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because E,z is not the driving force on the fluxon
in the primary.

IV. CONCLUSION

The coupling force for an isolated fluxon in a
dual-film system [Eq. (20)] is not identical with
the coupling force on a fluxon in a superconducting
dc transformer. The force E is, however, re-
sponsible for the operation of the transformer and
probably represents the maximum coupling which
can exist in a transformer. In the transformer
the fluxons are not isolated and overlap of their
current and field distributions serves to decrease
the coupling. The transformer coupling is de-
stroyed by perpendicular magnetic fields close to
the critical field which may be only about 10 6
(10 ~ T). When there is no applied magnetic field
and when the thin-film approximation (d &X) is
valid Eq. (20) may represent the transformer cou-

pling reasonably well. For type-I films such as tin,
the approximations should be reasonably accurate
for film thicknesses up to about 10 m (1000 A)and
somewhat better for alloy films.

The film-thickness dependence of the coupling
force predicted by Eqs. (20) and (21) agrees qual-
itatively with experiment. Kith the secondary
thickness fixed the transformer coupling param-
eter (the ratio of secondary voltage to primary
voltage) decreases with decreasing primary film
thickness. 4 Since the coupling parameter is not
simply related to the coupling force it is impos-
sible to make a quantitative comparison between
the calculation and these experiments.
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This work is a generalization of the Hohenberg-Kohn-Sham theory of the inhomogeneous
electron gas, with emphasis on spin effects. An argument based on quantum electrodynamics
is used to express the ground-state energy of a system of interacting electrons as a functional
of the current density. Expressions are derived for coefficients appearing in an expansion of the
correlation functional in terms of the linear-response functions of the homogeneous system,
for a gas of almost constant four-current density. The current density contains a spin-de-
pendent term which leads, in the nonrelativistic limit, to a local potential which is also spin
dependent. This potential is applied to the problems of spin splitting of energy bands in ferro-
magnets and spin-density-wave antiferromagnets. The relations between the present ap-
proach, that of Slater, and the collective electron theory of ferromagnetism of Stoner are
described.

I. INTRODUCTION

Hohenberg and Kohn' (HK) and subsequently
Kohn and Sham (KS)~' developed a theory of the
ground state of an interacting electron gas in the
presence of an external potential V(r). The es-
sential concept of their treatment is that the en-
ergy is a universal functional of the density of the
system n(r) plus a linear functional of the poten-

tial V(r). The functional of density E [n] applies to
all electronic systems in their ground state re-
gardless of the specific form of the external po-
tential V(r).

The approach of HK does not include spin ex-
plicitly and therefore is not immediately useful in
problems in which an external magnetic field is in-
volved or in which magnetic order is present. This
work presents a-generalization of the treatment of



HK. We start from the equations of quantum elec-
trodynamics for an electron field in interaction
with an electromagnetic field. A formal expres-
sion is derived for the ground-state energy of a
system of interacting electrons, which, indicates
this energy is a universal functional of the four-
current density. In a nonrelativistie limit, this
functional depends on the charge density n(y), the
spin density s(&), and the ordinary currentdensity
j (r) (Sec. II). In Sec. DI we extend the procedure
of HK for a gas of almost constant four-current
density and relate the linear-response functions of
the homogeneous system to the coefficients ap-
pearing in an expansion of the functional in terms
of the four-current densities. ~

We consider in Sec. IV a situation in which the
ordinary current can be neglected. A variational
argument leads to a local spin-dependent effective
potential, in accord with Stoddart and March.
The exchange potential for electrons of spin o de-
pends on the number density of electrons of spin
0, yg, in the usual way:-~,'~3, with a coefficient of
proportionality which is two-thirds of the Slater value.
Although this is not surprising, it fills a gap in the
formal theory in that it shows that the~~~ ~ approach
should also apply to spin splittings when the elec-
tron density is not rapidly varying. These results
are applied to ferromagnetic systems and to spin-
density-wave antiferromagnets.

It is a somewhat unexpected result of some re-
cent band ealeulations for ferromagnetic nickelv 8

that use of a local effective exchange potential pro-
portional to g,'~" leads to values of the spin splitting,
magneton number, and spin-wave effective mass
that do not differ radically from corresponding re-
sults obtained from treatments of the electron in-
teraction of this situation by more sophisticated
methods. 9' ~0 We attempt an explanation of this sit-
uation in See. V by making an estimate of the spin
splitting on the basis of the local effective poten-
tial and also by using a t-matrix approach applied
to a many-band form of the Hubbard Hamiltonian.
Although the results are not identical there is a
substantial degree of agreement. Section VI con-
tains a summary of the results.

