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The qualitative features of the bulk and surface energy bands of ionic transition-metal
perovskite crystals such as SrTi03, BaTi03, KTa03, and BaZr03 are discussed. The linear-
combination-of-atom orbitals (LCAO) method is used in combination with a generalized-Seitz-
ionic model to derive parameters for calculating the bulk and surface energy bands. The
model for the bulk bands differs in detail from that used by Kahn and Leyendecker for SrTi03
but is qualitatively similar. Surface energy bands are calculated utilizing the transfer inte-
grals of Kahn and Leyendecker and also those corresponding to the recent results of Mattheiss.
In the model, the electrostatic Madelung potentials and ionization potentials have the largest
energies. The (pdo) interactions between the d orbitals of transition-metal iona and the p
orbitals of the oxygen iona have the next largest energies. The (pdv) interactions and the
crystalline field splittings follow in magnitude. The (ppc) and (ppm) interactions between
adjacent oxygen atoms have somewhat higher energy than the spin-orbit interaction. The ef-
fective ionic charges are determined by fitting the observed energy gap which is 3-4 eV for
these materials. The bulk bands near the energy gap consist of three t2 and two e~ conduc-
tion bands and nine valence bands derived from the oxygen p orbitals. The d-conduction-band
widths are controlled by the (pd~) and (pdcr) integrals. The valence-band widths also depend
on these parameters but the (pp7t) and (ppo) integrals add directly to the bandwidth. It is
shown that the qualitative features of the energy bands are preserved if the p-p interactions
are neglected. In this approximation, analytic results are obtained for the energy bands and
the wave functions. Analytic expressions are also derived for the surface-state energy bands
for a (001) surface. The perturbations due to spatial variations in the Madelung potentials,
change in the electrostatic splitting, variations in the layer spacing, and small rotations in
the surface bond angles are included in these analytic expressions. Exact expressions for
the spatial variations in the Madelung potentials are derived by a scheme similar to that of
Hund for the bulk potentials. The potentials are changed only negligibly except on the surface
where changes of the order of several eV occur. The effects of surface irregularities, im-
purities, and vacancies can easily be treated by the method. Two types of (001) surfaces oc-
cur for the ABO3 perovskite structure. The type-I surface contains oxygen and 8 ions (the
transition-metal ions) while the type-II surface has A and oxygen ions exposed. Formulas
for the surface bands of both type surfaces are derived. The dependence of these surface
bands on the surface perturbations is discussed. Multiple surface bands and truncated
branches which exist only over a certain portion of the Brillouin zone are found to occur. The
conduction surface bands follow approximately the dispersion of the bulk band edge. Valence
surface bands behave differently for type-I and -II surfaces. The valence surface branch can
have a small upward curvature on a type-II surface while for the type-I surface, the disper-
sion follows the bulk-valence band edge and has a downward curvature as a function of the wave
vector parallel to the surface.

I. INTRODUCTION

When a crystalline solid is terminated by a sur-
face, a new set of electronic states appear asso-

ciated with the surface which are derived from the
bulk band structure of the solid. These surface
states have considerable technological importance
in a variety of areas. Of particular importance
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are d-band surface states on transition metals and
their compounds which play an important role in
such diverse areas as catalysis, electrochemistry,
corrosion, hydrogen embrittlement, and lubrica-
tion. Unfortunately, however, d-band surface
states have eluded detailed study because many of
the powerful but simple tools developed for the
study of semiconductor surfaces are not applicable
to the metals or to the nickel-oxide type of transi-
tion- metal compounds.

It appears to us that the requirements for model
compounds which will facilitate the study of d-band
surface states are met by insulating d-band perov-
skite compounds such as Sr TiG3, KTa03, or
BaZrG, . These materials have empty conduction
bands which near the point I' in the Brillouin zone
are nearly pure d band in character. Surface bands
derived from these states also have d-band char-
acter. As an additional bonus, the occupancy of
such surface states can be controlled. They are
normally empty but they may be populated by ex-
posing the photoconducting insulator to band-gap
or near-bandgap light.

In addition to their surface-state properties,
these perovskites have potentially important elec-
tro-optic applications in areas such as image
storage, photochromisrn, and electrochromism.
Studies of these phenomena in Sr TiG3 and other
compounds have been reported recently. '

The purpose of this paper is to establish the
qualitative features of surface states on d-band
transition-metal perovskite crystals. Gur approach
is similar to that employed by Levine and Free-
man' in their treatment of surface states on zinc-
blende crystals such as ZnS in the wurtzite phase.
It differs in several respects. The number of or-
bitaLs necessary to describe the perovskite band
structure is large. For ZnS, Levine and Freeman
utilized four orbitals; an s orbital for the metal
ion and three p orbitals for the anion giving a total
of four orbitals. For the perovskite the simplest
model requires 14 orbitals; five d orbitals for the
B metal ion and nine P orbitals for the three oxygen
anions in a unit cell. Despite this complexity we
are able to derive simple analytic expressions for
both the surface and bulk energy bands including
the effects of changes in the Madelung potentials,
electrostatic splittings, 13ttice sy3cing, and small
rotations in bonds at the surface. All or some of
these effects yrobably occur at a real surface. We
do not consider perturbations which destroy the
two-dimensional periodicity. The inclusion of d
orbitals also leads to symmetry effects not present
in the zinc-blende crystals. The crystalline field
splitting of both d and p levels at the surface differs
from that in the bulk. The surface states in the
zinc-blende structures are derived from s and p
orbitals whereas the class of perovskites studied

here have d-Like conduction-band surface states.
It is this feature which is particularly interesting
since the d symmetry of surface states is believed
to be an essential factor in accounting for the
catalytic activity of transition metals and transi-
tion-metal compounds. '

It is not the intent of this work to provide a quan-
titively accurate picture of the energy bands of the
d-band perovskites. We are concerned here with
providing a qualitative model which treats the
largest energies of the system and yields a qualita-
tive description of the nature of the surface energy
bands. More sophisticated calculations will un-
doubtedly be needed as experimental information
becomes available. The theory presented here will
serve as a basis for further theoretical studies and
hopefully will stimulate additionaL experiments on
these interesting materials.

More sophisticated calculations of the energy
bands of the perovskites have been discussed re-
cently by Mattheiss and by Soules et al. , but the
nature of the surface bands has not been previously
reported.

The structure of the paper is described now. We
begin with a general discussion of the properties
of the d-band perovskites in Sec. II. In Sec. III the
linear-combination-of-atomic-orbitals (LCAO)
model for the bulk bands is described. Analytic
expressions for the effective ionic charges are
derived in terms of the LCAG parameters and the
Madelung potentials. Energy bands ar e presented
for Sr TiO, using a refined version of the Kahn and

Leyendecker' model. These results are compared
with those obtained by utilizing the recent results
of Mattheiss. ' lt is then shown that the conduction
bands are very nearly unaffected if the small (ppx)
and (ppa) interactions between the oxygen atoms are
neglected. The qualitative character of the valence
bands also remains intact although the approxima-
tion is much more serious for these states. Using
this approximation, analytic expressions for the
bulk energy bands and the wave functions are de-
rived. In Sec. IV the surface-state problem for a
(001) surface is formulated. Exact expressions
for the spatial variations in the electrostatic poten-
tials are derived. Reductions of the order of 2 eV
occur at the surface. One layer inside, the poten-
tials are found to be essentially equal to their bulk
values. The changes in the d and p splittings due
to the reduction of the crystalLine field symmetry
3t the surface are considered. The three degen-
erate t~~ levels split into a twofold level and a
singlet level. Two different types of (001) surfaces
occur for the ABG, structure. In one case, the
surface contains B and oxygen ions, while for the
second case A and oxygen ions are on the surface.
Analytic formulas are derived for the energies and
wave functions of the surface states for both types
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I'IG. 1. ABO3 cubic perovskite structure. Dark cir-
cles represent the 8 ions, open circles represent the
oxygen ions, and the dotted circles indicate the A ions.

of surfaces including the effects of changes in
Madelung potentials, splittings, lattice spacing,
and small rotations of the B-metal-oxygen bonds
at the surface. A series of surface bands for both
types of (001) surface are presented which show
how these states depend upon the surface perturba-
tions.

Finally, in Sec. V we summarize our results and
present some conclusions and a discussion of future
work.

