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A n«... . calculating the nearly degenerate states of a bound lattice polaron is formulated treating the
Hartree-type Hamiltonian as the unperturbed Hamiltonian and the interaction omitted in the Hartree-type
approximation as a perturbation. This method is applied to study theoretically the relaxed excited states
associated with the F emission in a typical alkali halide such as KC1. The resultant theoretical results imply
that the lowest relaxed excited state contains about 70% 2s character and about 30% 2p character and that
among all the higher relaxed excited states there are no states which can be well approximated either by the
2s or 2p type. In addition, adopting the Franck —Condon principle we extend the electronic-effective
Hamiltonian derived for the relaxed excited state to the 1s-like state to which the F emission occurs and

calculate this ls-like state and thereby the F-emission energy. Finally, an expression for the radiative life-
time of a point defect is derived for the case in which the initial states are nearly degenerate and applied to
investigate the temperature dependence of the radiative lifetime of the F center.

I. INTRODUCTION

In previous theoretical studies, relaxed excited
states ot the Il center (i.e. , the E-electron excited
states in the relaxed lattice, which refers to the
lattice in the new equilibrium position after I" ab-
sorption) were taken to be two separated 2s- and
2p-like states. ' Therefore, the mixing of the 2p
states into the 2s state due to the electron-phonon
interaction, discussed in Bef. 3, was handled by
nondegenerate perturbation theory. In Bef. 3,
using the Frohlich-type electron-phonon interaction
and the obtained perturbed 2s state, the ratio of
the transition probability of 2g- lg to that of
2p-1g was predicted to be 11.5 for the I' center
in KCl. As pointed out in Bef. 3, this value is
too large. This may imply that the 2p and 2g state
states are nearly degenerate rendering nondegen-
erate perturbation theory inappropriate for the
calculation of the mixing of these states. As a re-
sult, the perturbed 2p or 2g state due to the elec-
tron-phonon interaction mould no longer be approx-
imately 2p or 2s like.

Further, in Bef. 4 the above-mentioned mixing
mas calculated by the Hartree-type self-consis-
tent-field method in the continuum approximation.
Thus, in this reference the effective electron-
phonon interaction obtained from the Frohiich-type
electron-phonon interaction Hamiltonian cannot
only shift the energy levels of the 2z and 2p states,
but it can also mix these states. The mixing co-
efficients thus calculated are in good agreement
with those expected from experimental work.
However, this agreement must be considered as
partly fortuitous in view of some rather crude ap-
proximations made, such as the continuum approxi-
mation and the Hartree-type self-consistent-field
method, both of which require a justification for

this problem.
In this work we first formulate a, method to han-'

dle nearly degenerate states of a bound lattice po-
laron for the case in mhich the electronic frequency
is much la,rger than the ionic frequency. Then this
method is applied to the theoretical study of (a) re-
laxed excited states associated with the F-emission
band in a typical alkali halide such as KCl„and
(b) the temperature dependence oi the lifetime ot
the excited F center in the range of low tempera-
tures.

The method of calculating the nearly degenerate
states of a bound lattice polaron is described in
Sec. II. It is applied to investigate the relaxed
excited states of the I" center in KCl in Sec. III.
The lifetime of the excited Il center is calculated
for KCl at a number of temperatures in Sec. IV.
In Sec. V we summarize our results and compare
them with the observed results and predictions of
Refs. 5 and 6. Further, we comment on the con-
struction of the wave functions for relaxed excited
states of point defects.

II. METHOD OF CALCULATING NEARLY DEGENERATE
STATES OF BOUND LATTICE POLARON

A. Hamiltonian

According to the mork of Bef. 7, the Hamilto-
nian for a system consisting of. an electron and a
massive hole (effectively ot infinite mass; for sim-
plicity, we shall call it just "hole" in this work)
in an insulator may be written as
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H, = —
@ATE,„

and —~ n~ (p /2m), respectively Here.
nq = (2n/m) tan-'u,

2n t' -2u Q
Rp=

~ ( 2)2 + 2 +tan u

u and o. being

u=(e'/2m' )'"u

(2.2)

(2. 2)

(2. 4)

(2. 5)

(2 .6)

respectively. F.,„ is the energy of a longitudinal
exciton and zg is the maximum value of Iw I in the
first Brillouin zone.

The above-mentioned mass correction can be
taken into account simply by replacing m in Eq.
(2. 1) with m* defined by

m*=m/(1 ——,'o.,) . (2. '7)

We note that in the band-mass approximation, i.e.,
p /2m+K V(r —R 0) -p3/2m~,

gyes becomes the band mass vgb and yn* becomes mb

when ignoring crystalline ionic polarization. The

p, nz, and r are, respectively, the electronic mo-
mentum, the free-electron mass, and the electron-
ic position vector with respect to the massive hole.
The &„ is the usual high-frequency dielectric con-
stant. Here w/d is approximately the maximum
value of the wave vector in the first Brillouin zone
and d is the nearest-neighbor distance for alkali
halides with NaCI structure. V(r —R„o) represents
the interaction of the electron with the Q.th ion at
R 0 when the nth ion is at its equilibrium position
and its core and valance electrons are in the
ground state. Thus the second term in Eq. (2. 1)
is the interaction of the electron with all the ions
making up the perfect insulator. The —V(r) is the
interaction between the bare electron and the hole.
[In the E-center problem, because this problem
consists of a perfect alkali halide minus a halogen
ion plus an electron, V(r) is, in fact, the interac-
tion between the bare electron and a halogen ion.
—V(r) becomes —e2/x for large x. ] The fourth
term is the exchange interaction (i. e. , the dielec-
tric screening interaction) between the electron and
the massive hole via the electronic-polarization
field. h, represents the electronic -polarization ef-
fect both on the massive hole and on the electron.
Now the effect on the massive hole itself gives a
constant energy and can be omitted hereafter.
However, the effect on the electron itself yields
(i) a self-energy, (ii) a mass correction to the
electronic mass, and (iii) a Lamb-shift-type cor-
rection. The self-energy and the mass correction
are given by

so that the values of z and u in the band-mass ap-
proximation are different from those in the non-
band-mass theory for the crystal under considera-
tion. 7

According to results obtained in Ref. 7, the
Lamb-shift-type correction i.s very small com-
pared to the total energy of the system. Although
this correction shifts the 2p state downward and
the 2g state upward for alkali halides such as KC1,
the net correction in the energy difference between
the 2s and 2p states is very small compared to a
single phonon energy, and hence we shall omit this
correction hereafter. (The net effect is less than

of a single phonon energy when the size of the
2s and 2p orbitals, (r), is greater than 4d. )

Thus H, , Eq. (2. 1), may be rewritten in the
form

H = + Z V(r -R.,) —V(r)

„(n'/d) r
e' 2

+I 1-
7T

0

sin p.
d p. —e&E,„.

(2.8)
We shall now adopt an argument used in Ref. 8

to consider the interaction between the electron-
hole system and the phonons in an alkali halide at
temperature T. When the electron moves in the
region close to the center of the hole, i. e. , the
electron trap (having an effective charge of + e), it
moves much faster than the ions of the crystal so
that these ions do not follow the electronic motion
and the positive charge of the trap is almost com-
pletely shielded by the electron. Hence when the
electron moves in this region, the electron-hole
system does not polarize the lattice and does not
interact with phonons. On the other hand, when
the electron is in a region far from the trap, it
moves relatively slowly compared to its motion
when nearby so that the ions can follow both the
motion of the electron and of the hole and thus the
electron-hole system interacts with phonons.
Furthermore, the electron-hole system interacts
strongly only with the longitudinal-optical phonons
in the present problem. Thus, following lattice-
polaron theory, '' we write the Hamiltonian for
the phonon system and its interaction with the
electron and hole as

H»= Zaf a;8~&
k

fol t&Rp ) (2. 9a)

8,„=Raga;h(o', + L (V, age'"'+c. c. )
k k

-Z(V, ay+ c.c. ) for r&Bo, (2. 9b)
k

where the first term is the Hamiltonian of the lon-.

gitudinal-optical phonons, written in terms of cre-
ation and annihilation operators a„- and ag, re-
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spectively, for phonons of wave vector k. The
second term is the Frohlich-type Hamiltonian de-
scribing the interaction between the electron and
virtual phonons and is applicable for any tempera-
ture. The last term is the interaction of the (mas-
sive) hole with phonons. V„known as the coupling
constant, is given by

2ne' e&,
k2y ~ (2. IO)

where &, is the frequency of the longitudinal-op-
tical modes and I/&* = I/e„—I/&, , &, being the
static dielectric constant for the crystal at tem-
perature T. Note that the above coupling constant
is renormalized such that the ionic screening has
the expected macroscopic limiting behavior. Thus
this coupling constant includes a host of other cor-
rections.

It is known that q, =q„+b.&, where Aq is the dif-
ference between the static and high-frequency di-
electric constants and may be ascribed in ionic
crystals to the ionic polarization. This polariza-
tion mainly arises from the relative displacement
of ions of opposite sign because of ionic thermal
vibration in the present proble;~. Therefore &,
has a strong temperature dependence compared to
other crystal constants in the coupling constant V„
and is mainly responsible for the temperature de-
pendence of the Frohlich-type interaction Hamilto-
nian.

Since it is hard to obtain a reasonable expression
that explicitly includes the temperature dependence
for &„ we shall use experimental values for this
dielectric constant in our numerical calculations.

