
TRICRITICAI POINTS AND TYPE- THREE PHASE TRANSITIONS

L. S. Schulman and M. Revzen, Collective Phenomena
1, 43 (1972).

4A. Mann and L. S. Schulman (unpublished).
~For a ferromagnet in a box of length L (as described,

say, in Ref. 9) the Jacobi mode has wavelength 2L. The
mode with wavelength L has, at the critical temperature,
a minimum very nearly as flat as the Jacobi mode itself.
Similarly, for a system of spine on a one-dimensional
lattice with nearest-neighbor interactions, although the
lowest energy may be attained by orienting all spins in
one direction, the energy cost for a single change of direc-
tion along the line is so slight that the energy barrier be-
tween the different orderirgs of the lattice is minimal.

L. Benguigui, First European Conference on the
Physics of Condensed Matter, Florence, 1971 (unpub-
lished); The Landau Critical Point (report of work
prior to publication); and Phys. Lett. 40A, 153 (1972).

~E. Fatuzzo and W. J. Merz, Ferroelect~ci, ty (North-
Holland, Amsterdam, 1967), Chap. 3.

A. F. Devonshire, Adv. Phys. 3, 85 (1954).

SL. P. Kadanoff et al. , Rev. Mod. Phys. 39, 395
(1967).

The mapping h in Eq. (1.3) is a homeomorphism.
'For any given system, having found. the vaxiable p

related to P by Eq. @.5), the study of structural stability
in terms of p, and V(p) involves only smooth (at least twice
differentiable) transformations of p, .

~ See, for example, R. Alben, Am. J. Phys. 40, 3
(1972). Alben's piston has an isolated Jacobi mode.

R. Bidaux, P. Carrara, and B. Vivet, J. Phys. Chem.
Solids 28, 2453 (1967).

~4L. D. Landau, Phys. Z. Sowjet 11, 26 (1927); JETP
7, 19 (1937) reprinted in D. ter Haar, Collected PaPers
of L. D. Landau (Gordon and Breach, New York, 1965).

~~J. S. Langer, Phys. Rev. Lett. 21, 973 (1968);
Ann. Phys. (N. Y.) 54, 258 (1969).

K. Bethe and F. Welz, Mat. Res. Bull. 6, 209 (1971).
'~J. L. Lebowitz and O. Penrose, J. Math. Phys. 7,

98 (1966).
M. E. Fisher, Rept. Prog. Phys. 30, 615 (1967).

PHYSICAL REVIEW B VO LUME 7, NUMBER 5 1 MAR CH 1973

Critical Behavior of a Classical Heisenberg Ferromagnet with Many Degrees of Freedom*

E. Brhzint and D. J. Wallacet
Joseph Henry Laboratories, Princeton University, Princeton, ¹aeJersey 08540

(Received 31 July 1972)

The critical behavior of a classical Heisenberg ferromagnet is studied in the limit where the
spin dimensionality N is large. Corrections of order 1/N to the spherical model are obtained
as functions of a continuous dimension d, 2& d&4. Particular attention is given to the behavior
near the coexistence curve. The divergence of the magnetic susceptibility below T, as the ex-
ternal field vanishes is discussed. through a nonlinear realization of the O(A) symmetry, as
well as in the 1/N and 4-d expansions.

I. INTRODUCTION

Universality of scaling behavior in critical phe-
nomena applies only to systems with a given num-
ber N of internal degrees of freedom. This is
manifest in recent works which use the q expansion
technique developed by Wilson and Fisher. ' This
method provides systematic corrections to mean-
field theory by a perturbation expansion in z = 4- d,
where d is the dimension of space. Both critical
exponents' and the scaling equation of state~ exhibit
explicitly a dependence on N.

In this paper & is not assumed to be small, but

may take any value between zero and two. The
approximation now lies in the assumption that all
quantities may be expanded in power of N ' for N
large. The motivation lies in the result of Stanleys
that the limit N- ~ of a classical Heisenberg fer-
romagnet, in which each "spin" has N components,
is identical to the exactly soluble spherical model
of Berlin and Kac.4 More recently a simple dia-
grammatic approach has been presented in a field-
theoretical framework by Wilson. ' This method

gives both Stanley's result and systematic correc-
tions in powers of N . It is here applied to the
calculation of critical exponents and of the equation
of state of a magnetic system, to order 1/N.