II. GENERAL FEATURES OF d-BAND PEROVSKITES

The cubic perovskites (space group O'„, Pm3m)
crystals are of the ABO3 type where A and B are
metal cations and O is an oxygen ion. The perov-
skite structure is shown in Fig. 1. The A and B
ions are surrounded by octahedra of oxygen which
produce a cubic ligand field. The oxygen ions,
however, experience an axial field produced by the
noncubic distribution of the A.— and B-metal ions.
We shall be mainly interested in a subclass of the
perovskites which have transition-metal ions with
d orbitals in the B sites and larger metal ions with
s orbitals in the A sites. The compounds SrTiO3,
KTaO„BaZrO„and BaTiO, (in the high-tempera-
ture cubic phase above the ferroelectric transition)
are typical examples. The ligand field causes a
splitting of the fivefold degenerate d states into the
familiar threefold t~, and twofold e, levels. The
three degenerate oxygen p states are split by the
axial crystal field into a twofold level and a singlet.

The bonding in these crystals is highly ionic.
The lowest empty electron orbitals and the ideal
ionic charges of the A and B ions are indicated in
Table I. The ionization potentials for the free
ions" and the electron affinity' of oxygen are also
given in Table I. The crystals are not completely
ionic and the covalency effects are important in de-
ter mining electronic properties such as crystal

field effects and the energy gap, A small amount
of covalency leads to large changes in the electro-
'static Madelung potentials. Energy gaps on the
order of 15 eV would be predicted if these perov-
skites were fully ionic whereas gaps of 3-4 eV are
observed or expected. Kahn and Leyendecker"
have calculated the energy bands of SrTiQ& using a
simple LCAQ model together with Seitz's ionic
model. ' They find that the ionic gap of 15 eV is
reduced to about 3 eV when the effective ionic
charges are reduced by 15%. Augmented-plane-
wave (APW) calculations by Ma.ttheiss yield a band

gap of about 6. 2 eV. These APW results were
utilized to obtain a set of LCAG parameters. When
these parameters are adjusted to fit optical data, , a.

gap of 3. 5 eV results. A large band gap (-11 ep)
has been found by Soules et al. ' These authors
argue that the small observed band gap results
from strong correlation or exciton effects which
invalidate the energy band calculation of the excited-
state energies. Numerous transport experiments,
however, argue strongly that these effects are not
of prime importance.

The features of the band structure of strontium
titanate are representative of the class of perov-
skites considered here. The largest energies are
those resulting from the Madelung and ionization
potentials. The Madelung energies are substantial-
ly reduced by covalency effects. The energy bands
within a few volts of the energy gap are charac-
terized by five (empty) conduction bands derived
from the d orbitals of the B-transition-metal ion
while the nine (filled) valence bands originate from
the three 2P orbitals on each of the three oxygen
ions. The s states associated with the B-metal
ions are expected to lie at much higher energies
and do not contribute strongly to the band structure
near the gap. The energy gap is 3-4 eV. The
next most important energy is the p-d interaction
which produces conduction- and valence-band widths
of 3-4 eV. The wave functions for states away
from I' in the Brillouin zone are admixtures of p
and d orbitals. The mixing decreases with in-
creasing energy gap. Finally, the p-p interactions
between adjacent oxygens lead to a modification of
the valence band near the gap but have little effect
on the d conduction bands. NonorthogonBlity ef-
fects, the effects of more distant orbital interac-
tions, spin-orbit interactions, polaron and exciton
effects, and the use of additional orbitals are im-
portant in an accurate LCAG calculation of the en-
ergy bands. The qualitative features, however,
are not expected to depend strongly on such effects.

Strontium Titanate

Strontium titanate possesses an amazing variety
of interesting properties. In its pure state, it is
an insulator transparent to visible light. At high
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TABLE I. Lowest empty-electron orbitals and energy necessary to ionize electrons from the levels for the free ions.
Columns 3 and 5 give the charge of the free ion. Oxygen 0 has 2ps and the electron affinity of 0 is 9.22 eV (see Ref. 5).
Ionization potentials are taken from Ref. 4.

Crystal A.BO3

SrTiO3
BaTi03
KTaOg
BaZrO3

A orbital

5s
6s
4s
6s

A, charge

2'
2
1'
2+

A ionization
potential

(eV)

-11.O3 (II)
—10.00 (II)
-4.34 (I)

-10.00 (II)

B orbital

3d
3d
5d
4d

B charge

B ionization
potential

(eV)

—43.24 (IV)
—43.24 (IV)
—57.o' (v)
-34.33 (IV)

Estimated from the Mo series.

temperatures, it is cubic but undergoes a transition
to a tetragonal structure" '8 at about (105-110)'K.
The temperature dependence of the dielectric con-
stant suggests that a ferroelectric transition should
occur at 45 'K. However, no discontinuity in the
dielectric constant is observed. ' '

When strontium titanate is reduced it takes on a
blue color. It displays a number of interesting
photochromic and electrochromic properties'
when doped with metal ions. Doped strontium
titanate is also a superconductor ' with a transition
temperature of about 0. 3 K.

The transport properties are complex due to
defect contributions ' and the effects of phase
transitions. The electrical conductivity, Hall, and
Seebeck coefficients were first measured by
Frederikse et a/. in reduced Sr TiO, . More re-
cent measurements of the Hall effect and photocon-
ductivity of pure and doped Sr TiO3 have been re-
ported. ' Anomalies in the photoconductivity and
Ball effect have been interpreted by Yasunaga and
Nakado ' as evidence for a small amount of ferro-
electric phase in an otherwise paraelectric host.

Optical-absorption measurements on transition-
metal ions in SrTi03 have been reported by Gandy27

and more recently by Muller. " Raman spectra
have been reported by Narayanan and Verdam.
Numerous electron-paramagnetic-resonance studies
have been reported' '" and thermally stimulated
current measurements have been performed. 3 In
the cubic phase, the lattice spacing' is 3.90 A.
The energy gap has been studied by Blazey'4 using
wavelength- modulation spectroscopy. Dir ect tran-
sitions from the valence band to the conduction
band at the point I' in the Brillouin zone give a gap
of 3.34 eV. The indirect band gap between the
maximum at I' in the valence band to the minimum
in the conduction band at the point X at the corner
of the Brillouin zone was reported to be 3.24 eV
for the cubic phase (see Fig. 2). In the tetragonal
phase, Blazey found an indirect band gap of 3.28
eV. The reflectance spectra of both Sr TiO, and
BaTi03 have been reported by Cardona ' and that
of KTa03 by Kurtz. Calculations by Kahn and
Leyendecker predict equienergy contours in the

form of six ellipsoidal surfaces at the point X(Fig. 2)
when spin-orbit effects are included. It is not
completely certain that the minimum gap occurs at
the point X, although magnetoresistance measure-
ments support the (100) ellipsoidal model. Piezo-
resistance measurements, however, favor a direct
band gap. ' APW calculations by Mattheiss also
indicate a direct gap. Magnetoresistance measure-
ments on KTaQ, have also been reported which
support the ellipsoidal model. ' The effective mass
of electrons in n-type Sr TiO, has been measured
by a variety of techniques including the Ball ef-'

fect, ' magnetic susceptibility, ' tunneling,
Shubnikov-de Haas, and heat capacity measure-
ments. ' ' ' Different measurements give different
types of effective masses but m*-5m to 6m ap-
pears to be representative for Sr TiO, . Results for
KTaO~ indicate that m* m in n-type materi-

40~42y46 48

III. BULK ENERGY BANDS

In this section we discuss a simple LCAO model
for the energy bands of the d-band perovskite
structures. The important parameters are dis-

k

I(

—k

FIG. 2. First Brillouin zone for the simple cubic
structure. The symmetry points and lines are defined
by I' = (0, 0, 0). x = 7t/2a(0, 1, 0), M = m'/2a (1, 1, 0), 8
= ~/2 (1, 1, 1), 6= r/2a (x, 1, 0), g = x/2a (g, X, 0), T
=7r/2a(1, 1,x), 6=7t/2a(x, x, x), S=7t/2a(x, 1,x), where a
is the oxygen-B-metal ion separation.
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cussed and simple approximate analytic formulas
are derived which describe the qualitative features
of the band structure. The approach discussed
here follows closely that used by Kahn and Leyen-
decker' in their treatment of SrTiG, . The energy
bands differ from those obtained by Kahn and
I eyendecker because of different effective charges,
a refined treatment of the energy-gap determina-
tion, the use of more accurate values of thP elec-
tron affinity, and different values of (ppw) and

(ppo).
The application of the LCAQ method to the energy

bands of solids introduced by Slater and Koster
has been widely used in recent years as an inter-
polation scheme for deriving energy bands based
upon more accurate calculations at high symmetry
points.