The Ro is the radius of a spherical region drawn
about the center of the hole and should be chosen
such that the electron-hole system does not po-
larize the lattice for r~ g, . Ho is related to the
ratio of the electronic frequency and the ionic fre-
quency. However, the value of this ratio for which
the ions begin to follow the electronic motion is
not known and hence Ho cannot be calculated acu-
rately. In previous semicontinuum-model calcula-
tions of the F center, ' this Ho was chosen to be
the Mott-Littleton radius RML for the negative-ion
vacancy. ~2 This choice is consistent with the es-
tablished conclusion that the F-center electron
spends most of its time inside the spherical region
of radius R«centered at the center of the nega-
tive-ion vacancy so that the F center is nearly neu-
tral and hardly polarizes the lattice, i.e. , hardly
interacts with the phonons in the case of the ground
state. ~

We note that it is not a very good approximation
to treat the vanishing of the interaction between the
electron-hole system and the phonon system for
r& HD as equivalent to the mutua. l cancellation of the
two interactions of the phonons with the electron

and the hole. This is because such a cancellation
occurs only at r =0.

Accordingly, the total Hamiltonian for the prob-
lem in question is given by Eq. (2. 8) plus Eq.
(2. 9), i. e. ,

H=H, +H „.
8. Equivalent Hamiltonian

With the use of the operator

A"„=-a k
—V~ /8(~, (2. 12)

employed in Ref. 8, the H» in Eq. (2. 11) can be
transformed to

H, „=Q h(u, A„-A-„+Z (V~A„+ c.c. )
k 1t

and

I V~ I

+
QPy

for x& Ao (2. 13)

H, „=Q @ra,A;A;+ Z ( V,A „e'"'+c.c. ) + V,y(r)
k

! V„I-2 for r &Ho (2. 14)

with

IV I'
V„(r)= Z

&
— (e' '+ c.c. ) .

kg/ y
(2. 15)

when replacing the summation over the wave vec-
tor k in the first Brillouin zone by the k integra-
tion, where k is the maximum value of k in this
zone. When the trapped electron is in a very dif-
fused state, x is very much larger than the lattice
constant d and V„(r) reduces to e /e*r because of
the decreasing nature of the integrand with increas-
ing r. In this case (a) the effective-mass theory
becomes valid and Eq. (2. 8) can be written as H,

The operator A„- and its complex conjugate, &. e. ,

A&, satisfy the commutation relations for bosont
operators. Thus &p and A& can be defined as an
annihilation operator and a creation operator for
bosons of wave vector k, respectively. Then the
first term in Eq. (2. 14) or (2. 13) can be regarded
as the Hamiltonian of the phonon system in the A„-

representation. (A representation actually refers
to a reference system here. ) The second term in
Eq. (2. 14) is thus the interaction of the electron
with phonons characterized by the operator Ap.
The second term and the last term in Eq. (2. 13)
are, respectively, some interaction and a constant
energy resulting from the transformation of &» for
«Ho. The last term in Eq. (2. 14) is the self-en-
ergy of the hole due to its own ionic polarization
field. ' The V„(x) can be written as

P "mr

V,,(r) =- „— dp,
p



1698 %'ANQ, MATS UURA, WONG, AND INOU E

Ck Ak+ Vkp»/~k ~ (2. 16)

and its complex conjugate Cp to transform +ph once
again. Here the complex conjugate of p& is given
by

(2. 17)

where g;(r) is the electronic wave function of its
ith state. This transformation yields

H=H'+Q Erg»C„C"„, " (2. 18)

where
IV I'

H'=H, +Z '
i
p„—1

i@(dy

+Q [V»C»(1 —p»)+ c.e. ] for r &Ao (2. 19)

IV I IV I() p IV I

(i i
) p IV I

@n

x ( p„- e'"'+ c.c. ) +Z [V, C,",(e'"' —p„")+ c.c. ]
k

for r &AD . (2. 20)

Here &, is still the electronic Hamiltonian given by
Eq. (2. 8).

It is evident that although the phonon part in the
total Hamiltonian given by Eq. (2. 18) is expressed
in the Cp representation, the eigenvalues of this
total Hamiltonian are the same as those of the
original one, Eq. (2. 11).

In this Cp representation, the total Hamiltonian
for r &Bo is Eq. (2. 18) with H' given by Eq. (2. 19),
and thus the wave equation for the phonon system
in this case is

= (P /2m») —e /e r plus a constant energy, and (b)

Bp is effectively zero. Hence, for very diffused
states, H given by Eq. (2. 11) reduces to

2 2

H = — + Z k(ok A»A»+ Q (V»A» e'" '+ c.c. ),
2m'+ E,x

where the constant energies are omitted. Here
—e /e, r is the sum of —e /c r and V„(r) for large
r, i.e. , e /e~r He. nce V„(r) is nothing but the
screened interaction between the electron and the
hole via the ionic polarization field. Further, the
& just given above is essentially the Hamiltonian
used widely in the theory of a lattice polaron bound
in a Coulomb potential. For the present problem,
however, such a Hamiltonian is not appropriate,
since the above approximations (a) and (b) are not
reasonable.

In order to obtain another form of the Hamilto-
nian by which the eigenstates can be calculated
rather readily, let us use the boson operator

where 4 and E» are the corresponding eigenstate
and eigenenergy, respectively. We write 4 in the
Hartree form

c=ll y„,
~ k

(2. 22)

where P» is the wave function of phonons of wave
vector k. Taking the second term in the bracket
in (2. 21) as a perturbation, we obtain by first-
order perturbation theory

V»(1 —p~k) C1 V(»1 p-)kC„
k g k+

@ PY

(2. 23)
where e& is the number of phonons with wave vec-
tor k, In») is the eigenstate of the operator
Scu~CpCp, and N is a normalization factor given by

2 ~ 2 -y/2
N= 1+ i ~t f1 —PPf

(dp
(2. 24)

Here the value of t1 —ppi is between unity and
zero (for k = 0) for an allowed k, and I V» I'- (kkV) '.
For the face-centered-cubic crystals, the crystal
volume V-n' and 4' - n" for very small 0 and is of
the order of unity for very large 4. n is a large
integer so that n times the length of one side of a
primitive unit cell in the considered crystal is the
length of one side of the crystal. Therefore, the
order of magnitude of t V~ ) is between n ' and n
for an allowed value of k. Consequently the second
term in the large parentheses in Eq. (2. 24) is vir-
tually zero and the normalization factor N can be
set equal to unity. Using C thus determined, we
obtain the corresponding effective Hamiltonian

Hkff —= (C IH
i
4)

H=H, + QK(u»C»1C»+Hq
p7

(2. 26)

where H,' is H„ the original electron-part Hamil-
tonian, for y&Bp and is

H,'=H, +V„(r)+ Z ' (ip„i' —1)
P @(dl

(pk&e'""+ c.e. ) for r &Ho (2. 2V)
P S(dp

=H + 5, k~ s. ..n ... IC-C-I. ~ ~„.. ~ )
k

for r &B„(2.25)

where I
~ ~ n; ~ ) represents an eigenfunction of

gkh&o»C„C», This equation is, in fact, H, +gkn»5~k,
which is just that anticipated from Eq. (2. 11) for
K &Rp.

As a result, the total Hamiltonian is equivalently

QSa&»CitC»+ +[V»C»(1 —pk)+ c. c. ] @=E,k C',
(2. 21)

[cf. Eq. (2. 2())]. Hi takes the form

H = Z [V C„Ã(r)+ c. e. ],
k

(2. 28)
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in which X(r) vanishes for r &Bo and equals e"'
pk for x ~Ro.

C. Nearly Degenerate States of a Bound Lattice Polaron

We shall now take Eq. (2. 26) as the total Ham-
iltonian to study the nearly degenerate states of a
bound lattice polaron. Treating the last term in
Eq. (2. 26) as a perturbation, we obtain from the
wave equation of the unperturbed Hamiltonian the
equations

and

a,' q~(r) = s, q~(r) (2. 29)

ZKz c~c
)~

n, )=a,„~ n, )» (2. 30)

The combination coefficients C„depend not only on

the original electronic Hamiltonian H, but also on

the other terms in H,', Eq. (2. 2V). The last term
in Eq. (2. 2'7), the effective electron-phonon inter-
action, cannot only mix different hydrogenic states
by virtue of the exponential function which may be
expanded in powers of k r, but it can also shift the
energy levels of hydrogenic states involved as such
an expansion contains self- energy-type terms.
The I

~ ~ n~ ~ ~ ) are the eigenfunctions of the pho-
non system while the electron is in the state (;,
forming a complete orthonormal set, and e» is the
eigenenergy of the phonon system. Thus the en-
ergy of the unperturbed state (;(r) I' n„' ') is

Here (& and e; are, respectively, the eigenfunctions
and eigenenergies of the effective electronic Ham-
iltonian H,'. The g~, centered at the center of the

hole, can be expressed exactly in terms of the
complete orthonormal set of hydrogenic wave func-
tions P„, i. e. ,

(2. 31)

energy of the hole due to its own ionic-polarization
field. The second term is the interaction energy
between the electron and the phonon system and is
exactly the same as that in the lattice-polaron the-
ory of Pekar if the electronic wave function in pk is
approximated simply by a hydrogenic wave func-
tion. ' Hence the unperturbed states stated above
are just those in the Hartree-type approximation
and may be calculated using a self-consistent-field
method.

