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ESB spectra of nearest-neighbor Cr pairs in ZnGa204 are studied in detail at two frequency
bands: X band (9.9 GHz) and Q band (32.5 GHz). Transitions within each of the spin multi-
plets Z =1,2, and 3 are observed. From the angular dependence of the spectra it is found that
local lattice distortions due to Cr Ga substitution are negligible. The Cr-Cr coupling is
described by the spin Hamiltonian: X~„=—ZS& 'S2+j(S&'S&) +AS&'5&-3(Sf xf2)(St rf2)/r~2).
The temperature dependence of the ESB intensities is used to determine the coefficients of the
bilinear (J) and biquadratic (j) exchange as, Z/k = —(32 + 2) 'K (antiferromagnetic coupling),
j/k = —(2+ 1) 'K. The anisotropic part of the coupling can be fully accounted for by magnetic
dipole-dipole interaction: A=A&~=+0. 0675+ 0.0005 cm . The value of j can be explained
on the basis of an exchange-striction model.

I. INTRODUCTION

Knowledge of the basic exchange interactions
between magnetic ions at B sites in normal spinels
is a prerequisite for the understanding of the com-
plicated ordering patterns commonly observed in
in these systems. Direct and detailed information
about these interactions can be obtained from ESH
and optical spectra of moderately dilute single
crystals. '

In an earlier paper' we reported preliminary
EBB data for the Cr-doped cubic normal spinel
ZnGa304. The ionic radii of Cr3' and Ga3' are
almost the same (0.63 and 0. 62 A, respectively)
and the lattice parameter a = 8.330 A of the dia-
magnetic host3 is nearly identical with that of the
concentrated crystal ZnCr304, which has a= 8. 327
A. Hence, little distortion is expected to occur as
a consequence of the Crs'- Gas' substitution.

Unfortunately, in Ref. 1 the assignment of the
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II. THEORY

The ESR spectrum of single Cr~' ions at B sites
has been studied earlier. ' ~ It can be described by
an axial spin Hamiltonian

X» = gii Pa&» ~,»
+g». »»»» (&,» S» + H, » S,»)

+D[S,»
——,'S»(S»+1)], (1)

with S, = —,', g}, =1.9776+0.0003, g, =1.9867
+0.0007, and D=+0. 523+0.002 cm '. The center
axes z» (i= 1, 2, 3, 4) are along the four local trig-
onal (111)axes.

The geometry of nearest-neighbor (nn) 8 sites
in normal spinel is illustrated in Fig. 1. The lo-
cal trigonal axes of Cr ions Nos. 1 and 2 are de-
noted by Z and P, respectively. They are not
parallel, but include an angle of y=70'32', so the
Owen-Judd formulasv are not applicable to this
case. The spin Hamiltonian of a nn Cr pair may
be written

Xa = Xg+Xa+X~~ q (2)

where K& and X~ are single-ion spin Hamiltonians
and $C,„ is the coupling term

X,„=—J5g ~ Sa+j(S).Sa)

+&[Si Sa-3@i ria)(Sa r~a)/~/a], (3)

ESB transitions to the spin multiplets Z = 2 and 3
was incorrect. As a matter of fact, the narrow,
weak lines at H = 3036 Oe and H = 3120 Oe (v = 9664
MHz and H II [111]), which we attributed to (Z = 2;
M= —1-—2) transitions, do not belong to the pair
system. Since they are present in the most con-
centrated (6-at.% Cr) crystals only, they might be
due to Cr triads or more complex clusters.

In the present paper the ESR spectrum of near-
est-neighbor Cr pairs in ZnGa204 is reinvestigated.
Transitions within each of the multiplets Z =1, 2,
and 3 are observed and their temperature and angu-
lar dependences studied in detail. As a result, it
is found that the lines with maximum intensity at
T= 63 'K, which in Ref. 1 were attributed to the
multiplet Z =3, are in fact transitions within Z = 2.
The angular dependence of these lines reveals that
the anisotropic part of the spin-spin coupling can
be completely accounted for by magnetic dipole-
dipole interaction, based on undistorted lattice
separations.

Furthermore, the value of the bilinear exchange
(4/k= —32 'K), as deduced from the improved in-
terpretation is in much better agreement with the
asymptotic Curie temperature 8 = —330 'K of
ZnCr204. The value of the biquadratic exchange
term (j/k= —2 'K) is unaltered, and the original
explanation in terms of Kittel's exchange-striction
mechanism remains valid.