The numerical agreement of this expansion with
the behavior of an ordinary magnetic system where
N= 3 is not expected to be particularly satisfactory.
In fact, the g expansion results seem to indicate
that the asymptotic region in N requires at least
N&8.

Therefore, the aim of this 1/N expansion is
rather to give theoretical information which the &

expansion is not able to provide. In particular,
our interest was to study the behavior of the sys-
tem near the coexistence curve, i.e. , below the
critical temperature when the applied magnetic
field 0 tends to zero. In this region there are two
different characteristi. c lengths associated with
transverse and longitudinal magnetic susceptibil-
ities. It is not clear that the g expansion in which
the coupling constant is fixed to induce the expected
scaling only in the longitudinal correlation length,
does not break down in the vicinity of the coexis-
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tence curve. A related problem is the appearance
of infrared divergences in the & expansion of the
longitudinal susceptibility in the form of powers of
& lnH. Perturbation theory always produces in-
frared logarithmic singularities which are in fact
generated by the expansion of a power behavior in
II, which, as explained in Sec. IV, is difficult to
reconstruct. New information is obtained about
this region and about the nature of the divergences
as H tends to zero. The results are in agreement
with the predictions based on nonlinear realiza-
tions of the O(N) symmetry.

The outline of the paper is as follows. Section
II contains the notation, describes the perturbation
theory and derives the simplest leading terms.
In Sec. III the 1/N corrections to critical exponents
and to the equation of state are calculated. Section
IV is concerned with the vicinity of the coexistence
curve. The relevance of the nonlinear realization
is discussed.

II. DESCRIPTION OF MODEL

As in previous calculations in the q expansion, '

we use a local (Q ) interaction in terms of N
scalar fields P&(x) [P means V~ Q, (x)]. In the
presence of a constant external field H, conven-
tionally in the direction of the first axis, the
Hamiltonian is

—„='u. —,

' &(.~, ]"-:,~.,", (~) -He,),
oJ l.

(1)
where ro and uo are two constants, and yo depends
linearly on temperature. The perturbation theory
of this model has been discussed in Ref. 2. For
completeness let us recall briefly that the field
[][],(x) is translated by its expectation value, the
magnetization M, and is thus replaced by a field
L(x) with zero expectation value. Also "mass"
counter terms, which are different for the first
mode along If and the (N- 1) transverse ones, are
added so that to all orders in uo, the propagators
at zero momentum (i. e. , the longitudinal and
transverse magnetic susceptibilities) are

~,' = fd" [(xy,( )yx, ( ))0m'], — (2)

er 6&&
= fd"x &P&(x)g~(0) ), 2 ~ jj ~N . (3)

The Hamiltonian is then split into a free part
S

d x (vL) +r I +Z[(vli) r„4;])
2

(4)
and a perturbation

y +-' uoM M-H I.
(5)

I.(x) = y, (x) —m .
Then the equation

(L(x) ) =0

is expanded in powers of the interaction and use
is made of the relations

eH H
&M' M (8)

When N is strictly infinite we expect to obtain
the results of the spherical model3'4 in the scaling
region. It is extremely simple to show this.

First„ from Fig. 1 it is clear that the correction
to the propagator, in zero field above T, , is of
order 1/N. Therefore, the field has canonical di-
mensions or, equivalently, the critical exponent

q vanishes.
The only diagram which contributes to K[I. (V),

is the closed loop of Fig. 2, and after subtraction
at the critical point where r~ and x~ vanish, we
obtain

H 2- e/2
2 1—=f+]]-(upM ) —

p (upN) (2, )(2 )g

j.- e/2x, — (g)
sin2m E

where g= ~~ —y~, is proportional to the reduced
temperature (T —T,)//T, . In the scaling region,
with obvious normalizations for temperature and

The first of these follows from the definition (2);
the second is a result of rotation invariance and
is also derived as a Ward identity in Ref. 2.