II. GENERAjL FORMULATION

Quantum electrodynamics (QED) furnishes a fun-
damental basis on which the quantum theory of a
system of interacting electrons can be baaed. This
point of view haa been applied on occasion in atomic
theory with the intent of studying relativistic effects
and many-body potentials. We are not aware of
similar attempts in the theory of solids. It seems
to us that the formallsrn of @ED ia particularly
convenient for our present purpose because all the
interaction between a charged particle and an elec-
tromagnetic field, which must be expressed in a

The Hamiltonian used contains four parts:

0= Ho+ H„+Hq+@,„, (2.2)

The operator 00 describes noninteracting Dirae
and electromagnetic fields

If, =e, +f d'xP(x) a(x) y(x), (2

in which B, describes a free radiation field and
h(x) is the Dirac Hamiltonian for a, single particle,

h(x) = (iy" 8, —m)

We will use the radiation gauge ao that a Coulomb
interaction between eLectrons appears explicitly,

e, = , f d'xd'x-q(x)y, y(x)

&&(e'/~x-x' ~) 4(x')wo4(x') . (2. 4)

The interaction between matter and the tranverse
portion of the radiation field is contained in H&.

e, = —f q, (x)W'(x) d'x. (2. 5)

Finally, H,„,describes the interaction of the elec-
trons with an external nonquantized electromagnetic
field A.,"«. It is convenient to include in A.,"„~ the
Coulomb field produced by the nuclei of the system
which, for our purposes, may be assumed to be
fixed:

a„,= —f'g„(x)X."„(x)d'x . (2.6)

Now let I G) be the actual ground state of the sys-
tem of matter and electromagnetic fields. We de-
fine the current density in the ground state as

Z„(x)=(Giq„(x) ia) . (2. I)

The expectation value is taken with respect to the
Pock-space operators: The resulting Z„(x) is an
ordinary function of position. The four compo-
nents of J are not all independent, since the equa-
tion of continuity must be satisfied:

s,z'(x) = O. (2 g)

It is now possible to repeat the arguments of

relatively cumbersome manner in ordinary non-
relativistic quantum mechanics, is contained in a
single simple term.

Our discussion will be based on the QED formal-
ism as given by Schweber. ' We consider a system
of an arbitrary number of electrons in a large box
under the influence of a four-vector potential A„(x)
= [v(r, f), X(r, f)]. However, we are not signifi-
cantly concerned with relativistic effects and will
proceed to the nonrelativistic limit after the gener-
al principles have been described.

We begin with the Schrodinger equation for quan-
tum electrodynamics in Pock space,

it ——8 + =0.
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Hohenberg and Kohn to show that the ground-state
energy is a unique functional of J„(x). The proof
is by reductio ad absu~dum.

Suppose that there should exist another external
potentia. l A,'~„such that the ground state with this
potential, I G'), gave rise to the same current den-
sity O', . The ground-state vectors I G) and I G')
must be different, since they satisfy different
Schrodinger equations unless A~„, and A,'~, differ
by a constant. The effect of a gauge transforma-
tion is discussed subsequently.

Let II, II', E, and E' bethe Hamiltonians and en-
ergies pertaining to I G) and I G'), respectively.
Then, according to the minimum property of the
ground- state energy,

Z'= &G'i if'i G') «Gie'i G&

(2.9)

This equation is derived by integrating the equa-
tion of continuity (2.8) over a spacelike surface in
the standard way that one derives the integral form
of the transformation laws. Equation (2. 13) is the
familiar constraint on the total number of particles
in the system.