Z= [111j

12]

(11o)
plane

~ Ci

Qo
FIG. 1. Geometry of nn Cr pairs in spinel. Z and g

are the local trigonal axes of Cr ions Nos. 1 and 2, re-
spectively.

which, in addition to the isotropic bilinear exchange
also contains an isotropic biquadratic term and an
anisotropic coupling of pseudodipolar form. Since
the orbital singlet A& ground state of octahedrally
coordinated Cr3' is far away from orbitally degen-
erate excited states, it may be expected that an-
isotropic exchange will be a relatively small ef-
fect. An estimate of the anisotropic exchange will
be given in Sec. VA. Hence, the coefficient A
will be mainly due to pure magnetic dipole-dipole
interaction. For the same reason we omit anti-
symmetric anisotropic exchange terms of the
form S (S,xSa). In the undistorted lattice this
term vanishes exactly since the point midway be-
tween the chromium ions is a center of symmetry.

The single-ion Hamiltonians K, and $C2 are not
necessarily identical with Eq. (1) since the pres-
ence of a Cr ion instead of a Ga ion in the second-
neighbor shell may give rise to an additional or-
thorhombic term Ea(Sa —S,') as well as to a modi-
fied coefficient D~ of the axial term. Formally
we therefore write

Xl g»»»»H ' S1+Dp [Sel sS1(S»+ 1)1

+ Ea(Sgg —S„g),

Xa =g»»»»H ~ Sa+ Da [Saa 3$a(Sa+ 1)]

+ Ea(S)~a —S„a) .

In Eqs. (4) and in what follows we disregard the
small anisotropy in the g tensor, taking g= —,'(g„
+ 2g, ).

Since for nnpairs J»D~, E~, gp, ~H, the total
spin Z = S&+S, is a good quantum number and it is
convenient to rewrite both 3C,„and the Zeeman en-
ergy in terms of Z. Furthermore, it is convenient
to transform Ã2 to the main axes of K~ as follows:
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S 2= S,acosy+ S„,siny,
Sta = —S,2 siny+ S 2 cosy,
~~a= ~,a y

where y=70 32' is the angle between g and g and
z, f, a; and ] are in the (1TO) plane (see Fig. 1).
We then find

&2 = —2JZ(Z + 1)+ 4 jZ(Z + 1) [Z(Z + 1) —2S1(S1+1) —2S2(S2+ 1)]

+gal sH ~ Z + D2 [S,l+ S,2 cos y+ (S 2S„2+S 2S 2) cosy siny+ S„2sin y]

+Z, [S„',—S,', + S,', »n'y+ S„',«»'y (S,—2S 2+ SSS,2) cosy»ny —Sys]

+ 2A[4(S1S2+ S1S2) S 1S 2] (3 cosy+ 1)

——', A(S,1S2+ S1$,2) siny ——', A(S 1S2+ S18,2) siny

——,'A(S182+ S1S2) (1 —cosy) . (6)

The results are given in Table I. Within this set
of basis functions the matrix elements of X~ are
readily evaluated. They are presented in Table II.

It is to be noted that the matrix elements of
the E~ and D~ terms in Eq. (6) are zero within
the Z =2 multiplet. (For the case of parallel cen-
ter axes this property follows immediately from the
Owen-Judd~ formulas since p2 =0. ) Hence, as long
as multiplet mixing is unimportant, the transitions
within Z= 2 are best suited to the study of any re-

TABLE I. State vectors of substates )ZM) for S~=S2=»
according to Eq. (7).

x'

3 + I33)= lg, 2)

IZM) =Q Q (S(S2m(mg I ZM) tm(mq)
tnf 2)t2

l32)=(2) ' '[I82k)+ Ik28)]

I31)= (5) ' ' [lg, --,')+ l-p, $)]+(y)' ' I2»)
I 30) = (20) [ I g, —2) + I

- g, 2) ] + (gg)'
' [ Ip, —p) + I

- z, p)]
2 — I22) = (2)" [I 2, 2) —Iy, g)]

I21) =- (2) ' ' [ I g, —2) —I- 2, g)]

1 +

0

I20) = (2) [I 2p g) + l&y 4) I ks4 ) —I- 2s 2)l

Ill)=((%()' (IL —i)+ I s 2)I —(g) Ik 2)

I10)= (~) [1$,—2)+ I-2, $)] —(20) [I2, —$)+ l-y, 4)]
I 00) = (2) '[ lg, —$) —l4-, —2) + i- 3, y) —I- $, $)]

')( is the character under permutation of ious 1 2nd 2.
"IZ -M) is obtained from [ZM) by sign reversal of all

ypg~ and m2, an additional phase factor of —1 has to be ap-
plied for Z =2, since (S1S~mf&22 )ZM) ( ~)
x (S,s, -~, -m, ]Z-M).