The large-N limit of field-theoretical models
has been discussed extensively by Wilson. 5 The
main feature is that, at a given order in uo, a
power of N may be generated by each closed loop
and therefore dominant graphs are those with the
largest number of bubbles. To compensate for this
power of N, up is considered to be of order 1/N.
For example, the leading corrections in order 1/N
in zero field above T, to the self-energy operator
are given by the sum of the chain of bubbles of
Fig. 1. Such sums always give rise to simple
geometric series.

A. Limit of Infinite W

[f'x —,
'

[rp —~, + —,'(upM')] I.'

+ ~ ooe

FIG. 1. Diagrams contributing to q at order 1/N.
[r. r, +] [.m')] 0 0,'+~ r'+Z y,')-.
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fields, this yields the equation of state

H/I{f ' = (I/I{f '"+1)"

and the critical exponents

(lo)

p= -,', y= 1/(1--,'2), 5 =1+2/(1 ——,'&) . (ll)
It is easy to verify that this is precisely how the
Berlin and Kac solution to the spherical model
behaves in this region.

Let us note and postpone and discussion on the
meaning of this result to Sec. IV, that in the vicin-
ity of the coexistence curve the magnetic suscep-
tibility X = xi,' diverges like II ' since from Eqs.
(8) and (10), we obtain

r2 ——2(1 —2e)M

III. 1/N CORRECTIONS

It is useful to understand first the critical be-
havior in zero external field. The calculation of q,
which characterizes the correlation function at T
= T, according to

fd'xe"'*(Pg(x)P((0))„.2 r r q"

has been performed by Wilson by consideration of
the diagrams of Fig. 1. The result reads

1, sin-2'me 1 (2- e)
N 22~ &(1 —2e)f'(8 —2e)

'

The critical exponent y governs the divergence
of the magnetic susceptibility when T - T', :

(14)

The 1/N correction to the value (11) of y has been
obtained by Abe who keeps one more term in
Stanley's approach, and also by the same method
as used here by Ma. Nevertheless, this perturba-
tive calculation of y is presented here since it
simplifies the treatment of the equation of state.

The relevant diagrams are the sums of streams
of bubbles depicted in Fig. 8. Analytically they
give

1 1t=a' —duo& '~

a q+X q

——2(u2X) P
'

P
—(r=O)~

Z(q, r)
(q +r)

FIG. 3. Mass counter term and typical streams of bubbles
for y.

where

". 1 1—(suo)
q +r 1+ 2 (up1')1(q, r)

- (r= 0)
~

(15)

and

f [1/=-(2.)'] jd'q,

I(q, r) = f (p + r) ' [(p+ q) + r] ~,

&(q, r) = &(q, r) —&(0, r)

= —2u2 f 1+ 2 (u2N)I(p, r)p
4p

1 1
X ~ 2 —

p
—

I . 17(p+ q)'+ r @2+r )
In the scaling region where x is small the domi-

nant contributions to the right-hand side of Eq.
(15) are terms of order r' '~' and (1/N)r' ' lnr,
and terms in x and xlnxare negligible.

Then Eq. (15) simplifies to

2-8/2 1- 8/2
L(

(22)4 'I"(2 ——2'E)2 sin( —,'ve)

in which

+ -'2 u2 Jt I '(p, 0) [Z(p, r) -J(p, 0)], (18)

2 2 1 1
Z(P, r)= (k +r) ), —,

))

1 811u-.wp, .)-1.—(1,.)) .
2(p +r) ey

(19)
The relevant region of integration in Eq. (18) is
p»x, where

/

j

FIG. 2. Dominant
contribution to the ex-
pectation value of the
longitudinal field; solid
and dashed lines repre-
sent, respectively,
longitudinal and trans-
verse propagators.

22' '" v
I'(2 —2&) (22)' ' 2sin-2'ppe

P2(1 1~) r 1 6 /2

xP ' (1 —2&) T(2
—2

p2» r (20)

from which follows
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Bubbte Summation:

tpivzr'ill = 0 +I
+ ~ ~ ~ ~

Longitudinal Propagafor:

AA & = — + —fly A—+ A"??73-+yyr~+. ~ .