Suppose e~ in Eq. (2. 29) is nearly n-fold degen-
erate. Let the n unperturbed electronic states g&

irvolved in this degeneracy be g„g2, . .. ,
These states are supposed to be chosen such that
they are orthogonal to each other and hence the un-
perturbed states (; I

~ ~ n„~ ~ ) belonging to an elec-
tron state i and those belonging to another electron
state are orthogonal to one another. However,
the phonon state for the electronic state g; and
that for another electronic state (~' are, in gen-
eral, not orthonormal. This is because the Ck
and Ck~ used to express the phonon system in the
Hamiltonian (C„Cp@~~ is the Hamiltonian of a lat-
tice harmonic oscillator of frequency (u„) are elec-
tron-state dependent through the electron-state de-
pendence of pp, as is indicated by Eq. (2. 17). lt is
then seen that the difference between the Cf for g,.

and that for g;. is eventually the difference between

pp for g, and that for (~i, corresponding essentially
to the discrepancy between the equilibrium position
of the lattice harmonic oscillator of frequency &„
for the electronic state g; and that for the electron-
ic sta'te g~ ~ ~

When the electronic states g, and g;. are nearly
degenerate, however, the pp for g~ is approximate-
ly the same as that for g;.. The reason for this is
the following. For g; given by Eq. (2. 31), pf ac-
tually takes the form

(2. 34)

—(p) &(,. Ie'"'Iy,. &.+ c.c. )]+En, m~, ,
k

(2. 32)

where the subscript 0 means the integration is to
be taken over the outside of the spherical region
of radius R, centered at the center of the hole.

When Rp approaches zero, the EI& becomes that
in the usual Hartree-type approximation, i.e. ,

-Z ' +En'(o, . (2. 33)I V, I'
k 0 k

As mentioned earlier, the third term is the self-

~0

This contains two types of integrals, (P„ie"'1$„)
and (P„Ie'"'I P&), for which ge g. The latter is
small compared to the former for small wave vec-
tor k. The wave vector k involved in the present
problem is effectively small, since the contribution
from the electron-phonon interaction is mainly due
to the interaction of the electron with phonons of
small wave vector k [cf. the coupling constant given
by Eq. (2. 10)]. The main part of pf, is thus g„I C„I
x($„ I e.'""

I &f&„), which is approximately the same for
the nearly degenerate electronic states considered.
Consequently we shall approximate the phonon
Hamiltonian in Eq. (2. 26) as the same for all n un-

perturbed electronic states g, associated with the
degeneracy of the unperturbed electronic energy &;
in making the correction due to HI. Thus the pho-
non states belonging to the unperturbed electronic
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state (j), are not only orthonormal to each other
among themselves, but are also orthonormal to the
phonon states belonging to the other unperturbed
electronic states, being n-fold degenerate with the
electronic state (j), .

We are now in the position to construct wave
functions for the above case. The perturbation HI
operating on the unperturbed states (j& I 'n» ' )
produces all states with one more or one less pho-
non than the unperturbed states. Therefore, a
reasonable wave function for the total Hamiltonian,
Eq. (2. 26), may be written in the form

a, +2 S(» C»+2 T&P, C» (l I

~ ~ ll» ~ ~ ),
l 1 (» )4 (2 35)

where a„S,k, and T, k denote, respectively, the
amplitudes of the states g, I

~ ~ ~ n» ~ ~ ), C„III, I

n» ), and C»$& I n» ~
& in the combination of

these states. These amplitudes satisfy the relation

~ 1~i I'+~ ISl»l' (n»+1)+~
I
T('I' n» =1,

l 1 »» (2
which was obtained from the normalization of 4
with the aid of

c.
l

"~ "&=-(~+1) '
I

"~+1 "&

rr" Z «rrr C C +«r) rr = «rr (2. 37)

and taking the scalar product of the state
( n» ~

I III, with the resulting equation, we have

c„l n ) =(n, )'~
I

n —1

Substituting the above 4 into the wave equation of
the total Hamiltonian, i. e. ,

I &» I' (0& lx(r) I (jl& ())» lx(r) I 6&X tl»+ 1 + EP n$

i=1, 2, . . . , n . (2. 41)

These equations can be rearranged in the form

Z (Illl —E5(l)al ——0,
5=1

where

i=1 2 n (2. 42)

I 1 I (Ij'l lx(r) Ig &((j) Ix(r) I)II»&

k EJ + AQ)p —E0

I 1»l'(y, IX(r) I v(&*(V, IX(r) le, & „~)
E& —K(d» —E n, I.]

(2. 43)
Equation (2. 42) represents a set of homogeneous
equations in the combination coefficients a, . The
corresponding secular equation to determine eigen-
energies E is

(2. 44)

Thus the combination coefficients a in the trial
wave function (2. 35) may be determined by solving
Eqs. (2.42) and (2. 36) for the energies given by
Eq. (2. 44)

If the n states are nondegenerate with unper-
turbed electronic energy levels widely spaced com-
pared to the shift due to the perturbation, i.e. , for
E close to EP, the nondiagonal elements in Eq.
(2. 44) become negligible compared to those in the
degenerate case. Thus, for the nondegenerate
case with E close to Eo„ i. e. , E = E, + hE, Eq.
(2. 44) leads to

E() gg I &»I l(lj)l lx(r)jjj),& I

0 0 B» +E
(d,' —E)a;+ZZ [S~„V»((j),IX(r) I g, &(n»+1)

+ T» v»(y& Ix(r)
I g&& &»] = o, (2. 38)

I rrr I I(4r l«(F) II}r}I' „)E~ —Ko» —El

where E; is the unperturbed eigenenergy given by
Eq. (2. 32) and the summation over j is to be taken
over all unperturbed electronic states associated
w'ith the nearly n-fold degenerate energy level &, .
In order to determine S,„", we take the scalar prod-
uct of the state ( ~ ~ n» ~ ~ I C»(j), with Eq. (2. 37) to
obtain the equation

(E, + jlp}„-E) S,» 4-g a& V» ((j)&
I
X(r)

I )1},& = 0 .
(2. 39)

Similarly, taking the scalar product of the state
( ~ ~ n ~ ~ ~

I Ct(j, with Eq. (2. 3V) yields for T,

(E,. —5&p —E) T,„-+Z az V»(g, I
X(r)

I |jl& = 0 .
(2.4o)

Substituting S,„from Eq. (2. 39) and T„ from Eq.
(2. 40) into Eq. (2. 38) leads to a set of equations

(Eo E gp I T»j'(ll lx(r) l(j)l&()j'l lx(r) lpga&E; —E a, —
0

Jrl » Ey + AQ)p —E

The second term in this equation is nothing more
than the energy correction due to the perturbation
HI given by second-order nondegenerate perturba-
tion theory. The corresponding wave function is

++ V,*(y,. lX(r) ly, &*
i k EO+ j~ EO kj k j

which was obtained from Eq. (2. 35) using S,» and
T,„-, found, respectiv. ely, from Eqs. (2. 39) and
(2. 40) for the nondegenerate case in which a,—-1
and a; = 0 for j 4 j. However, it should be noted that
in this nondegenerate case the approximation of pk
being independent of the electronic state used for
the phonon Hamiltonian will introduce an error
larger than in the degenerate case.

Nevertheless, it can be concluded from Eqs.
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(2. 45) and (2. 46) that when I E&~ —E~o I is very large
compared to the energy of a single phonon so that
l(g; IX(r) I (,.) I is small, the second term in each
of these equations is very small so that E and +
approach the Hartree-type results E, and

n~ ~ ~ ~ ), respectively.

III. RELAXED EXCITED STATES OF F CENTER

In this section we apply the method developed in
Sec. II to study the relaxed excited states associ-
ated with the 2s and 2p states for the F center in
a typical alkali halide such as KCl. -

A. Effective Hamiltonian

As was mentioned in Sec. II I, the V(r) in the
electronic Hamiltonian H„give nby Eq. (2. 8), is
the interaction of the electron with a halogen ion
at the origin of the position vectors for an F center
in an alkali halide. Hence, for the F center this
V(r) -=Vo(r) + v includes both a polarization potential
energy v—= —

I vl and Vo(r) which is V(r) when the
halogen ion just mentioned above is at its equilib-
rium position and its core and valence electrons
are in the ground state. This Uo(r) is the same as
V(r —0) in the second term of Eg. (2. 8), g V(r-R o)
being the interaction of the electron with all the
ions making up the perfect alkali halide [see the
discussion following Eg. (2. I)].

We now write the sum of the first three terms
in H„Eg. (2. 8), as

', +P V(r-H. ,)-V(~)
m

= p
2

1 P
2

2m
+ g v(r-H o) —vo(r)+ IvI —

o ~o
2m

(3. 1)
where the last term on the right-hand side is the
mass correction term and combines with p /2m to
give p /2m*. As in the semicontinuum-model cal-
culation of the F center, ' we write the sum of the
first three terms on the right-hand side of Eq.
(3. 1), ho say, as

2
@0

2m
Me

d
for r&R

p e= Eo+ fOrr~ RML ~
2mb r (S. 2b)

Here R„L is the Mott-Littleton radius for the neg-
ative-ion vacancy and is approximately 0.85d0 for
KCl, d0 being the distance between the center of
the negative-ion vacancy and its first nearest
neighbors. M is the Madelung constant and d is
the distance between any two nearest ions in the
crystal. -E0 is the energy of the lowest state of the
conduction band which is not corrected for the in-
fluence of the electronic and ionic polarizations
and mb is the corresponding electronic band mass.
The approximation (3. 2a), based on the point-ion
model of the lattice, may be understood rather
easily from the point of view of pseudopotential
theory. " The approximation (3. 2b), amounting to
the effective-mass approximation, can be justified
reasonably well by the pseudopotential theory of
impurity states developed by Hermanson and
Phillips. ' According to this theory the effective-
mass approximation can also hold for r not very
large. This is because for r not very large the
negative correction to the electronic kinetic energy
in the effective mass approximation is largely can-
celed by a positive correction to the Coulombic po-
tential energy resulting from the orthogonality of
the electronic wave function to the ion-core states
of the impurity (the massive hole —Cl for the case
of an E center as mentioned in Sec. II). Note that
in Eqs. (3.2) there is a discontinuity oi the kinetic-
energy operator at R«. In reality, the possible
error resulting from such a discontinuity might not
be very significant when the trapped electron spends
most of its time either outside the negative-ion
vacancy, as in the case of relaxed excited states of
the E center considered, or inside the vacancy.
Thus we shall omit the correction to this discon-
tinuity in this work.