It is convenient to define

z[z]= &GIa, +a,+a, I c),
'so that

z[Z]=z[z] f Z—(x)A."„,(x)d'x . (2. iS)

Since E is a unique functional of 8, it follows from
(2. 1S) that E is also a unique functional of J,
Again, let I G'& be the ground-state vector asso-
ciated with a different external fieM A,'„',. Vfe con-
struct the energy functional using this object (but
using A, not A'):

Since A~„, is not quantized,

&G~ f d'x~. a:„,~G&= fr. ~.'„d'x,
Rnd we hRve

Z'&Z- f d'xZ, (A.'„;-~."„„) . (2. io)

E&z' —f dsx J, (A~„, —A,'~„)

Addition of (2. 10) and (2. 11) leads to

(2. ii)

If we now assume that J~ = &G'~ j~ ~

G') also, we may
simply repeat the argument leading to (2. 10) with
primed and unprimed quantities interchanged.
Thus

However, the energy is a minimum if I G') =
I G).

Thus

Z[c'] &Z[c]= Z[Z] f J,—(x) W".„,d'x . (2. i6)

Thus E [Z] is a minimum with respect to all current-
density functionals associated with other possible
external potentials A,'~„provided that such other
current densities also satisfy the equation of con-
tinuity.

The physical conteI. t of the current operator can
be made more explicit through the Gordon decom-
position'4

E+E'& E'+ E i'=-eA (2. 1Va)

z=z[z] . (2. 12)

The preceding a,rgument did not consider ex-
plicitly the possibility of a gauge transformation
of A~„,. In this case, one must obtain E' = E, since
Rs R consequence of the equRtlon of contlnulty the
interaction term in the Lagrangian from which
(2. 1) is derived as a specialization is unaltered. 13

%'e will henceforth dlscRrd this posslbillty, and
consider such A's to be equivalent. Our detailed
calculations will be performed in the radiation
gauge.

It can 11ow be established 'that E[el] will possess
a minimum for the correct J'(x) for fixed A~, if
the admissible state vectors are restricted by the
condltlon

which is a contradiction.
The argument indicates that A",„,must be a unique

functional of J, . But II is determined if A,„, is
given, a,nd so the ground state must be a unique
functional of J, and we can write

e - 8$ 8$ 8 A
2''E eely ~ Xy

4

(2. 1Vb)
&=1, 2, 3

8'(x) = (G P(x) o'g(x)
i G),

&&(x) =
2 &G g(x) (P1 e&1)4{x)—

~(2. 18b)

-(p, +8~,) y(x)y(x) (G), (2. »c)

Here &
~' is the Levi-Civita symbol z' = I, e '3

= —1; a summation over repeated indices is under-
stood.

We can now define the following functions:

~(x) = &G ~q'{x)y{x)
~
G) i(2. 18a)

&G~ f (fo) x'
d~ x)=Gf &'(x)d'x=«»t. (2. ») &Gli(x)~'t(x)~c& . (2. 18d)
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The quantity n describes the electron density in the
system, s'(x) represents the spin density, &,(x)
represents the combination of ordinary and (dis-
placement) polarization currents, and g ', which
couples small and large components of the Dirac
field, has no obvious nonrelativistic analog. The
contribution to the interaction energy from the spin
current can be transformed with the aid of Stokes's
theorem &

2&2 8 x

s(x) ~ B(x)d'x, (2. 19)
2m

in which s is the ordinary spin vector corresponding
to s' and 8= V && A,„,~ The ground-state energy of
the system can be written by substituting Eqs.
(2. 17)-(2. 19) into (2. 15):

E=E[J] +
' d'x en(x)v(x)+ s(x) ~ B(x)

2m

g 8
+ ' —S A-x(x) A(x))2' et (2. 20)

We follow HK and separate out the classical self-
energy of the Coulomb charge distribution from
E[Z] in Eq. (2. 15) in accord with Eq. (2. 4):

E[J] =-'x'f fd' d' x' —x-+G)J]
)r -r't

(3 1)
Following HK, we now consider a gas for which

d, (r) =Z„'"+Z „(r), (3.2)

where J„o'is independent of position. Further, let
. ps= J&s& p '" and tg„(r) I be slowly varying;

I J,(r)/J 1«1

This equation shows that when the energy is con-
sidered as a functional of the current density there
are four contributions, independent except for the
restriction imposed by Eq. (2.8). These involve
the charge density, spin density, ordinary current,
and polarization current. This result is a general-
ization of the expression of Kohn and Sham, who con-
sidered only the charge density. We note that it is
possible now to invoke the variational argument of
HK to show that the field components 7, B, and A
are unique functions of n, s, g, and J.