In the LCAG method, the Bloch states are linear
combinations of the atomic orbitals relevant to the
solid under consideration. In the case of the @-

band perovskites, these are the orbitals listed in
Table I. The method is physically appealing be-
cause the important parameters are easily visu-
alized in terms of atomic orbitals and their trans-
fe" integrals. In addition, the resulting description
fits naturally into chemical descriptions of surface
reactions.

The LCAQ method has been discussed in detail
in several articles ' ' so we present here only
the results. The Bloch wave functions g(k) are
constructed from linear combinations of the five d
orbitals of the B-transition-metal ion and the three
p orbitals of each of the three oxygen atoms in
each unit cell giving a total of 14 orbitals. The s

orbitals of the A-metal ions are assumed to be un-
important for the energy bands near the gap since
they have higher energies. The model Hamiltonian
consists of the kinetic energy plus a sum of effec-
tive local potentials. The effects of the long-range
electrostatic potential are accounted for approxi-
matelp by including in the diagonal matrix elements
a series expansion of the total field about each lat-
tice site. '

The transfer integrals considered in our model
of the d-band perovskites include the diagonal in-
teractions between d orbitals (p orbitals) on the
same atom, the (Pdv) and (Pdv) transfer integrals
between neighboring oxygen and B-metal atoms,
and the (PPo) and (PPv) interactions between adja-
cent oxygen atoms. The orbitals involved in the
nondiagonal interactions are illustrated schemati-
cally in Fig. 3. The orbitals are denoted by the
symmetry of the angular component of the wave
function,

The diagonal matrix elements for the d orbitals
are

E, =g„+ V~, '+ V, for d„„d'„„and d~, ,

E~+e, + V~ '+ V, for d3p „3 and d 3 „3,
where g„ is the ionization energy of an electron
on the free-8-metal ion, V~~~' is the Madelung po-
tential at the B-metal-ion site, and v, and v, are
the electrostatic shifts in the energies of the t„
(d~, d„, and d„,) and 8~ (d3,2 „& and d„a p) levels
due to the cubic crystalline field. The t~~ levels
are lowered in energy by v„ the 8, levels are
raised in energy by v„and group-theoretical argu-
ments show that v, /v, = —4. The quantity v, -v, is
the total splitting of the d levels at the point I" in
the Brillouin zone. This splitting is smaller than
the lODq obtained from a molecular-orbital calcu-
lation. " Mattheiss 'o has discussed the relation
of the molecular-orbital crystal field splitting to
the splitting entering into a LCAQ band calculation.
In strontium titanate' 1QDq is believed to be about
2. 4 eV. According to Kahn and Leyendecker'
v, -v, is Q. 62 eV, while the splitting a,t I' deduced
by Mattheiss is very nearly equal to 10'. For
the p orbital the diagonal energ'es are

E„=gp+ V~ + v, , for p„,(0)

(0) (2)
EL ~p+ VN + vL for pJ s

where &~ is the electron affinity of G, V~ ' is the
Madelung potential at an oxygen site, and v, and v,
are the electrostatic shifts due to the axial crystal-
line field. p orbitals directed towards the nearest-
neighbor B ion are denoted by p„while those di-
rected perpendicular are denoted by p~. The p„
levels are lowered by v, relative to g~+ V„' ' and
the p, levels are raised by v~. The total splitting
at I' is estimated to be 0.48 eV for SrTiG3 by Kahn
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~p = &q &p+ Vg Vg(8) (0)

5 = —[2(pp7T) —v) + 2(v() + vj ) +'Y] .

(4)

In Eq. (4), the gap b, is decomposed into a term
which depends on the ionization potential, electron
affinity, and electrostatic Madelung potentials
but not on the (PPr) or (PPg). The second term 5
accounts for the P-P interactions and the electro-
static splitting but does not depend upon the Made-
lung potentials. This decomposition will prove
useful in determining the effective charges of the
ions.

A. Madelung Potentials for Perovskites

The Madelung potentials at the various lattice
sites for arbitrary effective ionic charges can
easily be obtained using the method of Hund. '
Utilizing this method we find that for the perovskite
structure

Vu(") =- (e'/2a)[q(B)g(2, -', 2) - 3q(O)(t)4, -', o)

+q(A))t)(0, 0, 0)],
V„' '= —(e /2a)[q(B)g(0, 0, 0) —3q(O)P( —,0, 0)

+q(A))))(2, ~2, 2)], (5)

and Leyendecker while application of this model to
the results of Mattheiss gives a much smaller
value.

At the point I' the conduction-band energies are
E, (twofold), E, (threefold), and the valence-band
energies (all of which are threefold degenerate) are

E,",=E,—4(PP~),

E,', „=,'[E,+E—„+4(ppv)]+ x, (3)

x= pl(~„- ~,) —2(PP~)]'+8[(PPa)+(PPv)]')'".

The direct band gap 6 is given by

h=E, —Ep~ =—60+ 5,r

(
+ —(eg —ep)+ [2(ppTE) —5g+ 2( U) )+vg) +x]

( )4. 708345 e3/2a

B. Qualitative Features of Bulk Energy Bands

The qualitative features of the bulk bands can
be obtained easily in the approximation that (ppo)
= (PPm) =0. For this approximation, the secular-
matrix-equation block diagonalizes into three
3 0&3's which we denote by M~, M„„and M„, and a
5&& 5 M~, . The blocks M z are of the form

E, -E
M~() —— —2i(pdm)S„'

—2i (pdm)S,

2(ps)s. u()s )s,)

the ions. For SrTi03, Kahn and Leyendecker
found that a reasonable energy gap resulted if the
charge on oxygen was decreased from —2 ( e ) to
about —1. 7) e ). The effective charge on the Ti ion
was reduced to about +3.1(eJ and the Sr charge
was left at+ 2I e). Variations in the Sr charge
were relatively less important. For reasons
associated with charge neutrality of free surfaces
(to be discussed later), we shall assume that the
ratios of the charges remain the same as in the
fully ionic case. This leads to only slight changes
in the ionicity from that determined by Kahn and
Leyendecker.

The effective charges can be expressed in terms
of the Hund potentials, electrostatic splitting,
ionization potential, electron affinity, observed
energy gap, and the quantities (PP7t) and (PPa).
For example, for the ABO3 perovskites such as
Sr TiO„BaTiO„and BaZrO„where q(A) = q(O)
=-,'q(B), one finds, using Eq. (5), that

V' ' = —(e~/2a)(q(B)())( —,', 0, 0) —q(O)[7))(0, 0, 0)

+24(2, 2, 0)]+q(A))t(-.', 2, 0)),

x c I=P, (8)

where a is the Ti-oxygen separation and q(A),
q(B), and q(O) are magnitudes of the effective ionic
charges on the A, B, and 0 ions. The quantities
)t)(r, s, t)[(t)(0, 0, 0)] are Hund potentials [self-
potential] for the neutralized cubic lattice:

(t)(2, 0, 0)= —0. 095932,

)p(2, g, 0)= —0. 582522,

)))(2, &, &)= —0. 801936,

(T(0, 0, 0)= —2. 837298.

Charge neutrality requires that q(A) + q(B) —3q(O)
=0. From Eq. (4) it is clear that the energy gap
~0 depends directly upon the effective charges on

where the coefficients c z, c, and cz are the
amplitudes of the orbitals d z, P, and pz which
make up the approximate eigenstates. For example,
when nP=xy, then c () is the amplitude of the d„,
d orbital on the B-metal ion, c and cz are the
amplitudes of the p orbitals p,' ' and p,'". In Eq.
(8), S =sink, a, c =cosk a, where n=x, y, and
z, a is the B-ion-oxygen distance, and k„are the
components of the wave vector. The superscripts
(1), (2), and (3) on the P orbitals are used to in-
dicate the oxygen sites displaced from the B-metal
site by a(1, 0, 0), a(0, 1, 0), and a(0, 0, 1), re-
spectively. For n P=xz, the amplitudes are for
d„„P„"',and P,'" and for nP=yz, the amplitudes
are for d„, P„"', and P,' '. The oxygen orbitals
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a valence band. At 1, one of the pair is a pure p
state and one is a pure d state. Near F, the dis-
persion is quadratic:
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FIG. 4. Orbitals involved in the wave functions: (a) for
the 3 && 3 blocks, (b) for the 5 && 5 block.

involved are those which have a (Pdm) interaction
with the d orbital d z as shown schematicallg in
Fig. 4(a). It is evident that only the ta, orbitals
and the p~ orbitals are involved in these wave func-
tions. The eigenvalues are

The ratio of the d-orbital amplitude to the p-orbital
amplitude in ga

a is linear in the two-dimensional
wave vector, and the admixture of p orbitals into

is also linear in the two-dimensional wave vec-
tor.

