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The equations describing the elastic behavior of plane-wave disturbances in an infinite pi-
ezoelectric crystal are reduced in form to those of a purely elastic medium in the quasistatic
approximation. The internal energy of the piezoelectric solid is expressed as one elastic-
type term, and an alternative expression for the elastic energy flux yields the combined
elastic and electric energy Qux on replacing the elastic constant c with the stiffened "con-

«g)

stants" c~ without introducing V'&& H= D and P= E x H. Similarly, the electric displacement
is expressed in terms of the strain variables alone by means of modified piezoelectric "con««

stants" e . Properties of this "stiffened-elastic" formalism and of the usual mechanical-
electrical formulation are the same, and the two formulations are discussed in relation to
each other. The elastic-propagation properties of piezoelectrics are describable by a ray
or wave surface, which exists in terms of the c~, and the techniques of variational elasticity
carry over to piezoelectrics. The positive definiteness of the c~ is asserted for an. arbitrary
direction to realize physical stability and, whereas no new limiting restrictions among mate-
rial constants obtain, their use in Rayleigh-Hitz procedures assures its monotonic conver-
gence. The symmetry and transformation properties of the c~ show that, whereas their
symmetry is lower than that of the c, their centrosymmetric nature requires only the centro-
symmetric crystal groups to describe the elastic properties of piezoelectric crystals. Various
stiffened-elastic properties are numerically evaluated for an arbitrary nonpure mode and
symmetry-related directions for o, -quartz (class 32), LiNb03 (3m), CdS (6mm), Ba2NaNb50(5
(2mm), Bi~2oe0~2 (23), and GaAs g3m). The work offers a simplified approach to charac-
terizing bulk and surface elastic-wave properties of electroelastic waves in piezoelectric
crystals and of modally analyzing particular classes of piezoelectric structures.

I. INTRODUCTION

In describing the elastic behavior of piezoelec««
tric crystals, the customary procedure is to use
the strain-induced stress plus the electric-field-
induced stress for the total stress in Newtons equa-
tion of motion for distributed media. ' As ap-
propriate, traveling-wave solutions are assumed
and the wave-propagation properties calculated
for the particular direction chosen. For purely
elastic crystals, piezoelectric contributions to the
stress are, by definition, not considered and one

' obtains the formalism for (infinite) purely elastic
vibrating crystals. As pointed out by Borgnis, '
the theory is referred to as Christoffel theory by
many, but is initially due to G. Green.

The Green-Christoffel theory has been the basis
of many analyses and results. It is of interest and
practical value to carry over many of these to the
vibrating piezoelectric solid. Attempts to do this
~ould be justified by the formal reduction and cor-
respondence of the piezoelectric equations of mo-
tion to those of the theory of elasticity. ' Such a
correspondence is completed in Sec. III after
briefly introducing and reviewing linear piezoelec-
tric theory in Sec. II. A relation giving the elec-
tric displacement within this correspondence is al««

so given in Sec. III. The existence of the ray or
wave surface for piezoelectrics is discussed in
Sec. IV. In Sec. V the variational-elasticity for-

malism is extended to piezoelectric media and the
monotonic convergence of the Rayleigh-Ritz ex-
pansion is shown to follow from the assertion of
the positive definiteness of the potential energy.
Relations among the material constants owing to
this positive definiteness are explored in Sec. VI.
The transformation and symmetry properties of
the coefficients in the potential energy are developed
in Sec. VII and the centrosymmetric symmetry
groups are shown to describe the symmetry of the
elastic properties for crystals of the piezoelectric
crystal classes. Included are numerical calcula««

tions for piezoelectric crystals of various symme-
try classes.