We now proceed to calculate the eigenvalues and
eigenvectors of X~. The first two terms in Eq.
(6) give rise to four spin multiplets, characterized
by Z = 0, 1, 2, and 3 and with energies 0, —J—

lent j,
—3J-$2 j, and —6J'-Qj, respectively. The state
vectors of the substates IZM) can be expressed in
terms of the single-ion states I'mlm2) by using the
Wigner coefficients:

lZjtf)=Z Z (s,sam, m2IZj(f) l~lm2) ~

I

maining anisotropic effects, as for instance the
pseudodipolar A terms. If interaction between the
multiplets is neglected the 16' 16 matrix factorizes
into 7x7, 5x5, sxs, and 1x1 blocks. The blocks
are readily diagonalized for various choices of D~,
E~, and A. and for different orientations of H by
means of a computer program, based on the
Housholder transformation.

Finally, it can easily be seen that the principal
axes of Ã2 are along [110], [001], and [110]for the
pair Cr1-Cr2 shown in Fig. 1, provided the follow-
ing conditions are satisfied: (a) mixing between
multiplets is negligible and (b) E2«D2.

III. EXPERIMENTAL TECHNIQUES

The Cr-doped Znoa, 04 single crystals used in
this work were identical with those used in earlier
investigations. ' They mere gromn from a PbO-
PbF2 flux. The Cr concentration ranges from 0. 5
x10 to 5&& 10 gat. /gmole ZnGa204. ESR spec-
tra were recorded at two frequencies: v, = 9. 900
GHz (X band) and va= 32. 46 GHz ((() band).

Since for the nearest-neighbor exchange inter-
action Jmill be much larger than gp~H, mixing
between the spin multiplets will be negligible.
This implies that the values of J and j have to be
determined from the temperature dependence of
the ESR intensities, since the positions of the
transitions mithin multiplets are independent of J
and j to a high degree of accuracy.

In order to measure absorption intensities as a
function of temperature one needs an ESR spec-
trometer with a constant sensitivity over a large
temperature range (1-100 'K), Both our X-band
and Q-band spectrometers are of the homodyne
mixer type. If the sample volume is not too large,
the cavity essentially remains matched to the wave-
guide even when the temperature is allomed to
vary. Any slight deviation from the matched con-
dition gives rise to a variation in the bias current
of the detection crystal, and hence in the over-all
spectrometer sensitivity. This may be compen-
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sated for by controlling the bias current through
the detector crystal by means of an electronic de-
vice. ' Another important point is the constancy

of the cavity Q factor. We obtained the best re-
sults with a quasirectangular TE,s, cavity made of
brass. The reason is that the temperature depen-

"FABLE II. Matrix elements of & within the basis ) ZM), defined in Table I. Off-diagonal elements between the
spin multiplets are omitted. Definitions: u=~ {3cosy+1), v=-4 siny, so= —

8
(1-cosy). The coordinate axes, x, y,

z are defined in Fig. l.
Z M M'

1 1 1

0 0

1 0

0 —1

—1 1

&z~~x, iz~ &

0.1D&(23-6 cos y) —0.6E& sin y+0. M50uA+ gp&H

0.1 Dp (29 +12.cos2y) + ] 2 Ep sj.n2y + 3 0750 uA

0.1 D&(23-6 cos y) -0.6 E& sin y+0. M50uA- gp&H~

-0.6(2) ~ (D&- E&)sinycosy+2. 4042 vA+gp&(2)" ~ {H„-gH )

+0.6(2)~ (D&- E&)sinycosy-2. 4042 vA+ gp&(2) {H„-iH )

—0.6 D&sin y-0. 6E&(cos y+3)+0.2 ggA

—1.1250 uA+2gpz H,

1 1 +1.1250uA+ gag Hg

0 0 +1.8750 uA

—1 —1

—2 —2

1 0

0 —1

—1 —2

+ l. 1250uA -gp~ H,
—1.1250 uA —2'~ H,

+3vA+ gpJ3{e„-iH,)