PIG. 4. Definition of the dressed longitudinal propagator.

perature through Eqs. (7) and (8). In order to de-
termine which diagrams contribute to the 1/N
terms, one has to keep in mind that the sponta-
neous magnetization is of order V N, as can be
seen from the lowest order Etl. (9). This observa-
tion has the immediate effect of inducing a zeroth-
order modification of the longitudinal propagator,
as shown in Fig. 4, and the result reads

8-5/3
2w

1(2- -') (2 )' '

o , , gs 3r (2 - s)
2«t«-,'«« tt)«(1 ——,'«) )

and thexefore
1 3& sin 'wc I'(2 —s:)

)Y 1 ——,'e N —,'ws: I' (2 ——,e)j.

It is easy to verify that the small-& behavior of
these critical exponents agrees with the results,
obtained by the E expansion.

A. Equation of State

A nonzero external field 8 is now present and
is to be related to the magnetization and the tem-

[q +ra —~s, (q, rr)]
where

&s(q, rr) = ——,'uoM ([1+(suo))I)I(q, rr)] '

—[1+ (-,'uP )I(0, r, )] '1 . (22)

In terms of this modified propagator, the I/N
contributions to the equation of state are shown in
Fig. 5. All resummations lead to geometric
series, but end effects" should not be overlooked
to get. the correct weights: Figs. 5(a) and 5(l))
havetobe counted separately, whereas Figs. 5(d)-
5(f) may be simply combined. The result may be
written

H g 2 j 1 1 g 1 1
O=f + suoM + s uo& s K + suo ' s — — s

««
" )1+ «««)tlt«, «)) ' tl+ t«««)t)lt«, 0)] '

)'+
3 g q +19, ZL(q' rr) q'

+ t (q +r&) ' [&'+rl, —&&(&,rr)] ' [1+ (]9 u&)I(&, rr)1 ' 1[(&+gP+ rrl ' —(&'+ rr) '&

9

(q +r ) [1+(su+)I()'9, rr)] '
(„- - s — —-s —(rr=0) . (23)

18 „,~i (k+tl +rr 1'9 +rr

Let us now simplify this equation. First, the
diagram of Fig. 5(c) recombines with the zeroth
term of Fig. 2 to generate ~~~" as comparison with
Eq. (15) indicates. Then the dominant contribution
comes from the region where the momenta are
small, but much bigger than x~~ . There,
luom(k, rr) I is much bigger than one. Further-
more, xl, has to be eliminated, but since it appears
only in diagrams of . order I/1)I, it may be replaced
by the zeroth-order expression

r, = (2M'/X)I -'(0, r, )+r,
Finally, when all terms which produce powers of
x& higher than 1 —&c are neglected, we obtain

~gl Oil+
P'

r
YZ/// 4

I

—=I+yuoM —(IZuoN) (2, )(2 )s, rr" FIG. 5. j/N corrections to the expectation value of the
longitudinal fieM. The notation is as in Pigs. 2 and 4.
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2 ~M J(k, rr)I (k, r2)
3 N .pk +rr+(2M P/N)I (k, rr)

1 1 i
P P q++rr+(2M 7N)I (q, rT) q &I' ( )

The critical exponents P and 5 are easily ob-
tained from this equation. Below T, , when the
applied fields vanish, but not the magnetization,
we set r~=0 and obtain

0 = f+ pupM + —(2(3 —ae)
2
N

r(2 — )x
rp(2 1

)
(prpM ) lnM . (25)

If we identify this result with the definition —t
~ M ~, we obtain

1 &(3 —2&) sin~pe 1"(2 —e)
2 2N —me r (2 ——'e)

Similarly, at T, , (I= 0), 6 may be obtained by
relating M to r~. Since the integrals which appear
in Eq. (24) have a factor 1/N, M may be substi-
tuted into them by its lowest-order expression

I'(2 ——,'e) (av)' ' 2 sin-,'me

Using the relation (19) and the asymptotic expansion
(20) for I(k, r) one obtains

