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band gap of 1.0 Ry is obtained for an exchange
parameter of 0. 95 while an exchange parameter
of 1.06 gives the experimental gap for NaF.

The bands in Fig. 2 were obtained using an 89-
point equal-volume-weight grid' in ~8 of the Bril-
louin zone to compute new charge densities for
successive iterations. Self -consistent energy
bands were also calculated using 20-, 6-, 5- and 4-
point equal-volume-weight grids and 6- and 4-
point nearest-volume-weight grids. ' The 5-point
equal-volume-weight grid is the one used by
Chancy et ait. and the 6- and 4-point nearest-
volume-weight grids are the ones used by Stukel
et al. The points and weights reported by Stu-
kel and Euwema for the 6-point nearest-volume-
weight grid are the same as those used in the 6-
point equal-volume-weight grid, while the 4-point
equal- and nearest-volume-weight grids have the
same points but different weights. Table I shows
the results obtained using the different types of
grids. The band gaps or energy differences do not
change by more than a few hundredths of a rydberg
in going from 4, 5, or 6 points to 89 points, but

the actual position of the bands relative to vacuum
changes by as much as several tenths of a rydberg.
Similar results were found for NaF. Thus it ap-
pears that 4-, 5-, or 6-point grids give reasonably
accurate energy differences, but the actual posi-
tion of the bands may differ by as much as 3 or 4
eV from results obtained using a larger Brillouin-

zone sampling.
Figure 3 shows the change in the electronic

charge density from the first to the final (self-
consistent iteration). Self-consistency causes nega-
tive charge to be removed from the interstitial
regions and placed in the region around the F ion
(also a very small amount is placed near the Li
ion). An approximate value for the amount of
charge moved to the F site can be obtained by as-
suming that the change in the charge density is
spherically symmetric near the ions and then
doing a spherical-volume integral from the F ion
out to the point where the change in the charge
density goes through zero. The result is that
approximately 0.46 electron is moved to the F
site.
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The binding energy of electron-hole drops in pure Ge is obtained from their luminescence
spectrum, and some information on the exciton-drop phase diagram is given. We show, in
addition, that experimental data indicate that electron-hole correlations are probably impor-
tant in this condensed phase. Finally, a new method is used to get the critical density in these
drops.

I. INTRODUCTION

In a previous paper, ' we studied the condensa-
tion of free excitons (FE) into electron-hole drops
(EHD) in pure Ge. We report here additional data
concerning the EHD binding energy and the FE-
EHD phase diagram in this material. Moreover,
we discuss experimental results suggesting that
electron-hole correlations are probably important
in EHD. Finally, we describe a new method al-

lowing us to determine experimentally the EHD
critical density in pure Ge.

II. DETERMINATION OF EHD BINDING ENERGY

Our previous experimental determination' of
the EHD binding energy (E„) —E~ is not correct,
and we wish to describe a better method to get
this energy at low temperature. First, let us
consider the system represented in Fig. 1. It is
constituted by N electron-hole pairs in a volume
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FIG. l. System constituted by N/V electrons in the
conduction band and N/V holes in the valence band.

V, anditstotalenergy E canbewritten E=Nf(N/V),
so that the corresponding chemical potentie1. 8'is

dE &N df(N/V)
dN V dN

In an EHD, the mean energy per pair is mini-
mum, so that df(N/V)dN=0 and, in this case,
+= f(N/V) = (E„)„.

Moreover, the shape I„„(hv) of the LA-phonon-
assisted emission line of EHD in Ge can be calcu-
lated easily at T= 0. This line shape is given by
Eg. (10) of Ref. 1 and the results of this calcula-
tion, which are represented in Fig. 2 for n, = 2. 6
& 10' cm, are in good agreement with the exper-
imental data. It must be pointed out that this
method has been used by Pokrovsky et al. to ob-
tain the first experimental value of n, . More-
over, it is also possible to determine theoretical-
ly f»(hv) at a finite temperature. In this case, if
E, and E„are the energies of electrons and holes
in the conduction and valence bands, I»(hv) can
be written

1»(h~)= &J, Jo ~(E.)&(Ea)f(E.)f(Ea)

&& 6(h v- E~ —E,—E„+5&) dE, dE „, (2)

where a. is a constant and n(E, ), n(E„), f(E,), and

f(E„) are, respectively, the state densities in the
conduction and valence bands and the Fermi dis-
tribution functions of electrons and holes in the
saIHe bands.