The 5&&5 block involves the e~ d orbitals and the

P„(P orbitals directed into the nearest-neighbor B
ion) orbitals. The orbitals involved in these states
are shown schematically in Fig. 4(b). The d or-
bitals are the e, type and the p orbitals are the p,
type. They are coupled by the (Pdo) interaction.
The eigenvalues are

EÃpg
II y

a a 4 5 a( ()+ II) ([a( e (()]
E&a,a) = a( t+ ))+([a(Et—E))]

+ 4(pd~)'(S'. + S', ) }'ya. (9)
where

+2(Pdo)' [(S'„+S'„+S',)+S']}'", (12)

The (unnormalized) eigenvectors )t),
a corresponding

to these eigenvalues are
s'= (s4+ s4+ s'- s's'- s's'- s's')'"

In E(I. (12) the choice of signs is (++) for Eay',
(+ —) for Ea ', ( —+) for EP', and ( ——) for EP'.
The corresponding eigenvectors are

NgE~- E(a,3)

))'(a a) =
(

2&(P«)Sn

2i pdm Sg

From E(I. (9) it can be seen that there are three
valence bands with constant energy E, whose wave
functions are particular admixtures of oxygen p
orbitals. In the approximation that (PPo) and (PPw)
vanish, these states do not mix with the d orbitals.

There are also three equivalent pairs of branches
with two-dimensional dispersion (i. e. , dependent
only on two components of the k vector). The Eaa
branch is a conduction band and the E3 branch is

(13)

(E„—E""')(S„—S,)

aa(Pdo)S, (S„—S„)

[x,(pdo) —4(pd(y)'(S', S'„- S', )](E—„—E
W3 (pd(y p

aS„[x.—(pd~ p(4S'. —aS,')]

aS, [x.—(Pdo)'(4S', —2 S'„)]

(14)
where x = (E„.—E",")(E,—E~')/(Pd(y) and o( = 2, 3, 4,
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FIG. 5. Energy bands for SrTx03. The solid curves
are calculated using the parameters (in eV) E&= -6.258,
Ee=-5.638, Eq=-10.039, E„=-10.519, Ipdo)=3. 1,
(pdm) =0. 84, Ippo) =0.379, and (pp~) = —0.063. The
dashed curves are for the same parameters except (ppo)
= (pp~) =0.

and 5. It can easily be seen by considering the
point F that E2 3 are conduction bands formed from
B-metal ion e, d orbitals. E",'4 ~ are valence bands
formed from oxygen orbitals.

IC. Bulk Energy Bands of SrTi03

The results of the preceding sections can be used
to obtain the energy bands of strontium titanate.
We shall first discuss a modification of the energy-
band model of Kahn and Leyendecker. A second '

model is developed by choosing transfer integrals
to fit the results of Mattheiss. Surface energy
bands are then calculated using these results.

Kahn and I.eyendecker utilized the values (in
electron volts) (pdo ) = 2. 1, (pj's) = 0. 84, v, = —0.248,
v, = 0. 372, v„= —0.32, and v~ = 0. 16. We use
Switendick's" values (ppo) = 0.379 and (ppw)
= —0.062. In addition, we use Blazey's value of
3. 24 eV for the energy gap. Then Eg. (V) gives
q(O)= 1.6314 =q(Sr), q(Ti) =3.2628. The Madelung
potentials calculated from Etl. (5) are V„Is"

= 16.2042, V~ = —19.4187, and I/' ' =37.2303.
Combining these with the ionization potentials and
electron affinity given in Table I, we find that E,
= —6. 258, E,= —5. 638, Ej = —10.039, and E„
= —10. 519. The strontium level has an energy
Es, = 5. 174. It is therefore about 11.5 eV above the
Ti level. For this reason we are justified in ne-
glecting the effects of the strontium 5s level on the
energy bands near the gap. These values differ
from those used by Kahn and Leyendecker. The
differences result from a variety of reasons: (i)
their value of q(O) was about 1.68 and q(Sr) was 2,
(ii) their Madelung potentials were slightly in er-
ror, (iii) they did not include the effects of electro-
static splitting or (ppm) and (PPo) in determining
q(O) from the energy gap, (iv) different values for
the electron affinity were used, and (v) the cor-
rect s values of Switendick's (ppo) and (pps) pa-
rameters were used.

The energy bands calculated for SrTi03 using the
LCAO parameters derived above are indicated by
the solid curves in Fig. 5. They are qualitatively
similar to those calculated by Kahn and Leyen-
decker. The lower conduction band is composed
of t2, d orbitals near F. Away from F, the P, or-
bitals mix with the ta/ orbitals because of the !PPv)
interactions. Near the end of the Brillouin zone
(R), the wave functions are about 85% fs/ and 15%
p, . The bandwidth is controlled by (pdw) as in-
dicated by EII. (9). The splitting of the fs/ and e
conduction bands is v, —v, =0. 62 eV. The eg band-
width is controlled by (pdo) as indicated by EII.
(12). The mixture of orbitals at R is about V0% e/
and 30%P„. The valence bands are split at 1" by
both the axial crystal field and the (pps) and (ppo)
interactions [see EII. (13)]. The bandwidth of the
upper valence band is controlled by (pds), (PPo),
and (PPs). The lower valence-band width is de-
termined by (Pdo).

If (ppc) and (pp7I) are assumed to vanish, then
we obtain the energy bands indicated by the dashed
curves of Fig. 5. The only significant changes
are in the valence bands. The narrow bands are
now flat. It is clear that the conduction bands are
essentially unaffected by (PPo) and (Ppv). The
valence bands are modified more significantly since
the p-p interactions prevent the formation of flat
bands.

The t2, and e, bands are coupled only indirectly
through the p-P interactions. Since these interac-
tions are weak, the coupling between the bands is
weak. This suggests that virtual d-band surface
states may occur near the e~ band edge which lies
in the t~~ continuum of states.

A more sophisticated LCAO model for SrTi03
has been derived by Mattheiss based on APW cal-
culations and optical data for SrTiQ3. We have
determined the parameters of our model by fitting
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for (ppv) and (ppo) are similar to those of Switen-
dick. The effective charges for both of our calcu-
lations are approximately the same (as are the
diagonal energies). The principal difference be-
tween the two models is that the t~, and e, bands
are separated for the second model but overlap for
the first.

The dashed curves in Fig. 6 are the energy bands
for (PPo)=(PPs)=0. Again, one sees that the con-
duction bands are essentially unaffected by this
approximation.

IV. SURFACE STATES OF PEROVSKITES
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FIG. 6. Energy bands for SrTi03. The solid curves
are calculated using the parameters (in eV) E&=-6.407,
Ee = 4 097 Eg= 10 473 E~~ = 10 473 (pdo') = —2 ~ 23,
(pdw) =1.337, (ppo)=0. 341, and (pps) =-0.03. The
dashed curves are for the same parameter except (ppo)
= p~) =0.

to a number of key points. We require our model
to match the P and d bandwidths at X and match the

p and d levels at I'. We use, however, an energy
gap of 3.24 eV. The electrostatic considerations
of our model fix the absolute energy of the energy
bands, a feature not present in Mattheiss's CACAO

model. The parameters obtained are q(O) = 1.654,
and (in electron volts ) E, = —6. 407, E, = —4. 097,
E,= —10.473, E„=—10.473, (pdv)=1. 337, (pdo)
= —2. 23, (PP v) = —0. 03, and (PPo) = 0.341. The
energy bands for these parameters are indicated in
Fig. 6 by the solid curves. These bands agree
qualitatively with those of Mattheiss over the entire
Brillouin zone. This indicates that the overlay ef-
fects can be adequately treated by modifying the
transfer integrals. The agreement with the param-
eters used by Mattheiss indicates that these modifi-
cations are small. For example, Mattheiss uses
(Pdo ) = —2. 25, (Pds) = l. 14, (PPo) = 0.425, and

(PPv) = —0. 10'7. It is noted that the values deduced

In this section we address the problem of deter-
mining the nature of surface states on the d-band
perovskites. We formulate the general problem
and then derive analytical solutions for the model
in which oxygen-oxygen interactions are neglected.
The behavior of the surface states depends princi-
pally upon changes in the electrostatic Madelung
potentials and crystal field symmetry at and near
the surface. The effects of changes in lattice
spacing and small rotations of the oxygen-B-metal
ion bond are also investigated. Graphical results
for the various surface states produced are pre-
sented for the approximate model. The results
for the conduction surface bands are expected to
be more exact than those for the valence surface
bands since as we have seen the conduction bands
depend only very weakly on the P-P interactions.
The qualitative features of the valence surface
states are correct but the dispersion produced by
(ppa) and (pps) is absent.

