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The change in ultrasonic attenuation and velocity of metals due to spins coupled via the Alpher —Rubin
mechanism is calculated. In particular the results are applied to nuclear- and electronic-spin resonance in

paramagnetic metals where discrepancies with previous calculations are found.

I. THEORY

Acoustic magnetic resonance in metals via the
Alpher-Hubin' mechanism (or magnetic-dipole
coupling) has been treated by several authors' ' for
special cases. However, some of these treat-
ments contain errors. It is the purpose of this
paper to give a general self-consistent derivation
of the effect and to obtain specific results in the
long-wavelength limit for paramagnetic metals.
The derivation will be presented in such a way as
to see the physical origin of the terms missing

from other treatments and to stress the self-con-
sistency requirements. In the rest of this section
a general derivation appropriate to any metal is
given where deformation-potential effects are not
important. Section II contains detailed results for
the Alpher -Rubin-induced acoustic -attenuation and
-velocity changes in paramagnetic metals due to
nuclear and electronic spine in the long-wavelength
limit. For the particular case of nuclear reso-
nance with the external magnetic field parallel to
the direction of acoustic propagation, our answer
is in agreement with Buttet's. 3
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Qur treatment of the coupled systems of acoustic
waves and conduction electrons is a generalization
of the treatment of Rodriguez to apply to noniso-
tropic and non-free-electron metals and to include
the effects of a magnetic permeability which is not
unity and which can depend on frequency. Our
treatment does not include effects due to the de-
formation-potential and thus may not be valid for
materials and/or circumstances where that poten-
tial is important. Qn the other hand, the equation
can still be used to include anisotropy and non-
free-electron-like effects in the conductivity in a
self-consistent manner. The self-consistency of
our treatment is manifest in two ways. In the first
place, the collision forces between the lattice and
the e".ectrons are treated on the same footing.
Thus, whether or not the electron-lattice collision
force is characterized by a single-collision time,
energy and momentum are conserved. In the sec-
ond place, an eigenvalue equation for the lattice
displacement is obtained before any assumptions as
to what is small are made. Thus expansion in
terms of small quantities can easily be made, en-
suring that all terms to a given order are included.
Thus we consider an acoustic wave of frequency &
and wave vector q whose displacement g(r, t) is
given by

t l48+fg, ~x' (I)

The equation of motion of an ion of mass M in an
electric field E and magnetic field B is given by
Newton's second law,

8

M , = C, 7'(V () —C, Vx (rex g)8t

+ zeE+ (ze/e) ux B+F, . (2)

Here C, and C, are the elastic constants, —e is the
charge on an electron, u= 8$/Bt= —i&u$ is the ionic
velocity, and F, is the force on the ions due to col-
lisions with the electrons. It is further assumed
that there are no conduction electrons and no/z pos-
itive ions per unit volume. Thus the density of
ions is p=Mno/z.

Under certain simplifying assumptions, Rodri-
guez and others relate the collision force F, to a
phenomenological collision time 7 through the equa-
tion

F, = (mz/w) (( v) -u) = —(zm/no e7') j, —(mz/v) u,
where m is the electron mass, (v) is the average
electron velocity, and j,= —noe(v) is the electronic
current density. This is ultimately related to the
dc conductivity oo = no e r/m Any sim. plifying as-
sumptions or restrictions are actually unnecessary
at this point. Since the ions are very massive com-
pared to the electrons and the average electron ve-
locity is sm, all compared to the Fermi velocity, the

collision force must be equal to A ~ ((v) -u). The
tensor constant of proportionality A can be ob-
tained by noting that in the static (@~=0, q=0) zero-
magnetic-field (8 = 0) limit there can be no force on
the ions if they are at rest. Thus the collisional
force must cancel the zeE part of the I.orentz
force. Using the additional equation that

(v) = -j, /noe= —co ~ E/noe

in the static limit, we obtain A ~ oo = no ge or

F„=—ez Ho ~ j (3)

(4)

j =—E y qx [p, ~ (qxF)]
4m 4nco

=I" E, (6)

where jU, is the magnetic permeability tensor which

may depend on q, &, and a static magnetic field
80. The one further equation necessary in order
to obtain a complete solution is the constitutive
equation relating the electronic current density to
the electric field E and ionic velocity u. From
standard Boltzmann-equation treatments one ob-
tains~' ~0

j~=o ~ E =R" E

where
~I
E = E —mu/ex = E -no e u/oo .

