The advent of relativis-
tic calculations'6 appears to remove at least some
of this discrepancy, although the problem of under-
standing the conduction-electron polarization still
remains. In addition, measurements on the ionic
system Gd2G3 indicate an unexpected agreement
with the form factor derived from nonrelativistic
wave functions. The rare-earth pnictides have
been extensively studied recently, and the metallic
compound TmSb (NaC1 structure, go= 6. 076 A) pro-
vides an excellent candidate for a polarized-neu-
tron investigation for the following reasons: (a)
Very accurate single-crystal magnetization experi-

ments have been performed on TmSb by Cooper
and Vogt, and Foner et aE. , and used to derive
the crystal field parameters. additional magne-
tization experiments on the Tm„Y& „Sb system indi-

cate that the exchange is negligible in TmSb. The
results of Cooper and Vogt show that TmSb is a
singlet-ground-state system, and that the induced
moment at 4. 2 'K is isotropic in fields less than
15 kOe. Inelastic-neutron measurements have
further refined the crystal field parameters, con-
firming the model proposed by Cooper and Vogt.
(b) From an experimental point of view, TmSb is
ideal for accurate form-factor measurements since
a magnetic moment of - lp, ~ per Tm atom can be
induced with a field -10 kOe at helium tempera-
ture. (c) Polarized-beam measurements have been
reported on thulium metal and a comparison of
the 4f electron wave functions in the two environ-
ments can be made.

The theoretical calculation of the magnetic form
factor is also of interest since this is a singlet-
ground-state system without exchange, and the form