A. Spatial Variations in Madelung Potentials near a Surface

The spatial variations in the electrostatic poten-
tials of complex cubic crystals have been discussed
in detail by Kraut, Wolfram, and Hall. ~~ The re-
sults of the procedure are summarized in Table II.
We present here only the procedure. For the
perovskite structure, there are two different types
of (001) surfaces as illustrated in Fig. 7. The type-
I (001) surface has B and oxygen ions exposed
while for the type-II surface, the A and oxygen ions
are exposed. The procedure used in obtaining
Table II assumes charge neutrality on each plane
parallel to the surface. This requirement leads
to the condition that the effective charges must be
intheproportionq(A): q(B): q(O) =2: 4: 2. Clearly,
for KTaO„where the formal charge ratios are
1:5: 2, this restrictionmustbe removed. For this
crystal alternate (001)surfaces would have net
charges. Reconstruction of the surface and the build-
up of space charge near the surface would be expected.
The use 'of the neutralized plane potentials described
here l'eads to a situation in which the background
charges do not cancel on an atomic scale but do on
a macroscopic scale. This gives a model in which
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TABLE II. Madelung potentials as functions of depth
below type-I and type-II (001) surfaces on &I3O3 crys-
tals.

v,)+I&(Bulk) = 5.3872 v&~
& (Bulk) = 12.3775

»,~r&r(0) =4.9783

v,»' (=;) —5.41~9 »ill rr (~)

v)g g&r (1) = 5.3860 v~r' (1)

» ~»&(-',) = 5.3873 =-12~ 775

v~+r&r (2) = 5 ~ 3872 vp@gr& (2) = 12.3775

vggg&(0) = 11.7045

=-12.4092

v (Bulk)

v' '(0)

v', '(—'. )

",&o)

v' '(2)

= —6.4559

= —6.4590

= —6.4845

=-6.4559

= —6.4560

=-6.4559

(e j2p = 3.6875, SrTi03)

vz rr (=")
(o&

(o& a

»mr'r (2)

= —5.5127

= -6.4590

= —6.4546

= —6.4559

space charge of opposite sign is accumulated on
alternate layers. The problem of surface recon-
struction and charged surfaces will not be dealt
with in this paper.

For the (2, 4, 2) perovskites, the reduced poten-
tials at and near the surface given in Table II,
Ma.delung potentials e~,' and n~ r'r are obtained from
the numbers listed in Table II by multiplying by
(e'/2a)[ q(O)/2 j.

Inspection of Table II shows that the potentials
of the A and oxygen ions are reduced in magnitude
by 8% and 15%, respectively, on a type-II surface.
Qne layer in from the type-II surface, the B ion
has a potential increased by only 0. 2/o. On the
type-I surface, the B and oxygen potentials are re-
duced by 5% and 0. 05% while on the next layer, the
A-ion potential is increased by 0. 5%.

The potentials approach their bulk values one
layer in from the surface. A somewhat surprising
feature is the fact that the oxygen potential on a
type-I surface is very nearly equal to its bulk
value.

The effects of vacancies and extra atoms on the
surface or impurities can be included in the poten-
t'.als by adding or subtracting individual Coulomb
contributions to the potentials. The effect of a
rough surface can be simulated in this manner.
Since additional atoms or vacancies occur in a ran-
dom fashion, a, distribution of surface potentials
mill result. The values of the surface potentials
obtained here mill be used as an indica, tor of the
magnitudes expected.

For Sr Ti03, using q(O) =1.6314, we find that on
a type-I surface, the Madelung potential is de-
creased by 2 eV at the Ti site and decreased by
0. 01 eV at the oxygen site. For the type-II sur-

face, the potential at the Ti site one la,yer in is in-
creased by 0. 0'7 eV, while on the surface, the
oxygen potential ls increased by 2. 8 eV. Irregu-
larities, vacancies, and impurities can lead to a
distribution of potentials but these values are
representa, tive of the orders of magnitude expected. .

8. Electrostatic Splitting at {001)Surface

The symmetry of the crystal field at lattice sites
at and near the surface is lower than in the interior
of the crystal. This lower symmetry leads to addi-
tional splitting of the d and P orbitals. To deter-
mine the nature of this splitting, let us consider
the nearest-nei. ghbor ligands. Qn the type-I sur-
face, the B-metal ion is surrounded by four near-
est-neighbor coplanar surface oxygen anions and a
single oxygen at z =+a. The geometry is illustrated
in Fig. 7. Following Sugano et al. , the potential
is expanded in terms of I egendre polynomials to
obtain

q(O)e'~'
&2&

Ze'~'q(O)
0 a

(15)

C& = A IONS

= 8 IONS

0 = OXYGEN IONS

TYPE 1 SURFACE (a)

(011)
SURFACE

TYPE II SURFACE (b)

SURFACE

FIG. 7. Schematic of the two types of (001) surfaces
of the At803 perovskite structure and the coordinate sys-
tems us ed.
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BULK

40
7dq

2A74'7

if
2Aj7

TYPE I SURFACE is of the same order as the reduction in the Made-
lung potential at the surface. We shall assume that
the quantity A is of this order and therefore much
smaller than dq in Eq. (16). The d-level splittings
for surface atoms are shown schematically in Fig. 8.

In the case of the oxygen orbitals the effective
axial crystalline field is of the form

0
dq

, A7t7
i

/ 2A/7'

F

where I"„(8$)are the spherical harmonic functions.
Terms involving C'" and C„"' and C' ' (K&4) do not
contribute to the d-orbital splitting and have been
omitted from Egs. (15). The energy shifts due to
this potential may be evaluated using atomic orbit-
als. The results are

v'„(B)= v, = ——,
'

Aq (0) ——", dq(0),

v„',(B)= v„= v, ,

v„', (B)=v, = —', Aq(0)- —", dq(0),

v~g, s(B) = v„= —', Aq(0)+ —", dq(0),

v'„2 p(B) =v„= ——,Aq(0)+ —", dq(0)

where, for our model

A = (e'/a') (7'),
d = (35/4a')e'[(2/105) (~')],

(~")= f, d~i~B„(~)i'~"

(16)

The quantity d is frequently denoted by D. How-

ever, the full crystal field splitting does not result
from this type of model. We reserve the symbol
Dq for the molecular-crystal-field- splitting param-
eter including overlap and covalency effects. This
point has been discussed by Sugano et al. "and also
by Mattheiss. ' In the case of the infinite crystal,
the splittings are

v, = v, = v„= v~ = —4dq (0), t2 levels (»)
v, = v„=v „=+ 6dq(0), e levels .

The magnitude of the term A can be calculated
from Eq. (IV) but such an estimate is unreliable.
Recently, paramagnetic-resonance experiments b

~ ~ 58
n s

Muller et al. on Ni ' ion-oxygen vacancy pairs in-
dicates that the crystal field of fivefold-coordinated
ions is about 6%% smaller than that for sixfold co-
ordination. It should be noted that this reduction

F..
d

FIG. 8. Energy-level diagram for the B-metal ion in
the A.J303 perovskite crystal. The left-hand side shows
the splittings in the bulk and the right-hand side shows
those for a type-I surface. The diagonal matrix elements
corresponding to these levels are also given.

f(0; 7")=A, CO '(8, (f&) +B,P v 6 [C2 '(8, P)+ C'2'(8, P)].
For the bulk A, = )B, ) and the splittings are z =—A5 lt
and v = - —, A, . At or near to a surface A, w I Bl I

and additional splitting can occur. The degeneracy
of the two P, orbitals is removed. The magnitude
of the parameters A, and B, are modified at the
surface. If we consider only the nearest-neighbor
B-ion contributions to A, and Bl, then A' —B'-A
for a type-I surface and no additional splitting oc-
eUrs. For the type- I sUrfaee A = B = A1 1 ~ Bulk ~

lngno additional splitting occurs. Additional splittin
results from consideration of more distant neigh-
bors. Also, the change in the magnitude of A"
relative to the bulk value is not so drastic when
more distant-neighbor interactions are included.
We shall ignore the additional splitting and assume
the change in the magnitude of the axial splitting
scales as the change in the oxygen Madelung poteI'-
tial at the surface. According to this scheme, the
splittings are essentially unchanged for the type-I
surface and are reduced by about 15'%%u&& on a type-II
surface. Similarly, for a type-II surface, the d-
orbital splittings are assumed to be unaltered from
the bulk values since the B-metal ion is one layer
from the surface.