III. GAS OF A MOST CONSTANT CURRENT DENSITY

as well as

fZ „(r)dsr= 0 .
Then a formal expansion exists:

G[J]=G[J ]+ff d rd r'K""(r-r')

(S.4)

E[&]=&[d] —f d rZ "(r)a~(r) . (3.6)

We now proceed exactly as in HK. The response
of J,(r) to an externally varying a "(r) (=A,„,) is cal-
culated by the standard procedure and one obtains
the result

Z„(r) = f d r'5C „„(rr')a"(r'), (3 ~ 7)

where x) „(rr') is the familiar static linear-response
function. (See, for instance, Ref. 15, where all the
spin-response functions, excluding orbit effects,
are calculated. ) If E„are the eigenenergies as-
sociated with the Hamiltonian of the system in the
absence of the external fields, then one has the
familiar expression for the static response func-
tion p

j,(r) I )(nl j„(r') IO

n 0 n
(3~ 8)

In second-order perturbation theory, one then ob-
tains

E[a) E +g "ds ds i (o Ij.(r)ln)(nl j„(r')lo)

and hence

x a "(r)a"(r ')

E[a]=Es ——,
' f f d rd r'& „„(rr')a "(r)a"(r')

=Es ,' f f d rd'r'—[&—(rr')]""Z„(r)Z„(r')'
(S.9)

after inverting (S.7).
On the other hand, one has, from (3~ 6), another
expression for E[a]:

xZ„(r)d„(r')+ " . (3 5)

No linear term appears in this equation as a result
of (3 ~ 4) and the translation invariance of the con-
stant current system. We will now relate the co-
efficient K""(r—r') to the linear-response functions
of the homogeneous system. In the limit considered
by HK, the only nonvanishing element is K s, which
is the particle-density response function. The cur-
rent density J,(r) in the above includes the spin cur-
rent as in (2. 17). So we write

E[a]=Es —f d rZ), (r)a "(r) + & f f d rd r'(e /I r —r'I ) Zs(r)Zs(r') + ff d'rd r'K""(r r') Z„(r) Z„(r') —.

Using (3 ~ 7) again, we obtain

E[a]=Es+ ff d rd r'(—,e /I r —r'I ) Zs(r) Z ( ')s+rf fd rd'r'K""(r r')Z, (r) J„(r') —f—f d rd r'.
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x [3' '(rr')]'"Z, (r) Z„(r') . (3. 10)

Comparing (3. 9) and (3. 10) one obtains

Z'"(r —r')+-,' (e'/I r —r'I )5,O5„(&=-,'[x '(rr')]"" . (3. 11)

Thus the coefficient K ' in the functional expansion
(3. 5) is related to the corresponding element of
the inverse matrix of the linear-response function
z. For the special case considered by IIK, one
has (in momentum space and in the nonrelativistic
limit)

&00(q)= '[ too(q) v(q)]
but If»(q) = [I/v(q)] [1 —I/&(q)]„where ~(q) is the
usual dielectric function of the uniform system,
Thus we obtain

&»(q) = ~av(q)[&(q) —1] ',

in agreement with the result of HK.
When the orbital effects are neglected, one has

only spin densities and, in fact, the X~„ then be-
comes just the various spin-correlation functions.
Using the result of Ref. 15, one then obtains K,„
derived by Pant and Rajagopal. ' We may point out
that the correlation functions X~„of the uniform
system are related to suitable vertex functions
(Ref. 15) which in turn obey complicated integral
equations. In effect, one can thus incorporate the
effects of interaction in the uniform system as well
as one could as, for instance, the variational solu-
tions of the vertex equation (Ref. 16), and thus
compute , „quite accurately.

IV. LOCAL EFFECTIVE POTENTIAL

Our further considerations will be based on the
nonrelativistic limit of (2. 20). It is clear that
Bg/st will be zero since the ground state is station-
ary. Further, we will ignore the ordinary current
j(x) and thus discard diamagnetic effects. Our ob-
ject is to study the spin dependence of the local
effective potential. For this purpose, only the

first two terms in (2. 17) need be retained. All
quantities are assumed to be independent of time.
(See, however, Sec. III. )

It is desirable to extract from G the kinetic en-
ergy T[Z] of a system of noninteracting electrons.
The remainder of G will be conventionally referred
to as the exchange and correlation functional
Z,„(d):

G[d]= T[dj+Z,„[d]=T[n, s]+-Z.„[n,s] . (4. 1)

