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Phase transitions with tricritical points occur in catastrophes generated by sixth-order poly-
nomials. The catastrophe theory of the phase transition is more general than the correspond-
ing Landau theory (at the expense of some of its predictive power) and does not suffer from
some of the defects of that theory in its application to systems such as metamagnets, He3-He
solutions, and ferroelectrics. Some consequences of the use of the polynomial —including cubic
terms also —are explored.

I. INTRODUCTION

Tricritical points" ' are points in thermody-
namic phase space where a phase transition of a
complex kind takes place involving the meeting of
a line of second-order transitions with a line of
first-order transitions. There are indications
that the classical theory, " that is, the Landau
theory of phase transitions, is inadequate for the
description of this phenomenon. In this paper we
show that the Landau theory, as generalized by the
theory of catastrophes, in fact, provides a phe-
nomenology of tricritical points. This is because
the catastrophe theory based as it is on topological
methods confines itself almost entirely to qualita-
tive statements. While this has the weakness of
precluding quantitative predictions, it has the ad-
vantage that it cannot be contradicted by quantita-
tive results either. In defense of this unusual ap-
proach to physical theory, it might be said that the
real problem of phase transitions is a qualitative
one, namely, to explain the mutual resemblance
of phase transitions despite the diversity of the
systems in which they appear. (Certain simple
assumptions within this theory do lead to definite
quantitative results; this is discussed in Sec. II. )

In Ref. 3 is an outline of catastrophe theory. We
here repeat only as much as is necessary to in-
troduce notation. For each point x in an external
parameter space X, a system has available a mani-
fold M of internal states. The internal state rn„

which the system actually assumes is that mEM„
which minimizes a given potential function V„(m),
V„:M„-.R. If at some xo, the motion at m„ is not
structurally stable, then the Hessian

V~(h(m)) = k(V2(m)) {I.3)

for all rnid-~. If all potentia. ls in a neighborhood of
V„are equivalent to some potential of the form

. N

V„+Z nest»ga. M-A, ' (I.4)
4=1

for varying a& and some fixed family of g„, then the

II;~ —— (l. l)~P; ~PJ
~

18@
O

(p; local coordinates on M„) is not positive definitexo
and there is at least one vector (i.e. , direction in
M„)j such that

Hj =O (l. 2)

A catastrophe is said to occur at xo. Here j is
called the Jacobi field, and the dimension of the
space of such vectors is the internal dimension of
the catastrophe. Smoothness assumptions are made
for V„, in particular for its dependence on x. Since
V„ is not structurally stable, there are potentials

0
near it (in the topology on the space of potentials,
here taken to be a C topology) which are not equiv-
alent to it. Equivalence"' is defined purely to-
pologically: V;:M-A, i =1, 2; V&- V2 if there exist
IE:~—~, 4:A —R, homeomorphisms, such that



TRICRITICAL POINTS AND TYPE- THREE PHASE TRANSITIONS 1961

N

V„=p"+Zv, (x)p,
' (l. 6)

It follows that v&(xo) =0.
In Ref. 3 the following correspondence was made

with statistical mechanics: X is the thermodynamic
phase space; M„are internal states, specifically
assumed to be described by some order parameter
so that I = (order parameters)=]q); V„(m) is the
free energy at x for a given order parameter m(or
q). [A more usual notation for this is Er„~(q); E
is actually part way between energy and free ener-
gy and might be called constrained free energy. ]
Higher-order phase transitions were related to
catastrophes; the Jacobi field j was identified as a
zero-free-energy excitation of the system, and in
fact is a nonlocalizable mode of the Goldstone sort,
in this case connected with the degeneracy of the
equilibrium state below the critical temperature.
This is analyzed in Ref. 4. In thermodynamics,
absolute minima of I'" are desired so that only even
N are acceptable. Let T = 1+—,'N and call T the

type" of the phase transition. It was noted in Ref.
3 that the most common higher-order phase transi-
tions are those of type two; however, type-three
transitions mere indicated experimentally for cer-
tain ferroelectric transitions. It mas suggested
that the polynomial of the form (1.5) be used to
classify phase transitions. For catastrophes of
internal dimension 1 these polynomials are charac-
terized by N or alternatively by the type T..