+]..2247 vA+ (-,')'~'gp, (H„- 'H, )

—1.2247vA+ (2)' 'gpz{H„-gH )

—3vA +gpss (H„- iH~)

2 0 +2.4495'}A

1 —1

-2 0

3 3 3

2 2

0 0

—1 —1

2 1

0 —1

—1 —2

1 3

0 2

+3 zgA

+2.4495 A@A

l.5D&(2+ cvs y) +1.5E& sin y-3. 3750uA. +3gp&H»

2' 5Dp 1' 1250uA+ 2gpa Hz

0.1D&(22 -9 cos y) —0.9E& sin y+0. 2250uA+gpz H,

0.1D&(21 —12cos y) —1.2E& sin y+ 0.6750uA

0 ~ 1Dp(22 —9cos y) —0 ~ 9Ep sin y+ p, 225puA —gp~ Hg

2.5' —1.1250uA —2gpg H~

1 5Dp(2 + cos y) +1.5' sin y- 3.3750uA —3gpz H

(~~) sinycosy{D& —E&)+3.6742vA+0. 5(6) gp&(H —iH~)

(i())
~ i sncVo(st& PE2+. 846lvA+0.-5(10) ~ gps(H„iHJ-

p. 2 (3) '~'siny cosy(D, —E,) +1.0392vA+ 0.5 (12)'~'gp@H„—iH, )

—0.2 (3) siny cosy {D&—E&) —l.0392vA+ 0. 5 {12) gp&{H„-iH~)

—(&}' 'sinycosV(D& —EP-2.8461vA+0. 5(10)~ 2gps(H„—iH )

—(s)' sinVcosV(D& E&) -3.6742vA+0. 5-(6}' gps(H„iH)-
0.5(&)~ 2D&sin @+0.5($)' 'E&(3+cos V)+2. 3238svA

(&&)' D&sin'V+ ($)' E&(3+cos V) +3.2863ggA

0 6Dp sin y+ p. 6E&{3+cos y) + 3.6000gaA

()0)
~ D&sin V+ ((tt)

~ E&(3+cos V) +3.2863wA

0.5($)~ D&sin'V+0. 5(&)'~ E&(3+cos V)+2. 3238~A
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[001 ] 90 —
)i

60—

[]10] 0 1~ 2

-30—

-6O—

FIG. 2. Angular de-
pendence of the four
allowed transitions within
&=2 for H rotating in a
(110) plane. T=77'K;
v = 9900 MHz. The theo-
retical curves (solid
lines) are calculated with
A =+0.0675 cm"~.

-90—

H (kOej

dence of the Joule losses in the walls is much
smaller for alloys than for pure metals. The over-
all spectrometer sensitivity was checked by simul-
taneously recording a ——,'-+ —,

' transition of single
Crs' ions, which is known' to obey a Curie I/T
law. Deviations from a I/T behavior were always
found to be within the experimental accuracy de-
termined by random noise.

Temperature variation between 4. 2 and about
100 'K was achieved by allowing the cryostat to
warm up after cooling with liquid helium. Typical
warmup rates range from 0. 2 to 1.0'K/min. The
temperature was measured during each passage
through a specific resonance line with a 1000-Q
Allen-Bradley carbon resistor mounted outside
the cavity, as close as possible to the sample posi-
tion. The temperature gradient 67 between the
thermometer and the sample positions was mea-
sured in a dummy run, in which the sample was
replaced by a second Allen-Bradley resistor.
The'maximum deviation was measured between
T=4. 2 and 6.0'K and amounted to AT'=0. 2'K.
Above T= 6 'K the gradient was smaller than 0.05
'K. The absolute accuracy of the temperature
measurement is estimated as 0. 3 'K.

Figure 2 shows an angular diagram, taken with
the X-band spectrometer (v =9900 MHz), for 0 ro-
tating in the (110) plane. In order to simplify the
picture, only transitions of the specific pair Cr&-
Cr2 (see Fig. 1) are shown. As expected for near-
est-neighbor pairs, the extrema are found to be
along the [110]and [001] directions; [110]coincides
with the pair axis r».