We thus have for the total energy

Z= T[n, s]+—,'e ~ffd'rd r'[n(r)n(r ')/I r —r'I]

+e f d rn(r)V(r)+(e/2m) f s(r) B(r)d''r

+Z,„[n, s] . (4. 2)

In this expression we have dropped contributions
from the transverse currents, since we are not
interested in relativistic effect. The expressions
(2. 18a)''and (2. 18b) can be rewritten in terms of
one-particle wave functions if we introduce a com-
plete set of one-particle states in Fock space:

n(r) = Z (j ';„(r)();,(r),
(4. 3)

s(r) = ~ j,"'(( ) r~~0&;(r),
JIM

where w is the Pauli spinor.
We then use the variational principle on the den-

sity functional to derive the equations for these
wave functions. (The density variation is equally
achieved by varying the one-particle wave func-
tion. ) Thus, the wave function (j)„(r) obeys the
equation

V
( ) ~ ', - -.

,

' ') (.;( )+ ... l ( ), ( )I((.;( )+ ..., .l ( ), ( )I((.;( )=;(., ( ),

(4 4)

where

p.„„.[n(r), s(r)] = 5E., [n, s]

p,„.. .[ ( n), sr(r)]= ' for o= 0,
5E [n, s]
5p, , r

(4. 5)

p, , (r) here means s„s, the spherical transverse
components of s(r). This generalizes the equa-
tion derived by Kohn and Sham. '3

A. Ferromagnetic System

From Refs. 15-17 we have for the Coulomb gas
the result, neglecting correlation contributions,



INHOMOGENEOUS E LEC TRON GAS 1917

Z,„[n, s] -=Z,„[n, , n, ]
= ——,'(e '/w) J d're, (r)[6s'n, (r)]' '

+n, (r)[67r n, (r)] ~ ] . (4. 6)

Here the magnetization is specified as s = (0, 0, s,),
where s,(r)=n, (r) -n, (r) and n(r)=n, (r)+n, (r).
Then the wave functions for the 0, 0 spins are,
from (4. 5), (4. 6), and (4.4),

V + I&'(r)+e d r' - -, — [6s n, (y)] $„(r)=~&(, (r),(
1 n(y ) e s gn

2m Ir —r'I m
(4. Va)

2
v'+ t&'(r)+e' d'r' - -, —— [6w'n„(r)]'" y„(r)= e, 4 „(r),2m I r —r'I w

(4. Vb)

0 C

(4. 8)

In the paramagnetic limit, n, = n, = &n and the dis-
tinction between 0, 4 disappears.

%e may caution the reader at this stage that,
apart from the assumption of slow spatial variation,
the result (4. 6) yields in the uniform case only either
the fully saturated or the paramagnetic phase and
so (4. Va) and (4. 7b) may not perhaps be meaningful
for application to the case of unsaturated ferro-
magnets. Equations (4. Va) and(4. Vb) have, how-
ever, frequently been used in the literature in con-
structing the band structure of metals. To rectify
this situation, one could perhaps argue that the
Coulomb potential is always screened by the elec-
tron motions and one should use an expression
more like that given in Stoner's theory in place of
(4. 6). If this is done, we have"

E,„[n, s]= ——'V Jd y[n, (r)+n, (r)], (4. 9)

where V is a strength parameter either assumed,
given experimentally, or related to the T matrix.

t

It is related to the Stoner parameter (Ref. 15) via
the relationship

mVkr/3v =Ke'/ep .
In (4. 7a) and (4. Vb) one must replace

—(e / )[6 n, (r)] ~, —(e /m)[6s n, (r)]

respectively, by

—Vn, (r), —Vn, (r) .

(4. 10)

(4. 11)

In this manner one would at least have applied the
principle of HK properly. One could make more
sophisticated models by using a Yukawa interaction
instead of the Coulomb repulsion (Ref. 15) but this,
while retaining the structure of (4. Va) and (4.7b),
in fact makes their appearance more complex.