It should be noted that while topologically speak-
ing any potential near the catastrophe point is
equivalent to the polynomial (1.6) (for some (v~]),
from a physical point of view this does not mean
that V(p) as given by (1.6) is the free energy of the
entire system. Rather, once a coordinate p, has
been picked, the variation of p, takes us through
only a one-dimensional family of states and hence
the polynomial V(p, ) can be interpreted physically
as the free energy of a single mode. " All that the
general theory of catastrophes says is that suffi-
ciently close to the catastrophe the potential V for

catastrophe at xo is said to be of finite codimension
¹ It can be shown that for catastrophes of finite
codimension the functions g~ can be taken as mo-
nomials in local coordinates near m„. Thus for a
catastrophe of codimension N, internal dimension
1, each potential near V„ is equivalent to

N

V„+Zv,p' (1.6)
0 y j

for some value of the numbers v&, . . . , e„, with
V„ itself equivalent to p, "', where p. is a coordi-
nate whose axis is a curve tangent to j at nz„.

0
Given the smooth dependence of V„on x, V„ for x
near x o must be equivalent to a potential of the
form (1.5) so that up to equivalence

II. QUANTITATIVE PHENOMENA NEAR A CATASTROPHE

In the classical theory one assumes a, form for
the free energy,

E=P +yP +nP +EP (2. 1)

(here looking at the example of a ferroelectric)
and takes I' to be an observed quantity such as po-
larization, E external electric field, and the other
parameters functions of temperature and constit-
uents of the system. Assuming definite depen-

any variation other than change of p is stable. [V
is now considered as V(m), a function of the many-
dimensional order parameter. ] The general theory
gives no a pea~i estimate of how flat the minima
in directions other than the Jacobi field might be
beyond the stability of V in these directions. For
thermodynamic systems some of these minima will
be very flat indeed and this is why catastrophe
theory alone is not adequate for a discussion of
heat capacities and susceptibilities. These latter
arise from fluctuations in which modes near the
Jacobi field play an important role.

In this paper we discuss the proposition that tri-
critical points are characteristic of phase transi-
tions of type three. For ferroelectrics (and some
other substances too) Benguigui~ has examined the
thermodynamic quantities in the neighborhood of
the point (in thermodynamic phase space) where the
fourth-order term in the expansion of free energy
in powers of polarization ' vanishes. This point
is the tricritical point. Later in this paper, further
examination of the qualitative pattern of states
near the tricritical point will be undertaken. First,
though, it is necessary to consider the objections
raised against the Landau theory as a vehicle for
describing this sort of phase transition. Obviously
if simple application of Landau theory gives an
unrealistic picture of the phase transition, then
nothing is gained by manipulating polynomials and
getting elaborate predictions on the states of the
system near the tricritical point.

Objections to the Landau theory are both experi-
mental and theoretical. Landau theory makes pre-
dictions about critical exponents and the slope of
certain lines in phase space which are not borne out
either in real substances or in models. Further-
more, derivations (including that of Ref. 2) are re-
lated to mean-field theory which must break down
close enough to a critical point —hence so must
Landau theory.

That catastrophic Landau theory makes no pre-
dictions about critical exponents —not even that they
exist —is the burden of Sec. II. We also address
the question of derivation. In Sec. III we study the
system's morphology near the tricritical point and
discuss certain experiments suggested by the the-
ory.
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&„(p,) = p, + v, p, '+ ~ ~ ~ + v, )L,
6

then if v4 = v3 v2 0,

(2. 2)

(2. 3)

which would give 5 = 5 if p, were the order parame-
ter and if v&=E. If instead,

(2. 4)

where P is the physical order parameter (say po-
larization) and f is monotonic, no conclusions about
5 can be drawn from (2. 3). For example, if

f(P) = P, (2. 5)

then 5= 58. If f were not a power at all, there
would be no critical exponent (and therefore there
is certainly no requirement for scaling in this the-
ory).