Figure 2 gives the theoretical line shape IL„(hv)
at 2 K in Ge, and it can be seen that experiment
and theory are also in good agreement for n, = 2. 6
& 10 cm . In fact, this is not surprising because,
for a given value of the density, the corresponding
electron and hole Fermi levels E~ and E„" do not
vary appreciably in the temperature range studied
here. Sin~e the energy E„+EL„(seeFig. 2),
where E ~A is the energy of the LA phonon, is ob-
viously equa, l to PV at T=0, we can conclude that
E~+E» is also equal to 8', and therefore to
(F.„). , at 2 'K, so that it is possible to get (E„)„

l~
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FIG. 2. Experimental. and theoretical. line shapes of
the LA-phonon-assisted emission line of EHD in pure Ge.

from the experimental luminescence spectrum of
EHD. Indeed, as shown in Fig. 2, E& can be easily
obtained by extending the linear part of the high-
energy side of the experimental EHD LA-phonon-
assisted line (hereafter called 8) down to its in-
tersection with the energy axis.

Now, if E;E-E~„is the energy of the LA-pho-
non-assisted emission line of FE, we get experi-
mentally P=E„E—(E„)„-2.4 meV and (E„) —E~
= —Q-R*- —6 meV, since Erm -E»-713.6 meV,
E„-711.2 meV, and R*=3. 6 meV. Let us note
that Brinkman et al. ' and Combescot and Nozieres
find, respectively, —5. 3 Bnd —6. 1 meV for
(E„) E,. I-t is also noteworthy that Pokrovskii
and Svistunova have determined Q with another
method which yields Q-2. 'I meV, but this value
must be slightly corrected. Indeed, to obtain P
from their data, they have plotted g/T as a func-
tion of I/T, but it is in fact more correct to plot
g/& vs I/T because v, which is the FE thermal
velocity, is proportional to 1"" . If we take this
remark into account, we find Q -2. 8 meV from the
results described in Ref. 7. Now, if we use our
experimental value of (E„)„-E~and the data given
in Table I of Ref. 1, we can determine easily the
mean correlation energy (E„,). This quantity is
found to be equal to —4. 55 meV in Ge instead of
—6. 75 meV as stated in our previous paper.

If we use the same method in Si, we obtain from
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We now wish to give some information, in the
case of pure Ge, on the FE-EHD phase diagram
which is sketched in Fig. 2 of Ref. 1. At first
we observed that the half-width of the B line does
not depend on T for temperatures between 1.7 and

4. 2 'K, so that the critical density n, in EHD is
approximately constant in this temperature range.
In fact, it is likely that ~, is modified only when T
is near the critical temperature T,.

Moreover, if we assume that FE behave like a
perfect gas, it is possible to calculate the density
n, of the FE gas at saturation which corresponds
to the lower branch of Fig. 2 in Ref. 1. Indeed,
if W and 8" are, respectively, the chemical po-
tentials of EHD and FE, the following relation can
be written":

'n 27I-2 "'
W= W'=EFE+ kT ln—

mKT

where EFE is the FE energy and

2m =[(m„„+m„)(m„,+my„)]

(3)

+ BZQ)+ VE J Sl eii+ Pl

Here' m» and m» are the effective masses of
heavy and light holes, while m, , and m„are the
longitudinal and transverse effective masses of
electrons. Let us add that we have taken into ac-
count the FE degeneracy in Eq. (3). Since W —E~H
= —Q = —2. 4 meV, relation (3) yields n, - 1. 5x 10"
cm at 2 K and v, -5x10 cm at 4. 2 K.