As with Kohn-Sham, the analog of the usual
Hartree-Fock theory can be set up. This turns
out to yield the equations [compare (4. 4) and (4. 5)
with the foregoing equations]

1 2& ~ I&'(r)+s; &f y' g &(r) —e ~-,
~

p &(r )d r —e ~=,
~

—$ „(r )d .r = e,g &(y),(
n(r') ., s p„(r, r')

& 3 & 2 pa e(y& r')
'

2m Ir -r'I " Ir-r'I Ir —r I

g= t, 0 . (4. 12)

Here
OCC

"local potentials" for the spin-density -wave (SDW)
case.

p„.(y, r') = Z y„(r)y,*, ,(y'), c, g'= ~, y (4. 13) B. SOW System

are the usual density matrices and

p„(y, r) =n, (r), p„(r, r) = s.(y),

etc.
In the ferromagnetic case then, the KS procedure
is simply to replace the local operators in (4. 7a)
and (4. Vb) by the nonlocal operator in (4. 12) but
with p„and p„set equal to zero. The nonlocal
forms (4. 12) will now be employed to set up the

For systems such as chromium, it seems fairly
well established that the ground state is a spiral-
spin-density-wave state of Overhauser. Since no
closed expression can be written down even for the
uniform system, it seems E,„[n, s] cannot be put in
a neat form. From the work of Ref. 1V, however,
one may suggest the following replacements:
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2
e-' )' ' -,

~

)t)„(r')d'r'- ——[6s's, ,(r)]'"))),(r).
(4. 14)

This has the feature that s„-0 leads to the correct
paramagnetic system and connects the 0, 4 spins.
One then finds

OCC w

s, ,(r)= Z y„(r) r/)*„( r)=e ' 's, (r)

~;...
( )

e e (e )(5
e(

)e) (5. 5)

The corresponding result for the Coulomb system
obtained from (4. Va) and (4. ib) will now be ob-
tained. We will call the local potential in this
scheme the "Slater" potential:

Hence the energy splitting of the 0, 4 spin bands in
this theory is

V,'"'"(r)= X)(e /))) [6n n, (r)]'t', (5. 6)

s.„(r)= e' 's.*.(r),
where Q is the pitch of the spin spiral. This cor-
responds to E~x .'

V. SPIN SPLITTING OF ENERGY BANDS IN
FERROMAGNETS

The insensitivity of the ferromagnetic splitting
of the one-electron energies will now be shown by
an explicit calculation. This is actually another
aspect of the cancellation of the vertex corrections
and the one-particle renormalizations since the
criterion of the ferromagnetic state may be thought
of as the instability of the static-long-wavelength
paramagnetic susceptibility. "'6 The latter in-
volves only quantities evaluated at the Fermi sur-
face. The point to note is that n, (r) does not differ
greatly from,' n(r) in-actual practice. It is then
legitimate to write

n.(r) =-,'n(r)+ 5n, (r) . (5. 1)

All the relevant quantities may be expanded to
leading order in 5n, (r); n(r) here is the number
density. In the Stoner model, the one-electron
potential is

V,'""(r)= —Pn, (r) = ——,
' Vn(r) —V5n, (r ) . (5. 2)

From Ref. 15, V can be related to the parameters
of a highly screened Coulomb gas:

V=4se /$ k

$ =4o(r, /s (5. 3)

in the Thomas-Fermi scheme; nr, and k~ have
their usual significance. The Stoner parameter
introduced in (4. 10) then has the form

Xa' 4 nr,
3 (5.4)

E„[n, s ]= ——,
' (e /s) jd rn(r) [6v n(r)]

,'(e'/v )—Jd'r(s„(r)[6m's„(r)]'t'

+ s„(r) [6n's„(r)]'t') . (4. 15)

E(luations (4. 14) in (4. 12a) and (4. 12b) would then
be the local equations for determining the band
structure of chromium.

where X= —,'for the Kohn-Sham-like theory derived
above and A. = 1 for the Slater theory. So,

~,...,() eee e ee e.(e))
2 2

3 )) n(r)

where we have employed the relation that n(r) = ks/
3s and (5. 1) for n, (r), and expanded (5.6) to lead-
ing order in 5n, (r). Incidentally, the KS theory
gives better results —magneton number and the
like —for nickel. Thus,

e)e"" (e)= — 'k e '
) (e 8)

2 6n
3~ r n(r)

Comparison of (5. 5) and (5. 8) yields that 5 V will
be of the same order if x= 2/g, and in practice y

lies between 1 and -', corresponding to z, = 2 or so,
a density range quite close to that found in transi-
tion metals. The argument then is that the splitting
potential is of the form

5V,(r) =A (5. 9)

The constant A does not vary greatly between dif-
ferent theories. This demonstrates in a succinct
way the insensitivity of 5V,(r) to the nature of ap-
proximations made in the literature in computing it.