The theoretical curves (solid linea) are calcu-
lated by diagonalizing the Z = 2 block of the pair
spin-Hamiitonian Eg. (6), using A =+0.06V5 cm
and arbitrary values of D~ and E~. The agreement
between theory and experiment is good; especially
the small dip predicted for the 1-0 transition at
H II [110]is reproduced very well by the experi-
mental points. A more precise value of A was
finally obtained by accurately measuring the line
positions for H along the pair axis [110]. We find

70—--

Infensi'ty
M-

(arbifnzry
units) ~

IV. RESULTS

A. Multiplet Z =2

The most conspicuous pair lines, observed at
T='77 'K are due to transitions within the Z =2
multiplet. Since the positions of these lines are
independent of the parameters D~ and E~ (see
Sec. II), they are well suited to determine the co-
efficient A of the pseudodipolar interaction. In ad-
dition, the angular dependence of the Z =2 spectrum
gives information about the direction of the pair
axis r».

0 I I I I I I

29 30 g7 50 6Q 70 80=T (OK)

FIG. 3. Temperature dependence of the intensity of
the (Z =2; 1 0) transition; v =9900 MHz. Solid line is
the theoretical curve Eq. (8) with J'/k=-32'K, j/k
= —2 'K.
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Z=
~//I

(cm ~)

300
Intensity
(arb. units)

mo-

I I

40 60 80 100
T (OK

FIG. 6. Temperature dependendence of the intensity of
ithin Z =3; v =32.46 GHz. Solid line is thea transition within Z = 3; v =

theoretical curve Eq, . (9) with J k =—,j

10 '/1 12 f3 14 15
= H (kOe)

FIG. 4. Energy levels of the mu 'pmulti let Z = 3 as a func-
tion of Il for H ll [111]for the specific pair Cr~ —Cr2.
Lower trace: observed transitions.

A = + 0.0675 + 0.0005 cm
The tempera retu dependence of the intensity of

'n Fi . 3. Thea (Z =2; 1-0) transition is shown in Fig. . e
experimental points are fitted to the expression

~ (I p/y y) (g)-1 e- I'2/0 r

with

g ] 3 -wi~kT +5& 2 +7e T- W2/kT WS~kT

%=-J- 2 j)
Wa= —3J —$j,
W, = -6J-Qj .

The best fit is obtained for J 4=-= —(32+2) 'K and
'/y= — 2+ . nK Introduction of jWO improves the

f th urve whereas the initiafit near the top o e cu
slope is determined by —J,« = —J- j.

idth of the transitions within Z = isThe linewi o
tern erature forbo t 50 Oe and is independent of tempera r

&300 K. This means, that in the — p
uld be used safely

double inte-

'
ht f the derivative lines could

tead of intensities, thus avoidingins e o i
alwa s lowgra ion.t' The microwave power was y

enough to avoid saturation.

B. Multaplet 2=3

W 6

((:rn-"j 5—
4

I I I

8 9 't0 I'I t2 't3

H CKOej

FIG. 5. Energy levels of the mu plti let Z =3 as a func-
tion of H for H () [001] for the specific pair Cr~ —Cr2.
Lower trace: observed transztions.

'th Z =3 are an order less in-Transitions wi in
=2.tense compare o od t those within the multiplet Z =

1 due to the Holtzmann factor andThis is part y ue
b'1't . An ad-artl to a reduced transition proba i i y.

rom the fact that thed t 1 complication arises rom
- '

M s littings in the Z = 3 multiple"1rather small (see Figs. 4 and 5, w sc
of the Z =3 transitions will be in the

hb h d of the much stronger Z = in
Nevertheless, we have identified a coup

=3 lines at -band frequency when H was a org
[111]and [001], respectively. Figures an

that the positions of these lines' es are well de-show a e
scribed by the spin Hamiltonian Eq.
=a=+0. 523 cm ~ and E&=0.

The temperature dependence oe of the intensity o
6. The theoreticalthese lines is shown in Fig. 6.

curve given by Eg. (Ba) and

- WS/kT (9)~, ~(Iv/uz)(z)- e

with J/k= —32 'K and j/0= —2 'K gives good agree-
ment with the experimental points.
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d nfl
dH

ii

Detail Detail

Single Cr

l I l I I

5 6 7 8 9 8 11
=8 {aa)

PIG. 7. Part of ESR spectrum at Q band (v = 32.46
6Hz) for 8)I f001j, T=77'K, showing some of the pair
transitions within Z=1, 2, and 3.