K ' 2~ e sin-,'ve r(2 —e) 1 K
M 2N m&e I (1 —pe) 1 ——', e M

With the usual definition II~ M' at I;= 0 this yields

2 e' sin-,'ve I'(2 —e) 1
+ I j.1 ——

& N —ve r (2 ——e) 1 ——eP 1 1 ~

(27)
It is now easy to obtain the equation of state in

scaling form. p When the integrals in Eg. (24) are
subtracted at r~=0, g~M is simply replaced by
+~upM '~P, with P given in E(1. (26). That is all that
is required to produce the scaling variables

(as)

in the relation

yi i"= x+ 1+ (1/N) [g(x) —(x+ 1)g(0)],
where

4-2 ~ 1

2(x)=2 p 2k Z(k, 1)l '(2, 1)—1 —(x ~ 1)1"(2——,'x) x 1(k, 1))

1 ap' '4 af
x 0+1Ik, 1+

—2 p [2k J(k, 0)I (k, 0) —1]~k I(k, 0)+ 1 r 2 1 2 )e, t 1
~

. (29)

Note that (1) the scaling laws which determine P
and p in terms of y and q and the dimension of
space are satisfied, and (ii) the small-& behavior
of the critical exponents coincides with previous
results. '

IV. BEHAVIOR NEAR COEXISTENCE CURVE

It has been shown in a previous work in the &-ex-
pansion approach, that the equation of state is well
defined in the vicinity of the coexistence curve. ~

More specifically, in terms of the scaling variables
defined in (28), in this region one has the structure

y- (x+ 1) [1+A e ln(x+ 1)+ Be ln (x+ 1)

+ Ce ln(x+1)], x- —1 . (30)

One does not know a priori the form to which these
logarithms should be exponentiated. Assume, and
it will be argued later that it is indeed the case,
that in the vicinity of x= —1, the expression (30)
exponentiates as y = O[(x+ 1) ], with ip greater than

one. Then both specific heats at constant magne-
tization and at constant field remain finite at the
coexistence curve. Furthermore, the derivative
of C„-mith respect to H is also finite, as a simple
thermodynamic argument shows.

Consider the usual relation between the two
specific heats

~ Mp

sK, 1 BK(M', f) dM'+ —„+C—(M„ f),

H

]
(32)

and normalizations are, as previously, such that

(31)
where C(Mp, f) is a "constant" of integration, ir-
relevant for our purpose. If the scaling equation
of state readss
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t//M'~8 = —1 at the coexistence curve and H/M~ = 1

on the critical isotherm; then from Eq. (6) the
dominant part of r~ is

r, - (1/P)~'-'f '(x),
Therefore the dominant terms of CH are, with ~
-=3- p(5+1),

- P(- f) " —
i
u

i

"f"(u) +f '(x)
T „~ Q

N 1/2
(,(x)=(m'+2 x(x) -r ()(x)

2
(33)

where nz is a parameter similar to the magnetiza-
tion. This expression is to be understood as a
power series in 1/m. As defined, the field o'(x)
is invariant under O(N) rotations.

Collecting in the transformed Hamiltonian the
terms in o and o, we see that o (x) plays a role
similar to L,(x) of E(l. (6). Thus, at lowest order
in ro, the e(luation (o ) = 0 implies

II m—= ro+uo

and the bare "mass" term of the o. field is

H ~M
r& — +I

When x approaches —1, a cancellation occurs, and
if

f(x) —(x+ 1) , x- —1,
CH has the same behavior.

This means that the energy fluctuations remain
finite and not rapidly varying in this region. In
particular this indicates that this property holds
for the quantity

This is to be contrasted with the fact that in the
same region individual fields have infinite fluctua-
tions, since according to Eqs. (3) and (3) they are
precisely the divergent susceptibilities z~' and r~.
This is why it seems reasonable to explore the im-
plications of a nonlinear model in which g Q; (x)
is held constant. "

It has been foreseen by Wilson'2 that the use of
a nonlinear realization implies that the transverse
field has its canonical dimension in this region, and
we shall attempt to make this conjecture plausi-
ble. 13

Consider the Hamiltonian in its original form
(1). Let us replace the longitudinal variable Q, (x)
by a new variable o (x) according to the relation