C. Matrix Equation for Surface States

In this section we discuss the LCAO model for a
finite crystal. Perturbation in the diagonal matrix
elements of ions at or one layer from the surface
will be considered. The effect of changes in the
lattice spacing and small rotations of the B-metal-
oxygen bonds at the surface are included by chang-
ing the strength of the P-d interactions. The per-
turbations included do not change the two-dimen-
sional periodicity.

In constructing the matrix equations, we make
use of the two-dimensional periodicity parallel to
the surface. The finite crystal extends between
the planes Z=O and Z=2Na where N is the number
of unit cells (one-half the number of layers) and a
is the layer spacing. The basis functions are the
two-dimensional Bloch functions. One obtains the
matrix equation

e(a„)g,= z(a„)y, ,

where H is a N &&X supermatrix of 14 ~ 14 matrices,
k„ is the two-dimensional wave vector parallel to
the surface (in the x-y plane), and g, is an eigen-
vector with 14K components which specify the
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amplitudes of the 14 orbitals on each plane parallel
to the surface. For the same approximation used
in deriving the bulk bands [including (PPo) and

(ppm)j, the matrix H(k„) is a nearest-neighbor
supermatrix. The diagonal blocks D(Z, ) are 14 x14
matrices corresponding to interactions of atoms
in unit cells parallel to the surface. The off diag-
onals connect atoms with unit cells whose origins
are displaced by 2a in the + Z direction. Interac-
tions between a cell at Z and one at Z- 2a arerepre-
sented by B(Z„ Z, —2a) and B'(Z„ Z, + 2a)
=B(Z, Z& —2a). The form of the matrix is

Sn

(1)
Sn

(a&
sn

where for o. =y, P=z,

E E

D„= (Pd~)

—2iS, (pd~)

(Pdw) 2(S„(Pdw))

E-E p

0 E-E

(22)

(23)

D 'B
B'DB

H(z„) = (20)

B„has only a single nonzero element, (B„,),z
=- (pdw) = (B,',)z, . The initial matrix D„', has the
form

(pdx)' 2iSy (pdv)'

Perturbations due to changes in the electrostatic
potentials, bond angles, and lattice spacing at the
surface are included in D' and all other D(Z, ) = D
are the same. Equation (20) can be solved numeri-
cally for the eigenvalues and eigenvectors by con-
sidering only a few layers. Such a procedure does
not give a great amount of insight into physical fea-
tures of the surface energy bands unless accom-
panied by an analytical model. In this work we are
concerned primarily with extracting the qualitative
features of the surface states.

D. Qualitative Features of Surface Energy Bands

In this section we derive analytical expressions
for the surface energy bands for a semi-infinite
solid. By neglecting the (ppm) and (ppo) interac-
tions, we can find exact solutions for the surface
states including the perturbations in the electro-
static potentials and changes in the transfer inte-
grals at the surface. The model is also exactly
soluable for a finite slab using the same procedure.
The results, however, indicate that the surface
states are highly localized at the surface so that no
significant effects are neglected by considering
only the semi-infinite slab.

For (ppo) =(ppm)=0, Eq. (20) can be block
diagonalized in the sa,me fashion as described in
Sec. III. The reduced surface-matrix problem
then consists of three 3 x3 supermatriees giving
the t~, surface states, and the upper valence-band
surface states, and a 5x5 suyermatrix which gives
the e~ conduction-band surface states and the lower
valence-band surface states. We now consider the
3 0&3 supermatrix equation which has the form

(pdm)'

2iS,(pd~)"

(24)

TYPE l SURFACE

OX

The perturbed energies E, and E~ differ from the
bulk values because of changes in the Madelung
potentials and the electrostatic splitting. The 2, 2
element corresponds to a P, orbital one layer in
from the surface so that the electrostatic potentials
are essentially unchanged. Therefore, we assume
no perturbation in this element. The 1, 2 and 2, 1
elements (pdm)' correspond to m transfer integrals
between the P, orbitals one layer from the surface
and the d„orbitals on the surface. It is quite like-
ly that the spacing between the first two layers is
slightly modified. For example, Tong and Mara-
dudin' found an expansion of about 0. 5% from the
bulk lattice spacing at the surface of a NaCl lattice.
Such an expansion would act to reduce the (Pdm)
interaction since the transfer integrals decrease
exponentially with increasing separation of the
ions. The 1, 3 and 3, 1 elements represent m

transfer between a P, orbital and a d„, orbital on
the surface. Changes in the bond angle are repre-
sented by (Pds)". The situation is shown sche-
matically in Fig. 9. The quantity (Pdm)" can be

D~~g- E B~g
B())a(D())s E)~s

()(D ))
—E) s ' —P

i
(21) FIG. 9. Schematic showing the increase in the lattice

spacing from a to a' and small rotations of the oxygen—
B-metal bond at a (001) type-I surface.
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written" as sin'H cos H(pdo)+ cos H(l —2 sin'H)(pd««).
Since (pdv) is greater than (pd««), it follows that
rotation of the bonds leads to an increased transfer
integral. The surface perturbations considered
here do not destroy the two-dimensional periodicity
of the crystal. The remaining elements of D,', are
equal to those of D„,. The vectors s„give the
amplitudes of the wave functions in the a ceQ n

layers in from the surface. The components s„'",
s„' ', and $„' ' correspond to the amplitudes of the
d„,(B), p„' ', and p,' ' in the nth unit cell. For the
type-I surface, the diagonal energy corresponding
to p„' ' is unmodified. According to Table II, the
energy of p,' ' should also be unchanged. We in-
clude the possibility of changes in the energy of
this orbital since surface irregularities are likely
to change the surface potentials.

If we write out the equations of Eq. (21) we find
that

then Eqs. (2V) and (28) may be written

(M + EM)S(1 ) = 0,
where

ddt(~ = dp —e~a

~&& = 0 otherwise,

(e,(1) )
S(1)= s,(1)

(so)

(31)

(32)

(e« —e)s«(1)+ e sl(2)+ 2«e Snsl(3 )

(e«. —e)si(2)+e's, (1)—sz(l) = 0,
(e' —e )s, (3)—2ie "S„s,(l) = 0,

and for e&1

(e, —e)s„(l)+s„(2)—s„,(2)+2iS,s„(3)=0,
(e, —e)s„(2)+s„(l)-s„., (1)=0,

(e, —e)s„(3)-2iS„s„(l)= 0.
(26)

The surface energy bands are then determined by

)I+G~« =0,
where 6= M ' and

e")l- l'I
2i sine

(s4)

That M '6 =I is easily demonstrated by direct ma-
trix multiplication. Since ~ has only a single
nonzero element, Eq. (34) reduces to simply

The equations for s, (1) give

( )
2iS~~(1)e"

E'g —E'

then

(2)
sa(l ) —s, (1)e'

(27b)

[(e«.- e)(e« —e) —(2+ 4S„)]s„(1)+s„„(l)+s„,(l) = 0,
(28a)

[(e,—e)(e, —e)- (2+4S'„)+~]+s,(I) =0, (28b)

~ = (&e«+e«e)(e«, e) (e ) —4(e ) Sn +Kg+ 6'g - 6

—(e« —e)(e, —e)+ (2+ 4S„'), (28c)

In Eqs. (25) and (26), e, = E,/(pd w), e = E/(pds),
e'= (pd««')/(pds), and e"= (pd««)"/(pds). From
Eq. (26), we can express all amplitudes in terms
of s„(1) (for n & 2) giving

(2)
sn+1(1) —sn(l)

(2~ )

s, (1)= —G„(bP —e")s,(l ) . (s8)

For l= 1, we obtain the eigenvalue equation, Eq.
(36). Making use of this relation, we find that

s«(1 ) ,««i-««e

s,(1)
(Se)

For a surface state we require that Im8&0. Since
~ is real [Eq. (28)j, Eq. (36) requires that H=in
for bp & 0 and 8 = +i7p«for bp & 0, with n and p real
positive coefficients, Thus for hP &0

s«(I ) ,-«i-«l.
s, (1)

(4o)

(36)

Then, using the definition of cos 8, we obtain the
eigenvalue condition

~p+ (I/~p) = (2+4S,')- (e« e)(e —e)-. (3'i

[Note that the surface energy can be obtained di-
rectly from Eq. (3V) in the special case that hP is
independent of e.] The eigenstates are obtained
from the relation (I+ G&M) S(1)= 0, which yields

Simultaneous solution of Eqs. (28a) and (28b)
yields the surface energy bands and wave functions.
If we define

and for hp&0

)
( 1)ll-« Is- li-« I ««

s,(1)
(41)

(e«- e)(e, —e)- (2+4S'„)=- 2cosH, (2O) We note that since bp =e or —e, then I ~I » for
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a solution to exist. Returning to the definition of
cosB, we find that since cosho, ~1 (for ~ &0) that

(st- s)(s, —s)- (2+4~,') -- 2.
When the equality holds, the energy is given by

~ =-.'(~, +s,)~f[-,'(&, - &,)]'+4+4S,'}'" (43)

and when the inequality holds, & lies between these
two bands. Referring back to Eq. (9), we see that
Eq (43. ) describes the bulk tz, and upper valence
bands for K, =O. We refer to these as the conduc-
tion, and valence-band edges. Thus, surface states
for hp &O lie in the energy gap of the bulk bands be-
tween the band edges.