20—

10-

0 (1f0]j'

S—

The linewidth of the Z = 3 lines is again 50 Qe,
independent of temperature for 7& 300 'K.

C. Multiplet Z=1

Transitions within the multiplet Z =1 are hard
to find, in spite of the fact that the population of
this multiplet is rather high. The rea, son is, that
the transition probabilities are extremely small.
As an example, for the (Z = 1; —1-0) transition
of the pair Cr, -Cr&, observed at v = 32. 46 GHz, the

transition probability ranges from I ( y ~l Z„Ipo) I

=0.05 for 8 II [110]to 0. 24 for Hll [001]. The large
zero-field splitting (over-all splitting 1 cm )
makes it necessary to study the tra, nsitions at Q-
band free(uencies. The relative strengths of some
Z =1, 2 and 3 lines are illustrated in Fig. V.

Figure 8 gives the angular dependence of the
(Z = 1; —1-0) transition of the pair Cr~-Cr2 for
H rotating in the (110) plane. The theoretical
curve (full line) was calculated by diagonalizing the
Z = 1 block of Eq. (6) with D~ = D =+0. 522 cm ' and

E~ = 0. Good agreement with the experimental line
positions wa, s obtained.

The experimental points plotted in Fig. 8 were
selected on account of their temperature depen-
dency. A typical result is presented in Fig. 9.
The match to the theoretical curve, given by Eq.
(8a) and

(I v/ur) (Z)-' e- ~~'" (10)

with cl/k= —32 K~ j/k= —2 K~ ls satisfactory,
though not perfect. The discrepancies m'ay be due
to the fact that the Z = 1 lines always appear as
weak shoulders superimposed upon much stronger
lines with a different (commonly 1/T) temperature
dependence.

The linewidth of the Z = 1 transitions is again of
the order of 50 Oe. Apparently, the additional
linebroade ning mechanisms for the Z = 1 and Z
= 3 transitions, presumed to be operative in the
KMgF3: V ' ~' and MgQ: V ' ~~ systems, are unim-
portant for ZnGazQ4: Crs',

V. DISCUSSION

A. Lattice Distortion

Since the lattice parameters of ZnGa204 and
ZnCr304 are almost identical, the relevance of the
exchange pal ameters~ as determined from mea-
surements on dilute crystals, to the magnetic prop-
erties of the concentrated system mainly depends
on the amount of local lattice distortion introduced

Intensity
10garb. vnits)

i) (& &) (~gH~~»

&)

I I i [ t I I I

5 6 7 8 9 10 11 12 13 14.
= H(kOe)

FIG. 8. Angular dependence of the (Z =1; —1 0)
transition for H rotating in the (110) plane. T=77 K,
v=32. 464 GHz. The theoretical curve (solid line) is
calculated with A =+0.067 em, D& = D=+ 0. 523 em ~,

and Ep =0,

I

20
0 iw I 1 i I

0 S 30 40 50
= T(g

FIG. 9. Temperature dependence of the intensity of
the (Z =1; —1 0) transition, v=32. 46 GHz. Solid line
is the theoretical curve Eq. (10) with J/0 =-32 'K, )/a
= —2 'K.
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by the Cr- Ga substitution. There are two pieces
of evidence that these distortions are very small
indeed, in accordance with our initial expectation
(see Sec. I).

First of all, the coefficient of the pseudodipolar
coupling term A=+0. 0675+0. 0005 cm ~ can be
fairly well reproduced by a point-dipole calculation
based on unmodified lattice separations (r,2=2. 94
A), which gives A„(calc. ) =+0.0672 cm '. [In fact,
the value of A should be slightly different for dif-
ferent spin multiplets as a consequence of exchange
striction (see Sec. VC). This effect has been re-
cently observed by Harris'3 for Mn2' pairs in MgO
and CaO. In our case we were unable to detect it
since a reliable A value could only be obtained from
transitions in the Z = 2 multiplet. ] Apart from di-
pole-dipole interaction, the empirical parameter
A contains a small contribution A due to sym-
metric anisotropic exchange

A=A„+A~ .
An estimate of (A ~ is given by Moriya, ~4

~A
~

= (&g/g)2
~
JI =0.002 cm '. (l2)

Hence, it follows for the dipolar term: A„=0.067
+0.002 cm ', which means that the change in. y»
due to Cr- Ga substitution is at most 1%.