On considering both Eqs. (3. 1) and (3. 2), we
write, from Eq. (2. 8), the electronic Hamiltonian
H, for the F center as

P Me e' 2,""'"'" sing,
+ I~I+ I

vl+ I — — — d~ —~~E..2m+ d
(S.Sa)

2m*
b

e e' 2 ""'"'" sing,
r m p,

for r&RML, (3.Sb)

Here, as in the semicontinuum model, the energy
of the lowest state of the conduction band E0 plus
the electronic self-energy due to the electronic
polarization in H, for r & R«was dropped by adding

the electron affinity Iy I to Eq. (3.3a). This brings
the zero of energy to the bottom of the conduction
band which is corrected for the influence of the
electronic polarization, but not for influence of the



ionic polarization. Therefore l X I can be set as
I y I = I x I,» —Q.o @(d, where l x I,» is the observed
I X I including both the electronic- and ionic-polar-
ization effects. —cyoS~ is the energy shift of the
bottom of tbe conduction band (i. e. , the electronic
self-energy) due to the ionic-polarization effect and
is about 0. ~. eV for KCl in the low-temperature
ran- e (for which the coupling constant o.o = 3.90 and
the phonon energy k&u is about 0. 026 eV). yq*, is the
electronic band mass corrected for the influence of
the electronic polarization and should be regarded
as the so-called band mass in the work of Hodby iv

because the band mass determined by him includes
the elec.ronic -polarization effect.

It is very difficult to find a reasonable form for
lv I to use in Eqs. (3.3). According to tbe cal-
culation of the quantum-defect data for free atoms
and ions, ' ' however, I pl may be written as
n,e /2x' for r greater than the ion-core radius,
where o., is tbe polarizability of the halogen ion
and is-3. 10 cm for Cl . ' ' For small x, the
orthogonality of the electronic wave function to the
ion-core states of the halogen ion becomes impor-
tant and hence the contribution from I ~ I to the
total energy will be reduced by the effect of such
an orthogonality. This amounts to ! ~l for small
r being effectively small. Consequently we may
approximate I vl by

the electron is outside the vacancy. This term, as
mentioned in the semicontinuum calculation, was
added as the electronic potential due to the static
distortion of the lattice. In reality such a correc-
tion also should be made for the massive hole when
one retains the lattice part of the Hamiltonian for
x& RM„as for x& RM~, since the change in energy
of the total system during the optical transitions is
due not only to the change of the electronic energy
but also to the change of the lattice energy. Such
a correction for the massive hole is similar to that
for the electron in magnitude but opposite in sign.
In the following we keep the lattice part of the Ham-
iltonian as the same for both z& R«and g & R„L
and omit the corrections due to the static distortion
of the first nearest neighbors of the vacancy.

B. Hartree-Type Results

Taking H given by Eqs. (3. 5) as the total Hamil-
tonian and applying the results derived in Sec. II,
we may write from Eq. (2. 32) the energy for the
relaxed excited states of the I center in the Har-
tree-type approximation as

!V I'
E;=&&; IH, I&;&+~ —-~"—

—
pg pk pi"pf +pi~+ pf~ 1 ~ (3.6)

where p„- is given by

Ivl= 0 fore& R (3.7)

H = Hq+ Q ap aj" 8(dy
k

for && RML g (3. 5a)

where H, is given by Eq. (3. 3a), and

H = H, + Q a"„afh &u„+ Q ( V~ af e'"'+ c. c. )

= n, e /2x fore&R, (3.4)

where R is the ion-core radius of the halogen ion
and is about 1.81 A. In the following we shall
use this form of I vl in Eqs, (3.3) without consid-
ering the crystal effect on it. This may not be
very serious in an order-of-magnitude numerical
calculation of the present type.

Accordingly, we write, from Eq. (2. 11), the
total Hamiltonian for the E center as

y, = (o'/m)'+ (1 —et~)e

P„= ( I3'/m)' ' re "sin6 cosP,

p, = ( P"/rr) xe "sin6' sing,

Q, = ( P'/7t) re "cos&,

(3.6)

(3.9)

(3. 10)

(3. 11)

We remark that in Eq, (3.6), the energy of the pho-
non system Z;n, her, is omitted, since for tbe ap-
proximations being used this energy remains un-
changed during the optical transition at a given tem-
perature.

Since the relaxed excited states considered here
are primarily associated with 2p and 2s states, we
approximate g; by a linear combination of hydro-
genic 2s, 2px, 2py„and 2pg wave functions:

—Q(Vy aj+C. C. ) for t&RMLq (3. 5b)
k

'tII=S~ X~gq Z . (3. 12)
where H, is given by Eq. (3.3b).

In the usual semicontinuum calculation for large-
orbit states, the term

Here the C„are the combination coefficients. For
this g, , pp and p-„are

and

PR = ~ q CqPj"f,,~q

is added to Eq. (3.3a), where 5 is the percent of
the static displacement of one of the first nearest
neighbors (six positive iona) of the negative-ion
vacancy from its original equilibrium position when

respectively, where

p', .e
=

& 0, I

e'"'
I 0 e&

(3. 13)
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(3. 14)pl, .~=&a, I""
I e &. .

Correspondingly, Eq. (3.6) can be written as

zo, = ~ Ic„ I'& y„ I

II

louin zone into the 0 integral and replacing the zone
by a sphere of radius Ik„ I (equal to m/d for NaC1-
type crystals), we have the following nonvanishing

Iss,-= Is..&y
= I-,-=- Ispo

—I„„. —I„„.~ ) + Q (C„*C J'„+c.c. )
n. y 0

IV I'

yy,ss, ss =
p 0 ~

Isx, sx = Is@,sy
= Isz, sz = Isp j t

Ixx xx = Iyy 3)y
= Izz zz = Ipo ~

Ixx,yy
= Iyy, zz = Izz, xx = I~ g

(3. 18)

in which

(3.16)

p ~ I 1/'~ I I
~fjgC ~

@ Pk.,f1' s (s. 1v)

and I„&~„~, is given by Eq. (3. 16) with pf „,~,

Transforming the sum over k in the first Bril-

3pp yxv /zygo. z zxy zx p2

In the same manner, the nonvanishing I„& „.~. are
just those obtained from Eqs. (S. 18) by replacing
I„~ „.~. with I„& „.&. . Further, the nonvanishing J„~
are found to be

(3.19)
In order to complete the simplification in sub-
scripts, we hereafter set I„„—=I„, I„„=—I„,and
J, ,-=J, . Applying the above relations to Eq.
(3. 15) reduces Eo, to

c„
I &g I

II.
I y.&+c',(I..&y,. I y,. &. -aI'..)+(c'„+c,'+c'.)'(I,o&y; I y;&. —2I )

2

+2C, (C„+C,+C,)[(I~O+2I~g)&(; I g;&, I~0 I~ O -4I~-g]+ac-, J, +2( „C+C, +C) J~—

(3. 20)

Note that in this equation terms containing C„C„
+C, C, +C, C„do not appear because of the result
I~&+ 2I» -I»=0. This result is exactly true when
the first Brillouin zone is a sphere. The form of
E; given by Eq. (S. 20) and the normalization of P;
lead to one of g,. being

4i = a4. + b(~i%. + ~24, + ~sf.) (s. 21)

where the n, and a and 5 satisfy, respectively, the
relations

(2 = bQ, —a(&gQ, + o'2Qp+ o'3$,) p

4s = A4. + &ale+ P34. ~

44 = »0"+ ra4~+ ran.
where the P and y satisfy the relations

(3. 24)

(s. as)

(s. 26)

I

the rule that eigenfunctions of a Hamiltonian are
orthogonal to one another and choose the following
functions as the wave functions for these relaxed
states:

3

Z cd&=1 and b=(1 —a) ~ (3. 22)
3 3

Z P,'=Fr,'=1, (s. av)

The corresponding energy Ej is

~l ="&e. I
~.

I ~.&+ b'& ~. I
~.

I ~.&

3 3 3

& ~; e;=& P,r;= & r, ~;=0, (s. as)

+a (I..&ti It~&. —2I..)+b (I»&ti Iti&. —2Ito)

+ aa'b'[(I„, + 2I„,) &q, I q, &, I,'„I',„-4I',„]--
+2a J, +2b J~ —(e /e*d)(gq IPq&» (3. 23)

which is obtained from Eq. (S.20) by replacing g, ,
C„C„,C„and C, by p&, a, ba&, ba.2, and bn3,
respectively.

As regards the wave functions of the other re-
laxed excited states, associated with the hydro-
genic 2s, 2px, 2py, and 2pz functions, we follow i& r —= i(k„x+0,y+ k, z), (s. 29)

so that („g2, Ps, and P4 are orthogonal to each
other. Note that the mixing of hydrogenic 2s, 2px,
2py, and 2pz states in the relaxed excited states
considered above is mainly due to the terms capa-
ble of mixing s and p states in the expansion of the
exponential function in the effective electron-pho-
non interaction, i. e. , the fourth term of Eq. (2. 20).
The second term in that expression, being of the
fol m
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is one such term. The corresponding force has
no preferred direction. Hence, if the 2s state can
mix with the 2p state via the electron-phonon inter-
action, it will mix with all three 2p states as indi-
cated in Eq. (3. 21}for P, and in Eq. (3. 24) for g2.
As regards P, and (4, because of the requirement
that P~ and P4 be orthogonal to P~ and P~, g3 and (4
should be written, respectively, as Eqs. (3.25) and

(S. 26) in which the 2s component is not present.
This is only true when one of the P can be approxi-
mated by Eq. (3.21).