(6)

The diffusion term in the electronic current pro-
portional to the gradient of the density can be re-
lated back to the electronic current density through
the continuity equation. In our notation o includes
this term.

In fact, the electronic current density can be
shown to be proportional to E' independent of any
detailed transport equation. Since the part of F,

pdue to u is -noze Ro ~ u, a.n equal and opposite
force must act on the electrons. Since there are z
times as many electrons as ions, the force —eE on
an electron is replaced by —eE+noe R, ~ u, or E
is replaced by E, where

~I
E =-E-n, eH, .u. (7)

j = j,+n() eu,
where j is the total current density and Ho= co is
the static-resistivity tensor in zero external fields.
This formula ensures that the calculation will be
self-consistent no matter what approximations are
made in calculating conductivity. It also obviates
any need of worrying about anisotropy or effective
masses at this point.

If the space-time-dependent parts of the mag-
netic fields are sufficiently small, the total current
density j can be related to the electric field E
through Maxwell's equations':
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A complete solution is now obtained if p, , R, and
are known. Since the time-varying part of B is

proportional to $, B in Eq. (2) can be replaced by

Bo, the static external magnetic field, if only
small amplitudes are considered. Equations (2}-
(5) are combined to give

2
~SOS ~ 2

M(u $-(c, —C, )qq ~ $ —C, q $

= —ze(1 —Ro ~ I') ~ E + (zei&u/c) $ x Bo . (8)

second order in &,v, yielding

qq (-,q (q &B

=(znoe vi jooM)C ~ g+(zei&u/Mc)(&xBo), (13)

where g& and v, are the longitudinal and transverse
sound velocities and

C =[1-5a I, A-'+5R r, A-~o 5r A-'](-o, 5R)
(14)

From Eqs. (4}-(V) the expression

E = - iom, e( I -R. r)-' ~ (R, - R) ~ ( (9)
(A),~=5,q[1+iP(1 —5,q)] . (15)

for the electric field is obtained. By combining
Eqs. (8) and (9}we obtain

(&o-[(C, -C,)qq +C, q']/M)]

= (i&uno ze /M) (1 —Ro I'),
(10)

(1 —It ~ I') ~ (R —8) ~ $+ (zeiv/Mc) jx B

The acoustic velocity and attenuation are obtained
from the real and imaginary parts of the solution
of this eigenvalue equation for (d.

II. DISCUSSION

In this section we shall specialize to free-elec-
tron cubic paramagnetic metals in the long-wave-
length limit. We shall use the usual parameters

(u, = eBo/mc,

p =&uc /4o'o'o v

v=(djq ~

where v is the velocity of sound. Since we are not
interested here in geometric resonances, we as-
sume that co,7, av, qv&v, as well as v/c are much

less than 1, where 7 is an electron-collision time.
Equation (10) can then be expanded in powers of
+,7 and 5p., where p, =1+6@,. We shall also use
Rodriguez's coordinate system where Bo=Bo(0,
sin8, cos8) and q=q2. Then I"= 1"o+51"and R=Ro
+OR, where

The first two components of the displacement vec-
tor $ correspond to the transverse modes and the
last component to the longitudinal mode. The first
term in the square brackets of Eq. (14), C „ex-
actly cancels the )x Bo in term in Eq. (13). The
second term in the square brackets is the usual
Alpher —Rubin term:

+ g

+ (sin'8 —cos'8) (1 —5,~)] . (15)

There are off-diagonal terms of order (+,7)o in Co
connecting the y and g components of $ which are
suppressed because they will contribute only to or-
der (up, ~)' in the modes.