It is noteworthy that it is also possible to de-
termine the concentrations n of free-electron-
hole pairs and n» of excitonic molecules (EM)
coexisting with the gaseous phase of FE whose
density isn, . Indeed if Nc~ &~~ &FE) a d +EM

are, respectively, the effective state densities for
electrons, holes, FE, and EM, the law of mass
action gives

n = (N, N„/N~K)n, e (4)

and

nEM (NEMns/NFE) e2 2 B /KT (5)

where B* is the binding energy of EM.
At 4. 2 and 2 K, we thus find, respectively,

yg-5. 4x10' and 2. 8x10 cm . For the same
temperatures, we obtainn«-1. 2x10 and 4x10
cm 3 if we give to B* the value calculated recently

the experimental results of Haynes' p-7 meV, so
that (&„) —&,- —21. 7 meV since R*= 14. 7 meV.
It can be noticed that the theoretical values of

(E„) —Es which are now available in Si are —21
and —21. 5 meV. ' We thus get (E„,)- —16.3 meV
instead of —24. 3 meV' if we use again the data
reported in Table I of Ref. 1.

III. PHASE DIAGRAM

by Akimoto and Hanamura, " i. e. , 0. 075 meV.
These results show, therefore, that it is reason-
able to neglect free-electron-hole pairs and EM
in the study of the condensation of FE into EHO.

IU, EHD RADIATIUE LIFETIME AND ELECTRON-
HOLE CORRELATIONS

We must begin by pointing out that one of our
previous determinations of the critical density e,
in EHD is not valid. ' Indeed, we have deduced ~,
from the ratio of the FE and EHD radiative life-
times rR /7 z", which is proportional to I gz~(0)i 2

but we have taken I &f&~~(0) I = 1/64 mao instead of
1/paso. For this reason the value of n, given by

this method is in fact too large, but these results
seem to indicate that electron-hole correlations
may be important in EHD.

In this case, by analogy with positron annihila-
tion in metals, ' we think that the EHD radiative
recombination probability lyl, which is given by

Eq. (12) of Ref. 1, must be multiplied by an en-
hancement factor p, so that iyl can be written'6

lyl'=(IDI'/I« ') I&l'p . (6)

We assume here that p is 0 independent, so that
it does not affect the EHD emission line shapes.
For the same reason, this enhancement factor does
not modify the ratio IT„/IL„of the intensities of
the A and B lines, where A corresponds to the TA-
phonon-assisted emission line of EHD.

Moreover, from ly I' and from Eq. (14) of Ref.
1, it is possible to get ~„ /7 '�"D, which can be
written

/"."'=Pni
I
y „(0)I', (7)

where I pre(0) I
= 1/mao- 1.5x10' cm in Ge,

since ao=e /2eR*-130 A if we take R*= 3. 6 meV.
In pure Ge, v, - 2x10' cm, ' and we have found
experimentally' vn /wz" -16, so that p is of the
order of 12. If we use the theoretical data of
McLean and Lo«on, ' i. e. , a0=120 A and

I g rs (0) I
'=

I P I /ma~~, where I P I
= 0. 65, "we also

find p-12. However, it must be pointed out that
our result is not very accurate, for several rea-
sons. First, the FE Bohr radius is not well known

in Ge and, in addition, our experimental value of

TR /~z" may be too large by a factor of 2, essen-
tially because it is difficult to measure precisely
the FE total lifetime whose knowledge is neces-
sary to get T„ /v s" from our experimental re-
sults. ' Indeed, in thy;-case of FE, the radiative
efficiency is rather low and the signal-to-noise
ratio is not very good. . Besides, our determina-
tion of p neglects" completely the thermal dis-
sociation of FE at 20 K. If this effect could be
taken into account, rz /7. z" would certainly be
decreased, so that p would be smaller. Unfor-
tunately, it seems difficult to determine unam-
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experiment

theor~
Ge

T-2' K

EHD TA-phonon-assisted emission line. As shown
in Fig. 4 of Ref. 1, this line and the B line have
different shapes because„contrarily to the 8 line,
the A line corresponds to a recombination process
which is forbidden for an electron-hole pair at the
band extrema. If we make the same assump-
tions as in Ref. l, the shape IT„(hv) of the A line
can be written at T = 0

720 725
I

730
I

735

ID I p
2

p7Tg(kv) =,g,'vf, g k,gI4E I ~ ve

PHOTON ENERGY (meY}

FIG. 3. Experimental and theoretical line shapes of
the TA-phonon-assisted emission line of EHD in pure Ge.

biguously the influence of the thermal dissocia-
tion of FE on our data.