The energy for the state $3 is obtained from Eq.
(3. 23) by simply interchanging a and b The. en-
ergy expressions for $3 and for (4 are obtained
from Eq. (3. 23) by putting a = 0 and b = 1. Hence
the $3 and g4 states are degenerate. This result is
valid in the approximation of replacing the first
Brillouin zone by a sphere. If this approximation
were not made, terms containing C„C,+C, C, +C,C„
would also appear in Eq. (3. 20) [see the discussion
following Eq. (3. 20)], so that the p, do not become
those given by Eqs. (S.21) and (3. 24)-(3. 26). Con-
sequently, the coInbination coefficients of the three
2p states could have particular values, correspond-
ing to the splitting of 2p states. This is analogous
to the dynamic Jahn-Teller effect on the p states
due to an electron-phonon interaction having a sym-
metry like the terms k„k, xy, k, k, yz, and k, k„zx
in the expansion of the exponential function in the
fourth term of Eq. (2. 20). However, since replac-
ing the first Brillouin zone by a sphere is reason-
able for NaC1-type crystals (where the first Bril-
louin zone is a truncated octahedron), the splitting
among 2p states themselves, if any, should be ex-
pected to be very small for these crystals.

We use the values of the constants listed in
Tables I and II and minimize E& expressed by Eq.
(3. 23}with respect to the variational parameters
n and P in the wave functions P and the combination
coefficient a to determine the lowest relaxed excited
state of the E center in KCl. It is found that the
lowest of the above-mentioned four relaxed excited
states is („with a = 0. 91 in the low-temperature
range. The value of a and the corresponding values
for o., P, and E~ are summarized in Table II. The
energies for the other relaxed excited states, cal-
culated with a, n, and P determined from the cal-
culation of Eo~, are also summarized in this table.
Note that the values of the energy levels in Table
II and the following tables are measured from the
zero of energy in this calculation. This zero of
energy, as will be seen later, is o.off ~+ (8 /e*d)
above the thermally highest bound state (or the
lowest state of the ionized states, corresponding
to the case in which the electronic wave function
is completely diffused).

We now comment on the values used for some of
the constants used herein. As is seen in Tables I

TABLE I. Input data for the numerical calculation for
KCl (see text for details).

&ex
(ev)

IX I

(ev)

2. 13 0.48" 7.8

Reference 21. Reference 17.

0.398 1 74756c

'Ref erence 12.

C. Corrected Results

We shall now consider the correction due to the
perturbation H, , Eq. (2. 28), which was omitted
in the above Hartree-type calculation of the relaxed
excited states of the E center. The procedure is
to solve Eq. (2. 42) for the relaxed excited states
of interest taking the Hartree-type results obtained
in Sec. III B as the unperturbed results in the pres-
ent theory.

The calculated values listed in Table II for the
variational parameters in the wave functions imply
that the wave functions (, of the present unper-
turbed states are almost entirely outside the spher-
ical region of radius RML. Hence in solving Eq.
(2. 42) for the relaxed excited states in question we
shall approximate (P, IX(r) Ig,.) =0 and (P, I $&)„=0
for simplicity.

For the four Hartree-type solutions obtained in
Sec. 1118, viz. , Pq, Pz, $3, and $4, the matrix ele-
ments other than A», @$2) Pgp$ p Appp f/33 and h44 are
calculated to be zero using relations like those
given in Eqs. (3. 18) and (3. 19). As a result, the
equations expressed by Eq. (2.42) become

and II, the present numerical calculation omits the
effect of the temperature dependence of crystal
constants other than e, and d, since (a) no accurate
data are available for this effect, and (b) this tem-
perature dependence is expected to be small com-
pared to that of &, and d. The Mott-Littleton ra-
dius RML for the negative-ion vacancy involved in
the calculation of the first two terms in Eq. (3. 23)
was set equal to 0. 85d, as in the case of the I"-
center absorption. This 0. 85d was also used for
Ro, R~ being involved in the terms associated with
the interactions of the electron and the hole with
the phonons in Eq. (3. 23) for a reason stated after
Eq. (2. 10). This choice for Ro probably does not
introduce a significant error, since the contribu-
tion from the interaction between the electron-hole
system and the phonons to the energy is found to be
not very sensitive to the choice of Ro. The value of
Iy I, listed in Table I, was obtained from ly I

= Iy I, —cog(u using I y I,b, = 0. 5 eV for KC1 [see
the discussion following Eq. (S. Sb)]. 1n re»ty,
the I X l,~, for KCl reported in Ref. 25 is 0. 6 eV,
whereas that reported in Ref. 26 is 0. 3 eV. We
compromise and set I X I,~ equal to 0. 5 eV for KCl.
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TABLE II. Input data, which are relatively strongly temperature dependent, for the numerical calculation, the
numerical results of variational parameters (e, p, and a), energy levels of the relaxed excited states of the I'
center in the Hartree-type calculation, and the self-energies of the hole and electron due to the ionic polarization
for KCl. The superscript a refers to data of the nearest-neighbor distance d of Ref. 22, the superscript b to
data of the static dielectric constant c, of Ref. 23, and the superscript c to data of the phonon energy Ice of Ref. 24.

bEs

4 3.122 4.496
50 3.123 4.501

100 3.135 4.554

2. 591
2.593
2.608

0.210
0.210
0.209

IQJ G
(iO-' eV) (A-') (A-')

0.160
0.160
0.160

@0

(.v)
@0

(.v)

0.91 —1.3618 —1.3260
0.91 —1.3624 —1.3266
0.91 —1.3713 —1.3357

EO

(eV)

—1.3051
—1.3058
—1.3148

2

(eV)

—l. 1395
—l. 1403
—1.1511

@08
(eV)

—0.1016
—0.1018
—0.1031

F(z', ) =-
E, +hco -E E& —hw -E

(3.3la)

A=a b h&u(I„+I»,0 —2I,»Io)+(a —b ) h+I,~&,

(s. slb)
(3. 31c)S=a 8(dI,&q+b h(dI&3,

[E —Eg+ F(zq)A+ 2F(E~)B]a)+2F(zq)Da2 0, ——

(s. soa, )
2F(E»)Daq+ [E —E2+ F(E&)A + 2F(E&)C ja2 = 0,

(3. 30b)
[Z E,'+ F(Z—',)B+F(Z',)C+ F(z,')@~I„]a,= O

(S. Soc)
for the relaxed excited states under study. In these
equations, p=3 or 4,

C=-b A~I,~q+a ScuI~z, (3. Sld)

D = aha &a(I,»,q
—I»,q ), (3.Sle)

where I„I „.&. are those given by Eqs. (3. 16) and
(S. 18) with pk «- pf» „, and pk „,,.-p-„*„,, , respec
tively. Here, for simplicity, we ignore the wave-
vector dependence of the phonon frequency. This
omission is not serious because the optical pho-
nons involved are weakly wave-vector dependent.
~s is the average number of phonons per mode at
the temperature T.

Now, the eigenenergies of interest correspond-
ing to 4 in Eq. (2, 35) can be determined numeri-
cally on an electronic computer by solving the sec-
ular equation built up from Eqs. (S.Soa) and
(S. 30b), i.e. ,

E —Ei+ F(E2)A+ 2F(zq)B

2F(Z,')D

2F(E», )D

E —Zg+ F(zg)A+ 2F(E», )C
(S. 32)

and the equation

z z,'+ F(z—,')B+F'(z,')c+F(z,')n~I„,= o,
(3. 33)

which is obtained from Eq. (3.Soc). We note that
Eq. (3. 32) has six roots at T = 0 and ten roots at
To 0, whereas Eq. (3. 33) has four roots at T= 0
and seven roots at T & 0. ' Further, E obtained
from Eq. (3. 33) is doubly degenerate because this
equation is the same for p = 3 and p = 4.

It is then seen that for 4 corresponding to E, ob™
tained from Eq. (3. 32), a3 and a~ in Eq. (2. 35) are
zero. Hence its normalization leads, from Eq.
(2. 36), to

&~ l~& =K., & e. I ~.&+K..& e..I e,.&

+&»&e»ly .8&+K"&e. I
e»&=»

where»t»~ = o's»t»„+ o'~P, + o-'3Q„g»q= $3, and Q»» (4. =

The coefficients K, „K~, and K~~ Me given by

K, = a [aq+a3G(zq)A]+ b [as+as G(zz)A],
(S.35a)

Kq = b [ag+a2G(zg)A]+a [ag+ag G(zg)A],
(S.35b)
(3. 35c)K», »» K», ), ——G(zq)[a~ B—- + 2ag amD+ a2C],

in which

K, = [a G(E~)B+b G(E3)C]a~,

K = [b G(E )B+a G(E )C]a

K»,»3(or K», y) = a~
2

K»,„(or Kq»») = G(zp)h»dI»2',

(S.S6a)

(s. 36b)

(3.36c)

where p = 3 (or 4). Application of the usual nor-
malization condition for the»t» in Eq. (3. 34) yields

0 n+1 n

(E; + h'v E) (E;-—h &u —E)
(s. s5d)

Whereas for 0 corresponding to E obtained from
Eq. (3. 33), since the a~, a~, and a4 (or as) are
zero, the coefficients in its normalization equation
similar to Eq, (S. 34) are
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TABLE III. Results for the lowest relaxed excited
state of the J' center in KCl, corrected for the influence
of an interaction being neglected in the Hartree-type cal-
culation, H~. The listed values for K's are obtained from
Eq. (3.35) by using the solutions of Eg. (3.30), i. e. ,
a~ and a2.