The advantage of this change of variable'4 j.s
that, in the region r~«r~ and for small momenta
« ~r~, the o field decouples from the other modes
since the insertion of an internal 0-line produces
a factor r~'. The reasons why this argument fails
for the longitudinal field in the initial Hamiltonian
are twofold. First, in the interaction Hamiltonian

(5) there is a coupling L(x)P(2(x), with a coefficient
u M which, in this region, is of order (uar~)'
and the insertion of an I.-propagator does not al-
ways produce an r~ factor. Second, in contrast
to o(x), (())~(x) plays a role in maintaining the O(N)

symmetry.
Therefore we are left with a Hamiltonian from

which the longitudinal mode disappears:
I

1/2- 2

d x —Z VP&+ Vm—-& P&uZ 2, '2
—Hm —

) . 35

Near the coexistence curve r~ goes to zero, and
therefore we are exploring the critical behavior
of the Hamiltonian (35). From Wilson's general
arguments on "irrelevant variables" in the renor-
malization-group equations, only interaction
terms (g Q, ) are relevant for inducing anomalous
dimensions. However, in the Hamiltonian (35)
this term appears with a factor II and tends to
zero. Therefore, field dimensions are expected
to be canonical.

Let us now extract a precise statement from
these considerations. Consider the transverse
susceptibility

rr = fd x (((()((x)g)(P)), f ) 3 .
Denote by f the transverse correlation length. In
the x integration there is a region of order f which
contributes a term g~o ~, with d —2d~= 2 for
canonical dimensions. Similarly, let us consider
the longitudinal susceptibility

r,-'= fd'xt (y, (x)y, (0) ) —~'],
which, according to E(l. (33) and to the fact that
higher powers of P& have higher dimensions and
are negligible, behaves like

The same argument gives now

r~1- &~2 + ConSt,

and since dimensions are canonical d~ 2 = 2d~ = d
—2. If f is eliminated in favor of r~, one finally
obtains

This means that, at this order one may identify r
with y~, and I with M. r~ - const+ r ~' (36)
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to all orders in e and in 1/¹ Since r~ is simply
related to the derivative of f(x), this result im-
plies that f '(x) vanishes at x = —1, as was initially
assumed. Of course this argument involves an
element of circularity but this picture is strongly
supported both by the q and 1/V expansions.

Thus, from the equation of state obtained in
Ref. 2 by the q expans'. on, it is straightforward to
extract the relation

1 ——— fin(x+ 1) —(-,'~) ln'(x+ 1)]
2 N+8

+De ln(x+1), x- —1 (3V)

where D is some constant. From consideration of
the & ln(x+ 1) and &2 in~(x+ 1) terms in Eq. (3V), one
verifies at lowest order in & the structure pre-
dicted in (36). However it is not possible to sub-

stantiate further the form (36) using the g21n(x+1)
term of Eq. (3V), because it is impossible at this
order to decide whether it builds up a new power'", or changes the normalization as in
(1+bc)xr'/ . The essence of the problem lies in
the existence of two powers of y~ differing by or-
der q, ~amely, so~ and r~'/~. Indeed if a third
such power were present nothing could be checked
at this order. A renormalization-group argument
would rule out this possibility, 6 but another argu-
ment in favor of the same conclusion may be found
in the 1/N expansion.

When N is infinite, it was noted in Sec. II that,
to all orders in c, Eq. (36) holds. To obtain the
1/N corrections let us return to Eq. (24). When
the integrals are subtracted at y~ =0 simple alge-
bra leads to the equivalent form

2- 6/26I g/8 y 2' lT g &/p -1
r(2 —-'c)(2w) ' sin-'iic ' ' ' " & +" +(&~/&)&'(+ ~ )I

' ~) '
"k

(38)

Using Eq. (19) and the asymptotic expression (20),
it is easy to check that the integrals in Eq. (38) be-
have, for small r~ and fixed M, like

I

by

~~ -1+ (x+1) ', x - —1 .N-1

(1/N)(r' ' +const /i/f
' " ' "r ),

and no (1/N) rr' '/~ln~r or (1/N)rr lnrr terms are
present. This establishes the form (36) to order
1/N for all c.