The transformations (f) discussed here may have
a large effect on V in the C topology; however,
the definition of equivalence of potentials makes no
reference to their smoothness so this is no draw-
back. This means that if one insists on using cer-
tain variables (e. g. , P) he may find no polynomial
potential; nevertheless, the morphology in phase
space indicates that for some variable, bearing a

dencies of y and a on T, etc [.e. g. , o, = (const. )

x (T- 7,)], values for the critical indices are derived.
The index 5 (P- 8' ~' for y = n = 0) depends only on the
term EP and is always 5 for the polynomial (2. 1).
For type-two transitions, derivations of the criti-
cal indices are given by Kadanoff et al. ; for type
three, Benguigui obtains the critical indices and
observes too that the slopes of the lines of first-
and second-order transitions need not be the same.

Catastrophe theory arrives at a polynomial of the
form (2. 1) in the following way: A certain pattern
of lines and surfaces is observed in thermodynamic
phase space. This is identified as being capable
of coming from a minimum principle of a sixth-
order polynomial whose coefficients are continuous
functions in this phase space and whose variable is
a one-dimensional order parameter. We do not
assume that we have a derivation of this minimum
principle (although in Ref. 3 we discuss how such
a minimum principle could arise from the method
of steepest descents for functional integrals). In
particular the quantity P appearing in the polynomi-
al need not be linearly related to the most conve-
niently observed physical quantity (polarization in
this case). The most we can expect —in view of the
fact that in catastrophe theory, potentials are de-
fined only up to topological equivalence —is that the
variable appearing in the polynomial (2. 1) is a
monotonic function of the usual physical order pa-
rameter (polarization, magnetization, etc. ).

For example, if it is assumed that a certain phase
transition is described by a polynomial

one-to-one relation to P, there is a polynomial
potential. "

The foregoing remarks should make it clear that
we advocate catastrophe theory as a kind of phe-
nomenology. For this reason one might go a step
further and include (2. 5) in his assumptions. Al-
ternatively, one might set 8= 1 far from the criti-
cal point (agreeing with the usual I andau theory),
while closer in, dynamical effects might (smoothly)
change this to another value. Also various depen-
dencies of v; (f =4, 2, 1) on the external variables
might be considered. In this way one generates
definite predictions (for example, those of Ref. 6)
for some of the critical exponents.

Heat capacities are another matter and involve
assumptions on the free energy of modes other than
that of the Jacobi field. (Heat capacities arise
from fluctuations; the contribution of any one mode
drops out in the thermodynamic limit. ) To the ex-
tent that the polynomial (2. 2) can be interpreted as
a free energy, it is the free energy of only a single
mode. This mode, the Jacobi field, is the eigen-
vector of the Hessian with zero eigenvalue. There
will be eigenvectors of nearly zero eigenvalue—
very many as a matter of fact —so the question is,
what are the nearby states and how fast does the
eigenvalue grow? Without these considerations one
would get the Landau result that the specific heat
is simply discontinuous. ' Thus, as remarked in
Ref. 3, the specific heats involve input beyond the
polynomial (2.2) which therefore does not deter-
mine them. Again, specific assumptions will yield
def inite critical exponents.

We find therefore that quantitative objections to
the Landau theory do not apply to catastrophe the-
ory: Critical exponents, angles between lines, etc. ,
are simply not part of the predictions of the topo-
logical theory. (The qualitative predictions of the
theory will be considered in Sec. III. )

Landau theory is sometimes related to mean-field
theory'; similarly, in Ref. 3 the method of steep-
est descents was used in a demonstration that ca-
tastrophes arise in statistical mechanics. It may be
more accurate, however, to disown all derivations
of catastrophe theory and to emphasize the charac-
ter of the theory as a framework for phenomenol-

ogy.

III. NEIGHBORHOODS OF THE CATASTROPHE

The (constrained) free energy for the Jacobi
mode is assumed to be of the form

(3.1)

with v;(xo)=0, i= 1, 2, 3, 4; xo is the location of
the catastrophe. p. is a monotonic function of the
order parameter. v& are funations of T, etc. , but
we here consider them the independent variables
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in X space.
In this section we discuss morphology; what will

the system look like in various regions of X?
Where are the phase transitions (types one and two)?
Much of this ground has been covered by Landau'
and others. Ne wish to emphasize further develop-
ments naturaliy suggested by the catastrophe the-
ory.