VI. SUMMARY

The arguments based on quantum electrody-
namics are used to generalize the Hohenberg-
Kohn-Sham theory of the inhomogeneous electron
gas for the purpose of incorporating spin effects.
It is shown that, for a fixed external vector po-
tential, the ground-state energy is a unique func-
tional of the four-current density provided that
the current density obeys the e(luation of continuity.
From this, we pass on to the nonrelativistic limit
using the Gordon decomposition and derive the cor-
responding energy functional. This enables us to
set up local equations for the spin functions in a
magnetic system. Applications of this to ferro-
magnetic and SDW antiferromagnetic systems are
given.

Note added in Proof. Recently Booth and Hedin
[J. Phys. C 5, 1629 (1972)] have also developed
local exchange and correlation potentials for spin-
polarized systems in the same spirit as in Sec. IV
of the present paper.



INHGMGGE NEGUS E LEC TRON GAS 1919

*Supported in part by the U. S. Air Force Office of
Scientific Research under Grant No. AFOSR 71-2020.

P. Hohenberg and W. Kohn, Phys. Rev. 136, 8864
(1964). This paper is referred to as HK.

2W. Kohn and L. J. Sham, Phys. Rev. 137, A1697
(1965).

3W. Kohn and L. J. Sham, Phys. Rev. 140, A1133
(1965). This paper is referred to as KS.

4The nonrelativistic Hamiltonian for a system of spin-
less particles can be explicitly written in terms of cur-
rent and charge densities. See R. F. Dashen and D. H.
Sharp, Phys. Rev. 165, 1867 (1968).

5M. M. Pant and A. K. Rajagopal, Solid State Comm.
10, 1157 (1972); and (unpublished). In this papex the
special case of the nonrelativistic spin-dependent version
is employed to study semi-infinite system of magnetic
electron gas.

6J. C. Stoddart and N. H. March, Ann. Phys. (N. Y.)
64, 174 (1971).

~J. W'. P. Connolly, Phys. Rev. 159, 415 (1967).
J. Langlinais and J. Callaway, Phys. Rev. B 5, 124

(1972).
8L. Hodges, H. Ehrenreich, and ¹ D. Lang, Phys.

Rev. 152, 505 (1970).
J. Callaway and H. M. Zhang, Phys. Rev. B 1, 305

{1970).
~G. Breit, Phys. Rev. 39, 616 {1932);H. Primakoff

and T. Holstein, Phys. Rev. 55, 1218 (1938); G. E.
Brown and D. G. Ravenhall, Proc. Roy. Soc. (London)

A208, 552 (1951); T. Itoh, Rev. Mod. Phys. 37, 159
(1965); G. Chanmugam and S. S. Schweber, Phys. Rev.
A 1, 1369 (1970); M. H. Mittleman, Phys. Rev. A 4, 893
(1971).

S. S. Schweber, An Int~oducgon to Relativistic Quan-
tum Field Theory (Harper and Row, New' York, 1961),
especially Chap. 10.

' The presence of the spatial volume integral (2.6) in-
stead of the four-dimensional volume may appear to
cause an undersirable complication. However, we ob-
serve that the Lagrangian for the interacting fields is in-
variant under a gauge transformation of the external
field A~~~ =A~t+ 8 X provided the classical scalar func-
tion X satisfies the condition -Q g =0. It follows that the
energy momentum vector of the system, of which the
Hamiltonian is tge zeroth component, is invariant under
a gauge transformation. For further discussion of gauge
transformation, see Ref. 12, Chap. 9.

G. Baym, Lectures on Quantum Mechanics (Benjamin,
New York, 1969), p. 552.

5A. K. Rajagopal, H. Brooks, and N. R. Ranganathan,
Nuovo Cirnento Suppl. 5, 807 (1967).

A. K. Rajagopal, Phys. Rev. 142, 152 (1965).
VIt was shown by J. C. Slater [Phys. Rev. 81, 385

{1951)]that the exchange interaction could be formally
x'epresented in the fashion we are employing.' J. Callaway, Phys. Rev. 140, A618 (1965); see also
A. K. Rajagopal, Il Nuovo Cimento 1, 48 (1971).