In conclusion, we discuss the available evidence
on an Q divergence of the susceptibi]. ity in
three dimensions. Besides the Berlin and Kac
model, this behavior is also found in perturbation
theory for a system of interacting spin waves'
but, to our knowledge, there is no experimental
evidence for it. However, if the & expansion may
be trusted, let us show how difficult it will be to
observe this divergence. To this end, we return
to Eq. (3V) which now may be exponentiated and
replaced, in the vicinity of the coexistence curve,

For an isotropic ferromagnet, N= 3, and in three
dimensions the diverging term takes over from the
constant when (x+1) (2/9) . Since, in this region,

( + 1)i/ &2- s/2)

this requires values of H/M' & (2/9); that is to say
only 3&&10 3 of its value on the critical isotherm.
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We have completed a series of Mossbauer scattering experiments on 59Pr using an axially
symmetric backscattering arrangement. From the relative isomer shifts between Pr@ and
Pr'3 compounds we estimate that the change in the mean-square charge radius between the 145-
keV excited state and ground state of the ~SPr nucleus is 1.28&& 10" cm . PrO& exhibits or-
dered magnetic behavior below 15 K. We estimated the hyperfine fields for the electronic
ground states of a Pr ion in a magnetic cubic crystal and compared the observed values of the
effective fields with the calculated fields. We found the best agreement when we assumed that
the exchange field was directed toward a nearest-neighbor Pr' ion. W'e obtained {3.1 + 0.2)p&
for the magnetic moment of the 146-keV spin-$ level of ~ipr.

I. INTRODUCTION

The nuclear ground state of the stable isotope
'4~9P has a spin of —,

' and the first excited state at
145 keV has a spin of +s (see Fig. 1). Praseodymi-
um acts chemically as a metal with a valence of
+3 or +4. The electron configurations of the Pr'
and Pr'3 ions consist of the xenon closed shells
plus one 4f and two 4f electrons, respectively.

Observation of the Mossbauer effect with the
145-keg g transition in 59Pr is difficult, owing to
the relatively high energy of the y ray and the re-
sulting small recoilless fraction for praseodymium
compounds. In 1963 Bukarev ' reported unsuc-
cessful attempts to detect the effect. He tried both
a conventional transmission geometry and a right-
angle scattering arrangement. U'sing an axially
symmetric baekscattering geometry, Morrison
and Debrunner and Frauenfelder were the first to
observe the Mossbauer effect in '«~9'Pr. Recently,
additional result:s from scattering experiments on
'59Pr were reported by Bent et al. p

' Kapfhammer
et a$. , and Groves et al. '

We have completed a series of resonance scat-
tering experiments on '59Pr and have observed the
Mossbauer effect in several praseodymium com-
pounds. We used an improved version of the axial-
ly symmetric baekscattering arrangement of Ref.
4. '~9Pr is particularly well suited for resonance
scattering stud~esy since the ~~~~c~ «ssiCe has a

simple decay scheme with y's only from the 145-
keg level, the level of interest. Consequently, in
the backscattering geometry a Ge(Li) detector was
able to resolve the elastic peak due to Rayleigh and
Mossbauer scattering from inelastic processes such
as Compton scattering and the photoelectric effect.

We observed signal-to-background ratios greater
than 0.20 for some single-line spectra. From the
relative isomer shifts between Pr' and Pr'3 com-
pounds we estimate that the change in the mean-
square charge radius between the 145-ke7 excited
state and the ground state of '»Pr nucleus is 1.28
&10 8 cma. PrQ3 exhibits magnetic ordering below
15 K. We estimated the hyperfine fields from the
electronic ground states of a Pr' ion in a magnetic
cubic crystal and compared the observed values of
the effective fields with the calculated fields. We
found the best agreement when we assumed that the
exchange field was directed toward a nearest-
neighbor Pr' ion. Also, we obtain (3. 1+0.3)p»
for the magnetic moment of the 145-keg spin-+~

level, in agreement with Bent et al. and Kapfham-
mer 8f QE.

We have written computer programs for simu-
lating and least-squares analyzing the data from
Mossbauer scattering experiments with large, axi-
ally symmetric scatterers. We included both
scatterer and detector solid-angle effects, and we
included the non-Lorentzian terms for partially
resolved spectra. 9