T E
('K) (eV) . a~ g2 K,

4 —1.3759 0.927 0.065 0.719 0.185
50 —1.3767 0.924 0. 083 0.715 0.187

100 —1.3877 0.906 0.079 0.690 0.194

Kpa ——Kpy

0.048
0.049
0.058

K, ~ (K~ + K~~+ K») = 1. Hence the ratio K,/(K~,
+K~~+K») may be interpreted as the ratio of the
mixing between the single 2s state and the triplet
of 2p states. Having determined the eigenenergies,
the a; can be determined by solving Eqs. (3.30)
and (3.34) and hence the K may be determined by
Eqs. (3. 35) and (3.36).

The energies, a;, and K thus determined for the
lowest relaxed excited state 4& are summarized in
Table III. We find that the change in the mixing co-
efficients of the 2s and 2p states due to H~ is sig-
nificant and that the state 4& (when including the
effect of H~) has less 2s component (- V0%) than
that of the state g& (the lowest relaxed excited state
in the Hartree-type approximation, containing- 83% 2s character). Further, the 2s component
in 4& decreases slowly with increasing tempera-
ture, as is seen from the value of K, in Table III.
This temperature dependence is essentially due to
the phonon number n, coming in via H~. This can
be seen by varying only n from its 100 to its 4'K
value, causing K, to change from 0. 690 to 0.717
instead of 0.719. However, the effect of H, on the
energy levels is not very significant, being rela-
tively much less than its effect on the mixing co-
efficients of the 2s and 2p components (cf. the the-
oretical values in Tables II and III).

The second-lowest relaxed excited state, say Ca,
is found to lie about 0. 025 eV above 4&. This 42
mainly consists of the two states ga I

. n„) and
n„. ). These two states are strongly

mixed because their unperturbed energies are ap-
proximately the same. The corresponding K are
calculated to be K, =0. 52, K~~=0. 44, and K~&=K»
=0.02 at 4'K.

It is found that the higher relaxed excited states,
4' other than the above 0 ~ and 4~, also contain both
2s and 2p components. However, most of them
contain more of the 2p component than the 2s com-
ponent. The probability of finding the present sys-
tem in these higher states is very small in the low-
temperature range considered in this work. Hence
we shall not discuss further these higher relaxed
excited states.

In order to see the position of the zero of energy
in this calculation, we now calculate the energy of
the thermally highest bound state of the present
system. The highest bound state corresponds to
the case in which the electronic wave function is
completely diffused so that the corresponding
p-„-0. Thus, in this limit, the operator C„-, de-
fined by Eq. (2. 16), approaches Af, and the un-
perturbed wave equations, given by Eqs. (2. 29)
and (2. 30), and H, , given by Eq. (2. 28), allbe-
come those of the usual perturbation theory [treat-
ing

lV l'
H, + V„(x)—Z ' — + Z A&uA„A„

&co

~ %

as the unperturbed Hamiltonian and g~(V„A~ e'"'
+ c.c. ) as a perturbationj. Correspondingly, the
energy expressed by Eq. (2. 45) approaches that of
the usual perturbation theory, i. e. , E„=—&o@&
—e'/e*d at very low temperatures. ' This means
that the zero of the energy is o08&u+e /z *d= l. 24
eV above the highest bound state. Thus the energy
difference between the highest bound state and the
lowest relaxed excited state (the calculated energy
of which is, as seen in Table III, E= —l. 38 eV) is
l E„—El = 0. 14 eV in the low-temperature range for
the F center in KCl, as compa, ed with experimen-
tal value 0. 15 eV being the ionization energy of
the excited E center in the corresponding crystal.

Finally, the picture that emerges for the lowest
relaxed excited state of interest is that this state
is about 0. 14 eV below the highest bound state and
contains - 70% 2s component and - 30/o 2p com-
ponent. This percentage is within the range pre-
dicted using the hydrogenic model (for the E center)
and some experimental data in Refs. 5 and 6, A
further discussion of the calculated results for the
relaxed excited states in relation to predicted re-
sults of these references will be given in Sec. V.

IV. EMISSION AND RADIATIVE I.IFETIME OF CENTER

In this section we first calculate the 1s-like state
involved in the E-center emission in a crystal such
as KCl. We then examine the lifetime of the ex-
cited E center, associated with its radiative decays
from excited states to the ls-like state. Hereafter
we call this 1s-like state simply the relaxed 1s
state.

A. Relaxed 1s State and F-Emission Energy

During the radiative decays of the E center the
effect of the lattice on the E center may be expected
to remain virtually unchanged, since these decays
(i. e. , the spontaneous optical transitions giving
rise to the E emission) satisfy the Franck-Condon
principle. Hence the effective electronic Hamilto-
nian used for the relaxed excited states can also be
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taken as the effective Hamiltonian for the relaxed 1s
state. This effective Hamiltonian inthe Hartree-type
approximation is H,«, =(.. . .n„... I HI. . .n„. . . ),
where H is given by Eq. (2. 26) and I. . n~.. . .&

is one of a set of the eigenfunctions of the pho-
non system when the electron is in the excited
state P, . Thus, for corrected wave functions
given by Eq. (2. 35), the effective electronic Hamil-
tonian may be written as H, « = g,. n, H,«, , where
n, is a combination coefficient introduced to weight
the Hartree-type potential in H,«, , that is, the
terms containing p„- and pg in Eq. (2. 2V). For the
relaxed excited states of the F center considered
here, the Hartree-type potential, and thereby
H,«, , is, in fact, weakly electron-state dependent
and therefore H,«may be simply approximated by
H ff H f f ' This effective Hamiltonian is, from
Eq. (2. ZS),

H =-& ~ ~ n ~ ~ IH I
~ ~ ~ n ~ ) =H'+&n hereff

(4. 1)
For the relaxed states of the I' center, H, is just
H, given by Eq. (3.3a.) for x&RM„and is given by
Eq. (2. 2V) with H, having the form of Eq. (3.3b)
for x& R„L. Actually, this effective Hamiltonian
is exactly the same as that for the relaxed excited
state g, in the Hartree-type approximation and
does not include the effect of HI . In view of the
fact that the correction due to H~ to the energy of
the relaxed excited state in the Hartree-type ap-
proximation is very small, we expect the effect of
HI on the relaxed 1s state to be small also.

Thus the energy of the relaxed ls state (q, (r) may
be calculated as

after the E emission, Eq. (4. 2) is no longer true.
This is because after the E emission is made, the
lattice will be affected by the Coulomb field of the
electron in.the 1s-like state rather than that in the
relaxed excited states and the pg is not the one in-
volved in the relaxed excited state.

As in the semicontinuum calculation, the Pz, in
Eq. (4. 2) may be chosen as

y„= (X'/Vv)'+ (1+Zr)e '", (4. 3)

where A is a variational parameter. This p„ is a
modified hydrogen 1s wave function. Substituting
the above-determined p„- for the lowest relaxed ex-
cited state and the above g~, into Eq. (4. 2) and then
minimizing Ej, with respect to the variational pa-
rameter X, we determine the relaxed 1s state cor-
responding to the lowest relaxed excited state for
the F center in KCl at T = 4, 50, and 100'K. The
resultant 1s energies and the corresponding X are
given in Table IV.

The corresponding F-emission energy E, de-
fined as the difference between the calculated en-
ergies of the lowest relaxed excited state and the
relaxed 1s state is also given in this table. It is
seen from the comparison of the calculated emis-
sion energy with the experimental value listed in
Table IV that the present calculation underesti-
mates the E-emission energy by about 14/0. This
error could arise mainly from the form of the
Hamiltonian used for the relaxed 1s state, since
the present Hamiltonian is more reasonable for
large-orbit electronic states than for small-orbit
electronic states such as the electronic state in
the relaxed 1s state of interest (see Sec. V for de-
tails). Hence, the calculated variation of the F-
emission energy with respect to temperature
agrees only qualitatively with the experimental
results (see Table IV).

+('-«)&&i. Ie'"'"
I yl ).

B. Radiative Lifetime

Following the basic theory of Ref. 30, we may
write the inverse of the radiative lifetime 7 of the
E center in its lowest relaxed excited state as

where the phonon energy gfn~h~, was omitted as in
the case of relaxed excited states for the reason
stated following Eq. (3.V). It should be noted that

1/~= j W,.(E)dZ,

where W„(E) is given by

(4. 4a)

(4. 4b)

Here r is the position vector of the E-center elec-
tron; Ib& and I a& are, respectively, the initial and
final states of the total system consisting of the
F-center electron and the phonons; E„and E, are,
respectively, the energies of the initial and final
states involved in the radiative decays. E is the

energy of the photon; ((...) ), stands for the
thermal average over the initial states I b& of the
radiative decays; c is the velocity of light and n
is the (real) index of refraction; and e,« is the
magnitude of the field effective in the radiative de-
cays if Eo is the average field in the crystal.
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TABLE IV. Calculated values of the v ari ation al
parameter A, in g~„ the energy of the rel axed 1s state
E~„ the emis s ion energy &,m, the squ are of the dipole
matrix element M&, the lifetime 7' multiplied by the
square of the local-field ratio, and experimental values
of emission energy and lifetime for the F center in KCl.
The superscripts a and b refer, respectively, to data of
B,efs. 29 and 6 Q) .