First assume v&=v3=0. In Fig. 1 we map out
regions in the v2v4 plane and indicate the locations
and types of phase transitions.

Of interest here are the regions where three dis-
tinct minima exist. The line v4= —2(vq)

' is a set
of triple points. " To its left is a region where
p, = 0 is a metastable state. (We make the following
physical identification: Minima of the constrained
free energy which are not absolute minima corre-
spond to metastable states. Nothing in catastrophe
theory per se either justifies or denies this identi-
fication. ) Just as is the case for type-two phase
transitions on the line of first-order transitions,
the system can jump one way or the other —here,
however, the process may take a long time and the
fluctuations, etc. , might be studied [see Fig. 2(f)].
If v2-0' with v4 &0, the metastable state goes out
of existence and the more familiar situation of a
first-order transition obtains.

For v&&0, vs=0, the p, —p, symmetry is broken.
Again some novel situations arise in regions where
three distinct minima exist. The linear term can
be used to control the relative depth of the various
minima (see Fig. S). A first-order phase transi-
tion can be made to occur involving any two of these
minima (with the third one metastable).

Y4

FIG. 1. e2-v4 plane. The boundary between regions
VI and V is the curve x=- (3y)~/2. The boundary between
the regions IV and V is the curve x= —2y . Other bound-i/2

aries are the coordinate axes.

(S.2)

(where &F is the "activation energy" or energy of
critical droplet and R is a rate of transition) some
information could be gained about the nature of
various kinds of critical droplets. Of course many
assumptions would go into the use of (S.2) but it
may be hoped that the conclusions would be insen-
sitive to at least some of the assumptions that or-
dinarily go into estimating the rate, because we
are only comparing various processes in the same
physical system.

Our final point is of some fundamental interest.
The coefficient of the p. term, v3, does not seem
to have made any appearance in the literature of
physics. The reason is that, given the physical
variables known to be present, one usually has def-
inite ideas about the dependence of the free energy
on these variables —and p,

' does not appear.
In catastrophe theory one takes the opposite

view —the full development of a catastrophe takes
place in a number of dimensions determined by the
topology of the potential (for type-three phase tran-
sitions this dimension is four). If fewer indepen-
dent physical variables are present one may get
symmetry breaking or simply an absence of cer-
tain morphology. For example, if one studied fer-
romagnets by varying temperature but did not
know of magnetic fields, then passing through the
critical temperature from above, an apparent
breaking of symmetry would occur. It is also pos-
sible that though one may have been unaware of ex-
ternal fields before the experiment, such external
fields could be discovered by extreme sensitivity

There are a number of reasons to explore the
morphology discussed so far. First, since the
morphology constitutes the qualitative prediction of
the theory, if it were absent the theory would sim-
ply be wrong. Second, some of the configurations
of stable and metastable states may be of interest
in themselves. For example, starting from a tri-
ple point [Figs, 2(g) and S], ', the addition of a lin-
ear term creates a series of steps so that as one

moves in the direction of the (one-dimensional)
order parameter p. , one goes through states of
successively lower free energy. One may ask if
the decay of the system follows these steps or if a
system starting from the highest state goes direct-
ly to the lowest. This is a question about the form
of the fluctuation (or critical droplet" ) that ef-
fects the transition out of the metastable phase.
A plausible hypothesis is that in some regions of
thermodynamic phase space the decay is a one-step
process; in some regions two steps are required.
It might be necessary though to move slightly into
region IV [Fig. 2(f) (plus linear term)] before the
one step process would be observable. One can
then expect that with the help of the formula'

hF /OT
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{a} I-2 BOUNDARY

CATASTROPHE POINT REGION Z

(e)

REGION IL
~- &v BOUNDARY

REGION i v

(g)