For bP & 1, cos B = —coshP and we obtain the in-
equality

(et —s)(s, —s) —(2+ 4S,') ~ 2 .

The equality gives

s= l(~, +s,)+&[!(~,—~.)]'+4+4~,'}"'.
Equation (45) describes the bottom of the valence
band and the top of the conduction band for E,a = —,'m.

The inequality is satisfied for energies above the
conduction band or below the valence band. Thus
there are no solutions within the bulk bands (ex-
cept for special conditions described later).

Equation (37) for the surface energy gives a
fifth-order polynomial equation. A root of this
polynomial is a solution only when I hp)&1 for that
root. Multiple surface branches generally exist.
Their number and dispersion depends upon the
perturbations. If all perturbations vanish, then
hP = 1 [Eq. (28)] and no surface branch exists.

Consider the simple case for which the only non-
vanishing perturbation is hg, . For this situation„
the eigenvalue condition is

[ae, (e, —s)+ 1]'+1+ [(s,—e)(s, —e) —(2+ 4$,')]

st + (s1 st) (~st + st) (sJ. 'sg) (+Kg &sg) ~

Z 4 3 3 4

s, (s) (ap) (48)

Using Eqs. (27a) and (27b), the amplitudes of s, (2)
and s, (3) are easily found. It is clear from Eq.
(48) that the surface-state localization increases
with &P (I» I

apl�

»). The separation of a surface
band from the bulk band also increases with in-
creasing perturbation. For the case discussed
previously (small b«), one can deduce that

The approximation Eq. (4V) is valid only for
(s, —e, )e, «1. For larger hs„ the energy separa-
tion becomes comparable to hg, but is less. As
the perturbations increase in strength, additional
surface bands appear. Some additional bands first
occur near the edge of the zone (point X) and are
truncated at some value of k„. For example, in
Fig. 10(a), the surface band below the valence
band for Ag, =- 2 eV is truncated at the point in-
dicated by the arrow while for hg, = —4 eV, it exists
over the entire zone. The spatial extent of a sur-
face state is easily obtained from Eqs. (36) and (39).
Since ~=8 ', it follows that

x[46g(E'q —s) y 1]= 0 .

For small Aq, & Q, a surface band below the conduc-
tion band in the gap is formed with energy

Q = g~ + Qkgg + 6Agg+ cking
3 4

(&x &s)
6'g + 6'g —2&g

5 = —Q(tg —ss) q

E 7
I

I

6

+ —2&(tx —6a)C= + (Cg —6s) c,
E'g+ 6g —26'

where g~ is the conduction-band-edge energy given
by Eq. (43). It is clear that the surface band will
be separated from the conduction band by an amount
less than Ag, for small Aq, . This feature is gen-
erally true. At the point I in the Brillouin zone,
Eq. (47) reduces to

0 k a-= k a
Y

FIG. 10. Surface states formed at a type-I (001) sur-
face of SrTi03 for various values of the surface perturba-
tions. The arrows indicate the point at which a surface
band is truncated. The calculations use the parameters
of Fig. 5. The surface perturbations are: 0.) ~t = —0.5,
m, =o.o; (2) -1.o, o. o; (3) —2. o, o.o; (4) -z.o, o. o;
(5) 0.0, 0.5; (6) 0.0, 1.0; (7) 0.0, 2. 0; and (8) 0.0, 4.0.
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s (1)
sg(1) I, l+(E —g )kf ) (49)

—[2 —(e') ] '+4S„)'@ for s'&1. (50)

This band lies in the energy gap and follows the
conduction-(valence) band edge approximately.
Changes in g" result from rotation of the oxygen-

(a) (bj

For larger values (he, & —1), the surface band is
separated from the bulk band by an energy com-
parable to ~e, .

A series of surface bands for different perturba-
tions are illustrated in Figs. 10 and 11. These
calculations were made using the parameters em-
ployed for Fig. 5 with (PPa)=(PPz)=0.

The surface bands produced when the parameters
used for Fig. 6 are employed are very similar and
therefore we shall not reproduce them here. Clear-
ly, a variety of surface bands can be produced using
the various perturbations he„hq„g ', and &".
An increase in the lattice spacing at the surface
leads to a decrease in &'(s' &1). This effect pro-
duces conduction and valence surface bands. With
only &' as a perturbation, the surface bands are
described by

s = 2(sg+ zx) +([k(ex sg)] + (z )

8-metal ion band. Small rotations result in an in-
crease in the p-d interaction. Study of Etl. (28c)
shows that this effect is opposed to the effect of
lowering of the electrostatic potentials of the oxygen
atom on the surface. Solutions containing this ef-
fect can easily be studied using Eti. (3'7). No further
discussion of this perturbation will be given here.
We have yet to consider the other surface states
corresponding to o.P=xy which are admixtures of
d~, P,'", and P„' '. In the approximation (PPv)
= (pPo) =0 there is no coupling between these orbitals
on different layers parallel to the surface. The
surface layer states are therefore independent of
the other layers. The solutions are given by

(51)
s= 2(s,'+e))+{[2(s,'-s))]'+4(s")'(S„'+S„'))'@.

These surface states are confined entirely to the
surface layer. They may have energies, depending
on the perturbations, which lie in the bulk continuum
of states. If there are no perturbations, then the
dispersion is identical to the bulk band edge. Since
the transfer integrals (PPv) and (PPo) are small,
inclusion of these terms will not destroy these
features. Therefore, virtual surface states could
exist within the bulk bands. However, one expects
on the basis of the electrostatic energies that the
perturbations will push these surface bands into
the energy-gap region.

Next consider the states for o.P=xz. The prob-
lem is clearly the same as for the case nP=yz and
all expressions derived above can be used if 8„ is
substituted for S„.

Type-11 Surface Bands

The discussion of surface states to this point
has been for the type-I surface in which the B-
metal ion is on the surface. The nature of the sur-
face states is modified in the surface is a type-II
surface. The surface- state- matrix problem is
still described by Eq. (20). The matrix elements
of D„are given by Eg. (23) with the following
changes:

BULK

For the initial matrix, D„, differs in that

(D„',)„=(B,'.)„=-(pdv)', (D„.)„=e,'- e. (53)

k a~ p
k a~

FIG. 11. Surface bands formed at a type-I (001) sur-
face of SrTi03 for various surface perturbations. The
calculations use the parameters of Fig. 5. The surface
perturbations are (1) ~&=0.5, ~~=0.0; (2) 2.0, 2.0;
(3) —0.5, 4. 0; (4) -4.0, 0.5; and (5); -0.5, 0.5.

(Pdw)' ' e, -s
(Pd v)

(54)

Perturbations in the energies of the d„, and j,' ' are
negligible since these ions are not on the surface
for the type-II case. The only nonvanishing ele-
ment of B is B~z- (Pdz). Proceeding as in the pre-
vious case, we find the eigenvalue condition of the
form given by Eg. (3V), where now
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All the formal results [Eqs. (37)-(45) and (48)]
previously discussed stij, l appj. y with hj» given by
EG. (54). If (pifT) == (pd7i') JJulcl. $ .---. eJ J then no su'—
face sohiti(~n" occur. However„bee@;:- 'e or.