The last two terms in the square brackets of Eq.
(14) are the resonant parts (the parts that depend
on the magnetic susceptiblity). Since the longi-
tudinal and transverse modes have distinct veloci-
ties, only C„and 4 g;, where i and j run over x and

y, are relevant. In our approximation these terms
are

(4,+Co)„= 1 . + . , ((o,r) (5p„)sin 8,1+zP 1+gp
(1V)

(Ss+S ) =( . + . (|s T) sss 8 SS-ip p
1+i 1+ip gt

For a cubic system in our coordinate system the
relevant components of 5p, are

(Ro)o = oo' «g

oo=ne ~/m,2

5v.,=«(x, +x ),

&P» = 4m[(X, + X ) cos 8+ Xo sino8], (18)

&R~ = —5R,„=&u, v'cos8 joo,

6R~ = —5R» = &u, v' sin8/o'o,

5R„g= Gag„= 5R&s
——0,

(12)

5p~ = —5 p» = 4 o'i cos8 (X —
X ) .

In these equations, X with m=+, —,or 0 are the
spherical components of the susceptibility. In the
low-frequency long-wavelength limit, the nuclear
and electronic contribution can be written

(r,)„=- ip, 5„(I—5„),

(5r)„=- iPoo(5 P)„(I—25„)(1 —5„)(1 —5„) .
Equation (10}is expanded to first order in 5p, and

X (q&)=X (q 0)(2 5,o)(m&o i )/

(m(oo i I' —(u), — (19)

where m =+ 1, —1, or 0, 1 is a decay rate which
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+zX

S,(8)=cos 8,

S,(8) = cos 8,

S,(8) = cos'8 sin 8 .
(21)

Two comments should be made about these equa-
tions. First, the neglect of off-diagonal terms is
not necessarily permitted. This point shall be tak-
en up later in this paper. Second, the resonant-
attenuation coefficient is not positive definite.
While this may seem strange it does not violate any
physical laws because Ao, is the resonant part of
the absorption, and "background" of the usual
Alpher-Rubin term is much larger (under the as-
sumption that eg is sma. ll) and positive.

For nuclear acoustic resonance, Eqs. (20) and

(21) are not in agreement with Ref. 2, but are in
agreement with Ref. 3 where only the case of 8 = 0
is considered. We have calculated the decay rate
of an acoustic wave which gives the total absorption
of energy from the wave. Several authors ' have
instead calculated the amount of power absorbed by
a nuclear or electronic spin system in order to find
the resonance power lost by the acoustic wave using
the formula

o. = (2/p(up) Htlg
l

fmx ~ (22)

where H, is the rf magnetic field. An inspection of
Eqs. (8) and (9) shows that this procedure is in gen-
eral incorrect, ' although in some limiting cases it
leads to correct answers. ' The reason is that the
orbita, l electrons, electronic and nuclear spins,
and the acoustic waves are, in general, not sep-
arate entities but are rather strongly coupled. In
a sense, the power absorbed by the orbital elec-
trons is affected by the electronic or nuclear sus-
ceptibility because the electric field felt by the
electrons depends on p, through I'. If the power

may be q dependent if spin diffusion is included,
X'"'(q, 0) is the static susceptibility, and n refers
to the nuclear or electronic spins.

Keeping only the diagonal terms in 4 and reso-
nant terms in the susceptibility, we obtain the reso-
nant attenuation and velocity shift,

~o,. = [~a', pS, (e)/2p~';(1+ 0')'] [(1—P') X.
' —2PX,]

(~v;/5;) = [&,'PS;(8)/2p~';(1+ le')']

x[(je'-1)X,'-2&X."]. (20)
where

change in all subsystems is calculated the correct
acoustic absorption is obtained, but we feel that
our method of directly calculating the acoustic at-
tenuation is superior,

Equation (22) is valid only if all of the lost acous-
tic energy is transferred to the spins and only if
the spins themselves do not contribute to H&. In
general these conditions are not met. The conduc-
tion electrons themselves absorb power by the usu-
al Ohmic losses because of the acoustically induced
electromagnetic field and H& depends on the spins
because the induced electric field depends on the
total susceptibility through I' or Maxwell's equa-
tions. If the dimensionless parameter I3 is small
enough, Eq. (22) will yield the correct results.
The reason is that in this limit the conductivity is
large enough so that the Ohmic losses are negligi-
bly small and that the dependence of H, on p. is
negligible compared with the large H& generated by
the orbital motion because of the large conductivity.