I5L-5E BOUNDARY
REGION 3E

3E TI BOUNDARY

REGION

FIG. 2. (a)-(j) give the form of the free energy in the various regions of the phase space (the v~-v4 plane). [Vertical
distances (y) have been doubled relative to horizontal ones. ] The curve plotted is y= Q(x) =x +ax4+ cx2. (a) Catastrophe
point a=c=0; (b) region I, a=2; c=2; (c) I-II boundary, a=2, c=0. This is a second-order, type-two phase transition;
(d) region II, a = 2, c= —2. Curves in region III and on the II-III boundary have the same appearance; (e) III-IV boundary,
a= —1, c=0; (f) Region IV, a= —3, c=2; (g) IV-V boundary, a= —3, c=2. 25. Triple point; (h) region V, a= —3, c=2. 5;
(i) V-VI, boundary, a= —3, c=3; (j) region VI, a= —3, c=4,

of the system to a particular kind of perturbation,
which could then be defined as the external field.

Similarly we seek meaning for v3. We concen-
trate on ferroelectrics, where the classical theory
has been used extensively and we take p, to be the
polarization P. For each ferroelectric, v4 has
some particular value and it is only when substances
are mixed that v4 becomes a continuous variable
that can pass through zero. The coefficient v~ is

the electric field E in some direction. By symme-
try, in the absence of an electric field v& and v3
vanish, even if pressure is applied to the substance.
Nonlinear effects due to E have apparently not yet
indicated an E-dependent v3, nevertheless once E
is turned on such a term might appear. Just as an
amateur's guess we propose that variation of the
pressure could control the relative size of v3 for
given vz.
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(a)
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critical point. The
curves plotted are y
= (x+ 2a) (x-a) . (a)
a=0. 35, 0. 20; ver-
tical scale (y) exag-
gerated by factor of 24.
(b) a=0. 20, 0; verti-
cal scale exaggerated
by factor 96.
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The critical behavior of a classical Heisenberg ferromagnet is studied in the limit where the
spin dimensionality N is large. Corrections of order 1/N to the spherical model are obtained
as functions of a continuous dimension d, 2& d&4. Particular attention is given to the behavior
near the coexistence curve. The divergence of the magnetic susceptibility below T, as the ex-
ternal field vanishes is discussed. through a nonlinear realization of the O(A) symmetry, as
well as in the 1/N and 4-d expansions.

I. INTRODUCTION

Universality of scaling behavior in critical phe-
nomena applies only to systems with a given num-
ber N of internal degrees of freedom. This is
manifest in recent works which use the q expansion
technique developed by Wilson and Fisher. ' This
method provides systematic corrections to mean-
field theory by a perturbation expansion in z = 4- d,
where d is the dimension of space. Both critical
exponents' and the scaling equation of state~ exhibit
explicitly a dependence on N.

In this paper & is not assumed to be small, but

may take any value between zero and two. The
approximation now lies in the assumption that all
quantities may be expanded in power of N ' for N
large. The motivation lies in the result of Stanleys
that the limit N- ~ of a classical Heisenberg fer-
romagnet, in which each "spin" has N components,
is identical to the exactly soluble spherical model
of Berlin and Kac.4 More recently a simple dia-
grammatic approach has been presented in a field-
theoretical framework by Wilson. ' This method

gives both Stanley's result and systematic correc-
tions in powers of N . It is here applied to the
calculation of critical exponents and of the equation
of state of a magnetic system, to order 1/N.

The numerical agreement of this expansion with
the behavior of an ordinary magnetic system where
N= 3 is not expected to be particularly satisfactory.
In fact, the g expansion results seem to indicate
that the asymptotic region in N requires at least
N&8.

Therefore, the aim of this 1/N expansion is
rather to give theoretical information which the &

expansion is not able to provide. In particular,
our interest was to study the behavior of the sys-
tem near the coexistence curve, i.e. , below the
critical temperature when the applied magnetic
field 0 tends to zero. In this region there are two
different characteristi. c lengths associated with
transverse and longitudinal magnetic susceptibil-
ities. It is not clear that the g expansion in which
the coupling constant is fixed to induce the expected
scaling only in the longitudinal correlation length,
does not break down in the vicinity of the coexis-