Finally, it is noteworthy that calculations due
to Brinkman and Rice show that p is of the or-
der of 3, so that there is at the present time a
discrepancy between experiment and theory. We
think that it is very important to improve the ac-
curacy of our measurement method of the enhance-
ment factor because the comparison of the experi-
mental and theoretical values of p provides a very
good test of the validity of the calculations which
have been done on EHD. ' ' For this reason, we
intend to study 7 „near the critical temperature;
we believe that this will allow us to obtain a better
result for p. Indeed, as can be deduced from the
data given in Sec. III, the density of free-electron-
hole pairs is in this case smaller than v„so that
the thermal dissociation of FE can be neglected.

V. CRITICAL DENSITY IN END

To determine the critical density rs, in pure Ge,
we use here a method based on the shape of the

x 5(hv —E~ —E~„—Ek,„+hu') dk, dk„. (8)

We have used this expression to calculate the
shape of the A. line, and we have found a good fit
between experiment and theory for n, - 1. 8x10'
cm as shown in Fig. 3. Let us only note that this
value is in good agreement with the other deter-
minations of n, which are reported in Ref. 1.

The authors wish to thank Dr. T. M. Rice,
Professor P. Nozieres, Mrs. M. Combescot,
and Dr. F. Salvan for helpful and stimulating
discussions.

VI. CONCLUSION

Finally, we just want to emphasize that the ex-
perimental and theoretical results obtained for the
binding energy of EHD are in good agreement and
also that electron-hole correlations are certainly
important in EHD. However, there is at the pres-
ent time a discrepancy between experiment and
theory on the value of the enhancement factor cor-
responding to these electron-hole correlations,
and it is thought that it would be interesting to
improve the accuracy of the experimental deter-
mination of this factor.
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The spectrum and localization length of certain one-dimensional disordered systems can be
found either by a node-counting technique, or by a recently proposed Green's-function method.
We prove here the mathematical equivalence of the two approaches.

I. INTRODUCTION

Several one-dimensional problems in the theory
of disordered materials can be reduced to the
diagonalization of a tridiagonal matrix. Examples
are the chain of oscillators with random masses or
spring constants, ' an electron in a set of non-
overlapping potential wells ' located at random,
and the tight-binding nearest-neighbor hopping
model for a.n alloy. ' An exa.ct expression for the
integrated density of states N(E) for this problem
has first been given by Dyson, and reformulated
by Schmidt. The underlying idea is that the nth
eigenfunction of a one-dimensional Schrodinger
equation has (n —l) zeros in the interior of the re-
gion of interest; thus, finding N(E) is reduced to a
problem of node counting. By differentiation it is
then possible to find the density of states p(E)
= dN/dE, which is usually the quantity of interest
There appears however a practical difficulty when
these calculations are carried out: The node-
counting problem involves the numerical solution
of an integral equation, which is usually done by
iteration on a computer This me.ans that N(E) is
known with a small error which varies in an un-
controlled way from one energy to the next, and
which makes it difficult to get reliable values for
p(E).

Recently Economou and Cohen, and Economou
and Papatriantafillou have come up with an ap-
proa, ch based on a Green's-function technique, and
which is free of the above difficulty. They obtained
an equation which gives p(E) directly, an obvious

advantage for numerical work. In addition, the
Green's-function treatment can easily be general-
ized to include, for example, second-nearest-
neighbor hopping, while there is no natural way of
carrying out such a generalization from the node-
counting point of view.

The object of this work is to prove the equiva-
lence of the two approaches for those problems to
which both apply. This may seem logically un-

necessary, since both provide exact solutions to
the same problem; but the fact that their deriva-
tions are based on certain assumptions (e.g. ,
ergodicity) which have not been rigorously proved,
makes it desirable to have a direct check of the re-
sults arrived at by both methods.

To avoid unessential complications, we consider
one particular problem: the tight-binding nearest-
neighbor-hopping-only alloy with randomness re-
stricted to the diagonal elements. With slight
changes in notation, the proof applies to all other
situations.

%'e start by stating the problem, then by giving
the set of equations describing it in the node-count-
ing approach, by giving the set of equations de-
scribing it in the Green's-function approach, and
finally by showing that the results are equivalent.

II. FORMULATION OF PROBLEM

Consider a set rf orbitals f l n&} located along a,

line. I.et the Hamiltonian be