Finally, let us consider the effects of the non-
diagonal terms in 4 on the two transverse modes
in the case of nuclear resonance. As can be seen
from Eqs. (1V) and (18), the off-diagonal compo-
nents of the resonant part 43+ 44 are just as large
as the diagonal ones. Thus Eq. (20) is correct only
if there are other terms splitting the degeneracy of
the two transverse modes which are larger than the
terms which we have considered. Besides the pos-
sibility of static strains or other imperfections in
the crystal, the electronic susceptibility itself will
effectively mask off-diagonal terms if

x"(q, 0)» x,'"'(q, ~) I
.

If the degeneracy is not sufficiently lifted by other
terms, the 2x 2 matrix in Eq. (1V) must be diago-
nalized and the two modes have velocities and at-
tenuation given by Eqs. (20) and (21), with

S,(8) = (cos 8+1)cos'8, S,(8) =0

and with complex polarization vectors

e~(e) = (e, —icose e„)/(1+cos'8)'~',

ea(8) = (e„—i cos8 e, )/(1+ cos 8)'~~ .
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The scintillation pulse-height response of NaI(Tl) and KI(Tl) to He and ~ 0 ions in the 2-60-
MeV range has been studied with the ion beam aligned along low-index planes and axes. and

also aligned along a random direction. The scintillation efficiency increases by as much as
50% when the ion beam is channeled along a major symmetry direction. The effect of chan-
neling has been observed by recording the pulse-height spectra for monoenergetic ions ori-
ented along (100], (110), and (111)planes, and along (100), (110), and (111)axes. The in-
crease in pulse-height response is in semiquantitative agreement with recent model calcu-
lations. Observation of this effect permits study of channeling phenomena in thick crystals
that are scintillators. In particular, this paper reports a measurement of the critical angle
for channeling of 15-Mev 0 along a (100) plane.

I. INTRODUCTION

It is well known that energetic positive ions ex-
perience a reduced stopping power dE/dx when
incident along low index axes or planes of a crys-
talline solid. ' This effect arises from a correlated
scattering of the incident ion by the lattice atoms
for incidence along major symmetry directions.
This correlated scattering and the associated
steering of the incident ion along the open regions
of the crystal is known as channeling and has been
studied in detail in many solids, especially semi-
conductors and metals.

Luntz and Bartram (denoted LB hereafter) sug-
gested that channeling should have a pronounced
effect on the scintillation response of NaI(Tl) and

CsI(T1) to positive ions. Their calculations pre-
dicted that the scintillation pulse height from an
energetic positive ion could be enhanced by as much
as four times its normal value if the ion experi-
ences a channeled rather than a random trajectory,
where ' random" refers to an ion incident upon the
crystal in a nonaligned direction. The cause of
this effect can be seen by an examination of the
scintillation efficiency dI /dE as a function of stop-
ping power dE/dx for various positive ions. Scin-
tillation efficiency dI /&E is defined as the slope of
a pulse- height-versus- energy curve, where I rep-
presents the scintillation pulse height arising from

a particle of incident energy E that is completely
stopped in the crystal. A survey' of dL/dE vs dE/
dx for various positive ions in NaI(T1) and CsI(T1)
shows that the scintillation efficiency decreases
with increasing stopping power. The effect of
aligning the incident beam along a major symmetry
direction is to reduce dE/dx, thus to increase dI/
dE along the ion's path and therefore produce a
greater pulse height I..

This paper reports the results of a series of
experiments on the scintillation response of
NaI(T1) and KI(T1) to ~He and '~O ions in the range
2-60 MeV for random incidence and for incidence
along the (100), (110), and (111)planes and along
the (100), (110), and (111)axes. The results are
in qualitative agreement with the calculations of
LB as the channeled ions yield a distinctly greater
pulse height. The magnitude of the increase in
pulse height is, however, substantially less than
that predicted by LB.

Most of the work reported here was on NaI(T1).
Several experiments were performed with KI(T1),
confirming that the effects were substantially the
same.

II. EXPERIMENT

Experiments were performed with NaI(T1) scin-
tillation crystals (nominal 0. I-mole% thallium)
obtained from Harshaw Chemical Co. as cylindrical