Ej. Zen Md
('K) (A" ) (eV) (eV) (~ )

4 0.89 -2 ~ 393 1 ~ 017 0 ~ 182
50 0 ~ 89 —2 ~ 392 1 ~ 016 0 ~ 182

100 0 ~ 89 —2 ~ 393 1 ~ 006 0 ~ 182

«ef f)'
Cp

(10 6 sec)

4.45
4.27
3.85

Eem, ex

(eV)

1 ~ 18
1~ 18
1~ 13

(10 sec)

0 ~ 72
0 ~ 69
0 ~ 55

In the present work the initial states I b) of the
radiative decays from the lowest relaxed excited
states of the I center are of the form, from Eq .
(2. 36),

4

1s)=2 s;+2s;„"c„.+Esse)s, ss.
(4 6)

Here C)o=- I
' ' n, . ) are the eigenfunctions of the

phonon system and form a complete orthonormal
set, as mentioned in Sec . II C . S;k and T,.-„are
given by

$';.a) P,' & q; I x(r) I r/);&+

E, +S(d-E
Z', a~ v„& q; I x(r") I q, &

Ei —5co —E0

(4. 6)

These are obtained from Eqs. (2. 3S) and (2.40),
respectively . The prime on the sum over j means
that j =i is to be excluded from the sum, because
( p, I X(r) I ());& was approximated to be zero in the
calculation of the relaxed excited states in Sec .
III C . For the lowest relaxed excited state, a3 and

a4 are zero and the values of a1 and a2, calculated
in Sec. III, are given in Table III. The final states
in this work are essentially approximated by

I a& = A. (r)4). (4. 6)

as is seen in Sec. IVA. Substituting Eqs. (4. 6)
and (4. 6) into W„(E) in Eq. (4. 4) and setting

I E, -E, I equal to the emission energy E, yields

x&6 Ir I(~&&~i. Ir It&& (4»)

Substitution of the complex conjugates of Eqs. (4. 6)
and (4. 7), and S» and T» obtained, respectively,
from Eqs. (4. 6) and (4. 7), into Eq. (4. 11), yields

R= Z a,*a,. +G(E,'. , E,')2 5 a,*a,Z
I V, I'

iy) q / k

"&s. 1x& ) ~s;)(s l@)
~

)s")

where

~&y; lr l~~&&(~. Ir IO~&

0 0 PL+1
( g, g

)= (Eo+@. E) (Eo+-q. -E)

n
(Eo -m" - E) (Eo m" -E).-

(4. 13)

The prime on the sum over q and that on the sum
over / mean that the former excludes q = i and the
latter excludes 3 =j . As mentioned above, for the
lowest relaxed excited state only a, and a2 are not
zero. Hence the ( in Eq. (4. 12) are those given

'

by Eqs. (3. 21) and (3. 24) in the present work.
When substituting these P into Eq. (4. 12), R can
be reduced to

R = M~(az b + ao a —2a~ a2 ab)

+M~ [(aa b G(Eg, Eg )+ ay a G(E2, E2)

—2azaoabG(Eo, E'))A+ 2G(E3, E3) F], (4. 14)

with F having the for m

~= «&+ 2a1 a2D+a2C,2 2 (4. iS)

The phonon wave functions C constitute a complete
set and hence g, I C, ) ( C, I in Eq. (4. 10) equals
unity. Considering this and an approximation used
earlier, i.e. , the C z are independent of electronic
excited states [cf. the discussion following Eq.
(2. 34)], we have after a straightforward calculation

s=L1afs, +Ls";;s,.;(«+))+E T";r, «,.).-
k

eef f 4„e Eem

&0 3~ c

where B is given by

(4. S) where A, 8, C, and D are those given in Eq. (3.31).
M, is the square of the dipole matrix element and
is given by

(4. 16)S;P C-~ 7 *;, kC~ 4~
iyj k k For the case in which the P, component in the

lowest relaxed excited state is far removed in en-
ergy from the other P; compared to a single pho-
non energy, i .e. , for the nondegenerate case, we
may replace E in Eqs. (4. 6) and (4. V) by E~ and
set a1 = 1 and a; = 0 for i 1, as was discussed in

«&s; I ~Is,.)&6. 1«ls;))) . (s )s)

«( s. 1(s,. + T s,; c'„- + T' s,„c„)1s,)-.-
k
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v, (~, IX{,) IA) c ~l ~ 4 (4 lv)E. -@~,-E,

and Eq. (4. 12) becomes

+ 2 Z G(E', , E,')Z fV, ['(y, /X(r)[y,.)
i(~1) ~(&1)

+ ( 8&
I
~&~)

I )~ & ') & &&;
I

~
I )i & & )i. I

~
I )~ &

(4. 18)

where G is given by Eq. (4. 13) with E-E) . Equa-
tion (4. 18) is to be regarded as that R in nondegen-
erate perturbation theory.

If we further treat P, and the other (I& in Eq.
(4. 18), respectively, as the hydrogenic 2s and 2p,
rather than those used in Sec. III, as in the usual
theoretical study of the mixing of the three 2p
states into the 2s state, then 8 can be reduced to

3M' gf I V, I'
I ( (t&, I

8'"'
I y, ) I

(E)', —E,')' 2mT

(4. 19)
where E~ and E, are the energies of the 2p and 2s
states, respectively, and z is the Boltzmann con-
stant. In deriving Eq. (4. 19) we have used
(P, I r I g~, ) = 0 and the relation

1

(
() o)), (2n+1)

Ep —E~(
(4. 20)

since the energy of a single phonon is small com-
pared to le —E I in the nondegenerate case.
2n+1 in Eq. (4. 20) equals coth(h&u/2zT). The cor-
responding I/~ is thus, from Eq. (4. 9):

(4. 21)

where vQ is the lifetime at T = 0. This result is
known as the inverse of the radiative lifetime in
the case of weak mixing. 3' In contrast, the inverse
of the radiative lifetime in the strong-mixing (or
nearly degenerate) case, as is seen in Eq. (4. 14),
consists of two terms; one of them depends upon
temperature implicitly and the other depends upon
temperature explicitly but is not proportional to
coth(m'(u/2g T).

It has been demonstrated in Ref. 32 that Eq.

Sec. II C. Now the corresponding total wave func-
tion is given by Eq. (2. 46) in general. Thus, in
this case, Eq. (4. 5) becomes

v,*(y, Ix(r) I q,.)*
g(a) I Ej'+@&de -E&

(4. 21) with I/ v() = 1.2 x 10 sec ' and g~ = 0. 014 eV
can fit the observed variation of I/~ with respect to
T for the J' center in KCl. These values of 1/7O
and 5& differ significantly from the true values and
hence such a good fit cannot be interpreted to imply
that Eq. (4. 21) is actually valid with the conclusion
that the mixing of the 2s and 2p states in the F cen-
ter in a typical alkali halide is weak.

The values of M, calculated from Eq. (4. 16) and
~(c,«/e, )' calculated from Eq. (4. 9) with R having
the form of Eq (4.. 14) using the above-obtained re-
sults are given in Table Drt. A reasonable value
for the ratio e,«/&0 to use in the numerical calcula-
tion of 7 is not readily available. If this ratio is
replaced, as a rough estimate, by the so-called
I.orentz local-field ratio 1+ —,'(n —1), then the
value of i is that of v(e,«/eo) given in Table IV
divided by the square of the Lorentz local-field
ratio, i.e. , = 1.9. The radiative lifetime thus cal-
culated is a factor of 3 larger than the experimen-
tal value listed in Table IV. This discrepancy is
largely due to the insufficient accuracy of the the-
oretical results for E, and the wave function of the
relaxed 1s state.

V. SUMMARY AND DISCUSSION

A method of calculating the nearly degenerate
states of a bound lattice polaron has been developed
by taking the Hartree-type Hamiltonian as the un-
perturbed Hamiltonian and the interaction omitted
in the Hartree-type approximation as a small per-
turbation. This method was then applied to in-
vestigate the relaxed excited states associated with
the E emission in KCl. In this application, the
electronic part of the Hamiltonian was treated as
in the usual semicontinuum-model calculation but
the electronic polarization was not. This latter
effect was included following the procedure of Ref.
V. The calculated results for the relaxed excited
states lead to the following conclusions: (i) The
lowest relaxed excited state is about 0. 14 eV be-
low the thermally highest bound state at low tem-
peratures, as compared to the experimental value
of 0. 15 eV. s (ii) As was predicted in Refs. 5 and

6, the lowest relaxed excited state contains -70%
2s character and - 30% 2p character and is not ap-
proximately a 2s- or 2p-like state as in the unre-
laxed excited states (the E-abosrption case). ' '

Further, the size of the electronic orbit in this re-
laxed excited state, (@& I rid'z) = 14. 5 A, is much
greater than that in the lowest unrelaxed excited
state, ( 2p I r 12p), being 5. 1 A in Ref. 2 and 7. 8 A
in Ref. 8. (iii) Among all the higher relaxed ex-
cited states, there are no states that can be well
approximated either by the 2s or 2p type and so
the higher relaxed excited states are not as simple
in structure as those given in Refs. 5 and 6.

The mixing of the 2s and 2p electronic states of
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the E center due to the electron-phonon interaction
was studied in Refs. 5 and 6 by using (a) the hy-
drogenlike model for the E-center electron, (b)
an interaction having a nature simila. r to Eq. (3.29)
for the interaction of the electron with the lattice,
and (c) some experimental data. Thus the picture
that emerges for the relaxed excited states in
these references is rather simple and, qualitative-
ly, is not much different from that obtained from
the present Hartree-type results.