'
the

menornlnator J.n zxp ~
an G, K'L)l. trarll'y' s "xia&l pertUrc&R"-

tion produces RD Rlbitrarily ~alge Af) when q

9J on&a/ rP. f'Kly 4 &U11@c.e Qx" ar'(' 0&-'r. I.&ed Iron
he flat valence band Rt & = gz Gccux's at Qn energy

If both per tur bations are small, we can
f1nd the sux'fRce- tate ene1" gy„, s&~8 wl'lte

(pdii)' '
t

(pdii)
& —&J. + o~'-'J. J ~&J.= &J. &J. J (55)

and obtain Ap= (1 —5n), (I —n) =(1 —o) ' for 5«1.
Clear™)» 0 '"'-ust be pc)sltlve fol R Solution H1nce ~
must be greater than l. Using EJI. (37) we find

a= 2'~[(1+8,",)' "—1 j,
e = e, .-2S,'[(I+S,')'" —I]ae, .

This surface branch «ies in the enex gy- gap region
~.nd has very little dispersion for 6&, snla. ll. 9 e
also note that the branch has an up& ard curvature
whereas the valence band has downward curvature.
This feature persists even for larger values of 6g„
although Fg. (56) is valid only for Le, &'- l. A

series of branches for different values of .~c~ v, ;th
(pdii) '=- (pdii) Ji,re shown 1n. Fig. 12. The (ppii) aiid

(PPo) int~. ractions will alter these surface brancne:",
cons1del ably, These lntex'actions produce f ~lsper-
s.on and remove ome of the degene acies amon ~

t he v a.l en ce bands .
The aP=xz states on the type-II surface have the

sxme behavior as the cvP=-y"-. States except that S„
is 1~placed by 8„. The np=xq' states are again
two-dimensional solutions. Layers parallel tu '.he
, . urface are decoupled. The surface oxy"'ens do not
participate in these states when ( pp ti) — (ppo') = 0.

2. e& Surface Scales

where x =- (E.—Z)(E„—E) and o = (Pdo). The param-
eter Ap contains the perturbations due to electro-
static effects and changes in transfer integrals.
Surface sta'e=- produces below the e conduction
band can lie 1in the narrow gap between the e, and

fz, conduction bands if it exists (Fig. 6) or in the
bulk bands. Surface bands produced above the

lower valence bands lie in the upper bulk valence
bands. If the (ppii) and (ppo) integrals are in-
cluded, these surface states are not decoupled from
the bulk states. The coupling is weak for the con-
duction e~ surface bands, and il is probably mean-
ingful to consider them as virtual surface states.
In order to determine the lifetime of these states,
it is necessary to include the P-P interactions.
These questions will be considered in a subsequent
PRP e1',

V. SUMMARY AND CONCLUSIONS

":n the preceding sections, we have investigated
R simple I CAG model for the bulk and surface en-
ergy bRnds of d-band cubic perovskite crystals of
v hich Sr TiO, „HRTiQ„BRZrO„and KTaO, are
examples, The main emphasis was in establishing
the qualitative features in terms of the largest
encl gles.

An I CAG model of the type employed by Kahn
Rn" Leyendecker was used. The diagonal nlatrix
element s were estimated by using the approach of
Seitz for ionic crystals. Two approximate band
structures of Sx TiO~ were obtained. The first was
obtained utilizing the transfer integrals of Ka,hn

and T eyevd ck"7= Rno &w'tendick to~ether with the
ionization p~~tentia of Ti ', the electron affinity of
0 „ the observed energy gap, and Madelung poten-

T'PF, ll SURFACE

St- TiG)

The e, bulk and surface conduction bands and the
lower bul. k and surfa~:. e valence bano. s are decoupled
f$.'onl the bulk and su1 face t2~ and upper vRI.ence
bark&. Is in .=he Rpprox1ma, t10D we Rre using here. The
Platrlx px'ok~leM. for She surface bands can Rlso b".-'

expressed as [H(k, i E]d:,. =-0 with -B(k, , ) having the
I'. orrL, given by Eq. (20&. In this case the matrices
D anci. 8 Rre 5~5 matrices. The same technique
u, ;ed for the i~, states can be applied. The solutions
axe admixutres of the orbitals d, ~& „z, d, a „z, p.'."„
~",

,
', arid p,' '. The algebra is quite a bi.t more

c(.)real'licated but One cRD de1'1ve RD eio'envalue equR-
'. Jon of the for&lr

+j& -]- I, ~/ AP ) —2cosp == 0 .

In Eci. {57),

"E, = 2eV

I IG. 12. Surface bands
formed at a type-IL (001)
surface for different per-
turbations in the oxygen
energy. The calculations
use the parameters of
Fig. 5.

2 cosf =- 2
(x —4 -S"„}(x—6o'.q;, ) + 2o'S;(x —6o'S;)

o'-tx —3o'"(S„'+8,'. )] („6)
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tials. The second band structure was obtair ed by
fitting our model to the more complicated LCAO
version of Mattheiss. The two band structures are
quite similar. The major difference is the separa-
tion of the e, and t~, conduction bands in the latter
model. Exact expressions were derived for the
Madelung potentials of cubic crystals with arbitrary
charges and numbers of the atoms per unit cell.
The effective charges on the ions were varied to
produce the proper energy gap at the point I' in the
Brillouin zone. Explicit expressions for the direct
gap in terms of the electrostatic energies, free-ion
energies, and the (PPo) and (pps) transfer integrals
were obtained. For a direct gap of 3.24 eV, an
effective oxygen charge of —1.63 ( e I was obtained
for SrTiO3 instead of the full ionic value of —2I e).
Analytic expressions for the bulk energy bands and
wave functions were derived for the approximation
in which the oxygen-oxygen interactions are ne-
glected. The results of this approximation were
then compared with the results of the full model.
The upper valence bands did not agree as well.
The approximation produced several flat (without
dispersion) bands which have dispersion when the
p-p interactions are included.

The LCAO method was then extended to treat the
(001) surface problem. The spatial variations in
the Madelung potentials near a surface were ob-
tained. Two types of (001) surfaces occur for the
ABO3 perovskite structure. The type-I surface
has oxygen and B-metal ions exposed while the
type-II surface has oxygen and A-metal ions. In
addition to the changes in the surface Madelung po-
tentials, the changes in the electrostatic splittings
of the d and P levels at the surface were investi-
gated. The lower symmetry produces additional
splittings. Degeneracy of the two e~ and p~ levels
is lifted and the three t~, states split into a twofold
and singlet level. Changes in the transfer integrals
corresponding to changes in the lattice spacing and
small rotations in the B-metal-oxygen bonds at
the surface were also considered. Analytic expres-
sions for the surface band were obtained neglecting
the oxygen-oxygen interactions. The effects of
various surface perturbations were studied for both
type-I and -II surfaces. For small perturbations,
a single band appears in the energy gap. Increas-
ing the perturbations leads to additional bands.
Truncated bands which exist only over a portion of
the Brillouin zone were found. Analytic expres-
sions for the surface-state wave functions were
also derived. In general, the surface states were

found to be confined mainly to the first few atomic
layers. Special surface states with energies in
the bulk continuum were found. The behavior of the

e~ and lower valencebands were briefly mentioned.
For the perfect or ideal (001) type-I surface, the

Madelung potential is reduced about 2 eV at the Ti
site of Sr TiO„while the oxygen potential is essen-
tially unperturbed. Similarly, for a type-II sur-
face, the oxygen potential is increased by about 2
eV while the Ti potential (one layer from the sur-
face) does not change very much. In both cases,
surface bands near the center of the band gap are
predicted. These surface states can act as efficient
recombination centers for both holes and electrons.
They would also act as active centers for chemi-
sorption processes.

On the basis of our present analysis, it appears
that the d-band perovskites are ideal candidates
for the study of d-band surface states and their
role in catalysis.

A great deal of additional theoretical work re-
mains to be done. The application of this simple
model to other perovskites and in particular to
KTaO3 should prove quite interesting. The effects
of the p-P interactions on the surface states need
to be studied. Since both (PPo) and (PPm) are small
relative to the other energies considered, their
effect can be treated by perturbation theory. The
lifetimes of the virtual e, states can then be deter-
mined. The possibility of surface reconstruction
presents a more difficult problem but experimental
data are lacking at the present time.

In future work, we hope to deal with these prob-
lems and the calculation of the chemisorption ener-
gy of molecules on the surface of d-band perovskites.

Note added in proof. Recently we have employed
the simple analytical model described here to cal-
culate some of the bulk properties of SrTi03 ~ In
this work it is noted that the "two-dimensional"
character of the t~, conduction bands [i.e. , E(k)
depends only on two components of the wave vec-
tor] produces discontinuities and logarithmic sin-
gularities in the single-particle Green's function,
in the density of states and joint density of states.
Thes e featur es are shown to account for charac-
teristic structure in the optical properties of sev-
eral perovskites.
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