The second argument in favor of the absence of
distortions is the fact that the positions of the pair
lines can be reproduced within the experimental
accuracy by a spin Hamiltonian without orthorhom-
bic terms: E~ =0+0.006 cm-' and with D~ =D
+0.010 cm

j= + b /U E„=+J /E„ (13)

where b is the appropriate transfer integral. From
Eq. (13) it follows that transfer processes give
rise to positive j values; the experimental value,
however, is negative. Moreover, the value of j
as calculated from Eq. (13) is an order too small:
j/k [Eq. (13)]=+0.10'K. So, it is rather unlikely
that transfer processes alone can account for the
observed value of j.

An alternative mechanism leading to biquadratic

0
8 ('K) CdCr&

40%, non-nearest-neighbor interactions have to be
invoked.

C. Biquadratic Exchange

Biquadratic exchange terms in the coupling
Hamiltonian may arise either from fourth-order
transfer processes~ or from exchange stric-
ti.on."

The contributions due to transfer processes are
in general very hard to calculate, but it has been
pointed out by van Stapele that for Cr-Cr pairs
the leading term stems from fourth-order pertur-
bation loops which involve low-spin states at an
energy EH (Hund energy, E„=1 eV) above the
ground state. The resulting coefficient of the bi-
quadratic exchange term j due to these transfer
processes is of the order of

B. Bilinear Exchange

The values of the exchange constants, as deter-
mined in Sec. IV, are in excellent agreement with
those obtained from optical spectra'5 8/k = —(31.9
+0.7) 'K, j/k= —(2.4+0. 5) 'K. The accuracy of
the optical method is slightly better since the ex-
change parameters are determined from the posi-
tions of the optical transitions rather than from the
temperature dependence of their intensities. The

devalue

(I/I/k=4. 26 K) determined by Begum and
Murthy~~ from paramagnetic-neutron-scattering
data on ZnCr~04 is in striking disagreement with
our results.

It is interesting to see whether the asymptotic
Curie temperature 9 of ZnCr204 can be explained
on the basis of a nearest-neighbor interaction
only. Values of 8, as determined from suscepti-
bility measurements, have been reported by Baltzer
ef al. '~ (8 = —390 'K), by Blasse and Fast'8 (8
= —350 'K) and, more recently, by Kino and Luthi4
(8 = —330+ 10 'K). With 3k8 = 6S(S+ 1)Z we find
8(calc. ) = —240 K. So, 60-70% of the observed 8
value can be accounted for by nearest-neighbor in-
teraction. In order to explain the remaining 30-

100

o j NaCr

OCr02

02

-900
HCr02

—400

Cr 02
I

—500

2.90

FIG. 10. Asymptotic Curie temperature 6 vs interionic
distance g(Cr —Cr) according to H, ef. 23.
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j= —2(&"/«r) . (16)

It should be noted that exchange striction gives
rise to negative j values.

For 90 Cr-Cr interactions the striction effect

terms has been proposed by Kittel. 2~ Let us con-
sider a pair of Cr ions embedded in a harmonic
lattice. The free energy of the pair can be written
as the sum of elastic and exchange terms

E = ,'err—(r rr-) —JSq ' S2, (14)

where c is the appropriate component of the elastic
stiffness tensor. In the absence of exchange the
equilibrium separation would be r~. This separa-
tion is slightly modified by the exchange interac-
tion. Putting BE/Br= 0 we find

r =r +(J'/cv )(Sq' Sq), (»)
where 8' =dJ/dr. Substituting the new y value into

Eg. (14) we finally find that the free energy con-
tains a term proportional to (S, S2) with a coef-
ficient j given by

is of paramount importance because there is a
subtle balance between positive superexchange
(Cr-0-Cr) and negative direct exchange (Cr-Cr)
interactions'5 resulting in a dramatically large
value of J'. An estimate of J'' can be obtained
from the e values of a number of chromites, as
collected by Motida and Miyahara+ (see Fig. 10).
This plot of 8 vs r leads to J' = 64x 10 7 erg/cm
under the assumption that 8 is mainly determined
by nn interactions. With c=20x10" dyn/cma
(mean value for spinel MgA1~04) and rr =2.94
x10 8 cm, we arrive at the estimate j/k= —2. 5'K,
which is in excellent agreement with the experi-
mental value.
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