Conclusion (ii) above implies that the mixing of
the 2s and 2p electronic states due to the electron-
phonon interaction is not in the strong-coupling
regime where an approximately equal mixing of
these electronic states occurs. This is consistent
with a conclusion drawn very recently by Ham. '
This conclusion has been based on a comparison
of the results of his solution to a vibronic model
for the relaxed excited state of the F center in the
strong-coupling limit with the relevant experimen-
tal data. According to the numerical results of our
calculations, the interaction of the electron with
the lattice mode A& [which corresponds to a term
having the symmetry as k„x + k, y + k, z in the
expansion of exponential function in the fourth term
of our Eq. (2. 20)] very much affects the splitting
of the 2s and 2p electronic states of the E center,
as was expected in the work of Ham. Because
of this effect and because of the fact that the split-
ting between the energy levels of the 2s and 2p
electronic states of the E center in the relaxed
KCl-type crystal, including the effect of the ionic
dielectric screened interaction, is not negligible
compared to the single-phonon energy, the mixing
of these electronic states due to the interaction of
the electron with the Tq, mode [which corresponds
to an interaction having a symmetry like our Eq.
(3. 29)] is not in the strong-coupling regime.

The electronic effective Hamiltonian used for the
relaxed excited states was extended to the relaxed
1s state to calculate the 1s energy relative to the
lowest-relaxed-excited-state energy and thereby
the F-emission energy in the low-temperature
range. The E-emission energy thus calculated
is smaller than the experimental value by about
14% and agrees only qualitatively with the experi-
mentally observed temperature dependence of the
F-emission energy (cf. the results in Table IV).
This discrepancy arises mainly from the applica-
tion of Eq. (3. 3) as the Hamiltonian of the elec-
tronic part to the present relaxed 1s state. This
is because the orbit of the present relaxed 1s
state is so small that a correction to g V(r —R o)
—Vo(r) in the point-ion approximation, i.e. , the
Madelung potential —Me /d, and some correction
to the electronic-polarization potential in Kqs.
(3. 3) and (3. 5) becomes necessary.

An expression for the radiative lifetime of a

point defect was derived for the case in which the
initial states are nearly degenerate. This expres-
sion has been used to calculate the lifetime of the
excited E center in KCl at low temperatures using
the calculated results for the lowest relaxed excited
state and the relaxed 1s state. Only order-of-mag-
nitude agreement is obtained between the calculated
lifetime and the experimental value. This is largely
because the theoretical results used for the relaxed
1s state are not accurate enough. Further, the
variation of the present calculated lifetime with re-
spect to temperatures agrees qualitatively with the
experimental one in the range of temperature be-
low 100'K. Note that this agreement exists even
without considering the effect of the relaxed excited
states hi.gher than the lowest relaxed excited states
and is due to the presence of the phonon number
in the expression used for the lifetime.

It is interesting to compare the features of the
present 2s-2p mixing-model calculation for the
radiative lifetime with those of the p-state model.
Fowler" has used the p-state model for E emission
to show that differential spreading of the wave func-
tions of the relaxed 2p and 1s states is important
and can give the lifetime of the excited E center to
the correct order of magnitude. In order to assess
the additional effect on the lifetime of the mixing
of the 2s state into the 2p state, we have also cal-
culated the lifetime for KCl on the basis of the p-
state model. We obtain the value for ~(e,«/eo) to
be 0. 97&&10 sec, which is one-fourth of that cal-
culated using the 2s-2p mixing model (cf. Table
IV). Further, the wave-function parameters for
the relaxed excited and 1s states in the p-state
model are, respectively, P= 0. 15 A (for which

E@,= —1.305 eV) and A. = 0. 89 A (for which E„
= —2.386 eV). These parameters are essentially
the same as those found in the present 2s-25 mix-
ing-model calculation and hence the mixing of the
2s state into the 2p state does not appear to affect
the spreading out of the relaxed 2p-state wave func-
tion, but merely reduces the 2p component making
the lifetime longer. We conclude that both the
spreading out of the relaxed 2p-state wave func-
tion (which can make the lifetime long" ) and 2s-2p
mixing (which can lengthen the lifetime by up to an
order of magnitude) produce significant effects on
the lifetime,

It seems to us that because of the uncertainty in
e,«/&o, the calculated magnitude of the lifetime
cannot be used to distinguish between the p-state
model and the 2s-2p mixing model for E emissions
in typical alkali halides. However, the tempera-
ture dependence of the lifetime is very sensitive
to the model. The p-state model, which, accord-
ing to the present work, assumes that the Hartree-
type approximation for treating the electron-pho-
non interaction is valid so that the phonon number
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does not appear in the effective electron-phonon
interaction, cannot adequately account for the tem-
perature dependence of the radiative lifetime of the
F center in the range of temperature below 100'K.
On the other hand, the 2s-2p mixing model does
give the correct temperature dependence when the
2s state lies helot the 2P state before the mixing.
Because of the similarity between the temperature
dependence of the lifetime of the excited F center
in KI and that in KCl, it is hard to understand from
the above discussion the conclusion, drawn very
recently by Mollenauer and Baldacchini ' from
their analysis of the electron-nuclear -double-
resonance spectrum of the F center, that for KI
the relaxed excited state associated with the F
emission is 2p-like rather than a mixing of the 2P
and 2s states.

Our results prompt us to discuss the applicabil-
ity of the idea of Conway et al. for the mixing of
a p state into an s state due to the electron-phonon
interaction when used for the case of the F center.
The validity of this approach was first examined
by Fowler in the calculation of the ratio R of the
transition probability of 2s 1s to that of 2p 1s
for the I center. In his calculation (a) the 1s and

2p were chosen, respectively, to be the hydrogenic
1s and 2p states, and (b) the perturbed 2s state
was treated by nondegenerate perturbation theory,
as in the work of Conway et al. , and is given by

where the hydrogenic states 12s) and !2pi) cor-
respond, respectively, to the unperturbed energies
Ez and E@„, and III denotes the electron-phonon
interaction. In the sum, the states other than the
2P states are omitted because of the large-energy
denominators. The best values for R in the work
of Fowlers were obtained by using the Frohlich-
type Hamiltonian for the electron-phonon inter-
action twhich should correspond to the second term

in Eq. (2. 14)] for H, rather than that derived in
the work of Conway et al. and these values are
0. 2 for absorption and 11.5 for emission for the
F center in KCl. The latter result is too large
(as Fowler also pointed out). The origin of the
discrepancy probably lies to a large extent in the
form of the wave function used for the relaxed ex-
cited state. This can be seen in the following dis-
cussion.

It is clear that Eq. (5. 1) is valid only if

I(2Pi
I
H,

I
2s)

I

«
I E„,—E„. (5. 2)

This condition will presumably be satisfied in the
case of absorption of F centers in typical alkali
halides, because the phonon effect in optical excited
states is small. For the case of emission, how-
ever, the phonon effect involved in the relaxed ex-
cited states is much larger than that in absorption
and hence I E@„—E& I and . I( 2pi I HI 12s) I become,
respectively, smaller and larger, leading to a pos-
sible breakdown of the condition given by Eq. (5. 2).
This implies that the use of nondegenerate per-
turbation theory to construct wave functions, as in
Ref. 36, could be inappropriate for the relaxed ex-
cited states of the F center.

Finally we remark that if the condition given by
Eq. (5. 2) is not satisfied such that I E@„—Ea, I is
effectively negligible, then the wave functions for
mixed states should be constructed along the lines
of degenerate perturbation theory. Such wave
functions are generally appropriate in a discussion
of the electron-phonon mixing of np and ns states.
This is because the results of degenerate perturba-
tion theory reduce to those of nondegenerate per-
turbation theory as the relation between
I(nPi I HI Ins) I and IE„~, E„, I appr-oaches
l(nPi IHI Ins) I« IE~, E„, I. —
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A new mechanism for sound absorption in disordered solids is proposed. The mechanism
combines the following two effects: (i) A sound wave modulates the frequencies of the thermal
phonons (phonons of frequency k2'/h). (ii) In a disordered solid, phonons are elastically scat-
tered by the disorder. Because of (i), the sound wave may bring about an instantaneous equal-
ization of the frequencies of thermal phonons whose frequencies, in the absence of the sound
wave, are different. When this happens then because of (ii), thermal phonons are scattered
among these modes. It is shown that this process alters the distribution of thermal phonons
and always leads to an absorption of sound. This mechanism applies to all disordered solids,
and in particular is expected to be very important in neutron-irradiated quartz.

The absorption of 1-6Hz longitudinal sound waves
has been measured in vitreous silica' and quartz
irradiated with fast neutrons, and is shown in Fig.
1. Vitreous silica is a glass with the composition
SiO~, while quartz is a crystalline form of Si02.
In vitreous silica and irradiated quartz, the absorp-
tion at 10 K is, respectively, a factor of 2. 75x104
and 500 greater than in quartz crystal at the same
temperature.

Both vitreous silica and irradiated quartz are
called disordered solids, because unlike crystals
their atoms are not arranged in a regular array.
The properties of such solids are unusual compared
to the properties of crystalline solids, both because
of the disorder and because point defects probably
exist which are intrinsic to the amorphous state. '

For example, it has been proposed that the large
absorption peak occurring at 50—65 K, depending
on the sound frequency, is due to an oxygen atom
in a potential with two equivalent equilibrium posi-

tions. In disordered solids, then, it is important
to distinguish between the effects of disorder and
those of point defects on the sound absorption. In
this article, the effects of disorder on the sound
absorption in disordered solids will be considered.

This article is divided into two parts. In the
first part, known absorption mechanisms which
may pertain to disordered solids are briefly re-
viewed. In the second part, a new mechanism is
proposed which leads to sound absorption only in
solids which are disordered.

The theories discussed here apply to all disor-
dered solids. Vitreous silica and irradiated quartz
are used as examples throughout because of the
experimental and theoretical interest in these ma-
terials. The conclusions are that at temperatures
below 20 K, the proposed mechanism for acoustic
absorption is important in irradiated quartz, while
in vitreous silica it is expected to lead to only a
very small fraction (& 10%%) of the observed sound