II. THEORY, INTRODUCTION, AND REVIEW

Indicial and symbolic notation is used. Indices
run from 1 to 3 unless otherwise stated and the
summation over repeated index pairs is understood.
Differentiation of g„with respect to x& is shown as
g„,&, and with respect to k& as g„,,, The scalar
p differentiated with respect to x; is shown as p, &.

k is the wave normal vector, 0 its magnitude, k
its unit direction, and 0& its ith component. Cross
and dot product symbols are used as needed for
clarity. Exponentials are suppressed when their
presence is not significant and the meanings of other
symbols. are clear from their context or are ex-
plained. The notation, which is commonly ac-
cepted, is that of Tiersten, ' Auld, and Holland
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and Eer¹isse, ' and many others.
In piezoelectric media, the following equations

apply"':

pN) = «g, y

eimnSmn l = elmn ~e„ln = imn~l~m+n y

(14)
where &'"= d~, k~k, . The amplitude of the potential
part of the wave in terms of the amplitudes u 0 of
the elastic-displacement part of the wave is

where
g-

C~& nS „—ei&rEr

Dl ~lmnSmn + +Error p

1S „=n(u„, „+u„,„) .
The absence of free electric charge requires

0 ~ D—= Dl, , ——0,

(3)

(4)

eimn&i&n&m0
@0 =

qsn (15)

(Note that the subscript zero refers to the ampli-
tude of u and y and does not indicate a component
or a unit vector ).

With Eq. (13), Eq. (f) yields the electric field

components as

and for electromagnetic disturbances propagating
at or near the velocity of sound where magnetic
induction may be neglected

yxP =0. (6)

Equation (6), which is the essence of the "quasi-
static approximation, "' permits writing

p is the scalar quasistatic electric-field potential.
From the chosen forms of the constituitive equa-

tions (2) and (3), the internal energy function for
the system is

2U = S~)«y + &iai = &~ymnS~)Smn+ ~ir~iEr,
(6)

which is positive definite. On consideration of the

time rate of change of total energy in an arbitrary
volume, the outward energy flux across the bound-

ing surface in the j direction —I'& is

—~irlr, i =&imnSmn, i . (10)

In terms of the potential introduced in Eq. (I), this
becomes

~gr 9 ri —~lmnSmn, i p

which quantitatively states the relation between

the induced potential and the strain, and couples
the elastic displacement and potential disturbance
together into a single electroelastic disturbance.
For a disturbance of the plane-wave form,

&f (cot-k~x&)
+m = +mO& (12)

4 (cot Ag xg )
0

the following relations can be derived:

(13)

-P)dS~ = (7llu, —AD))dS~ —— (pu~+ U)dV .
~S &V

(9)
Equation (5) states that any electric charge which

may exist is induced, and the zero divergence of

Eq. (3) says that any electric field or charge sup-

porting this field is induced by the elastic strain,
and conversely, according to

E„=- tI|) „= ik„p=N„& e' "'" '" '. (16)

The quantity ip is identical to Auld's C and, of

course, the same conclusion may be drawn —that

the induced electric field part of the wave is paral-
lel to the propagation direction k. Additional use-
ful expressions for E„result on multiplying each
expression for y in Eq. (14) by ik„, or on sym-

bolically differentiating each term with respect to

+r o obtain Smn in~ +m nlr p
and +m r and then chang

ing sign; the intermediate expression

~r(~l e lmnumIn) ~r(~l elmnSmn)
~sh

is the equivalent of Auld's Eq. (29).
Note that Di, i= 0 implies that 0 is ~ormal to k,

for differentiating Eq. (3) yields Dl, , =Dl k, and, as
E is parallel to k, D is perpendicular to R. (The

conclusions regarding the orientations of k, E, and

5, are the same as Auld's and are reached without

introducing gx H= D, as he has done. )
The well-known fact that the piezodieleetrically

stiffened elastic constants may be used in place of

in the Green-Christoffel equations follows from
differentiating Eq. (2) with respect to x&, replacing
—E„,& with k„(k l,e„„S„)/e from Eq. (17), and

of course using Eq. (1). The intermediate result

S ~ Or ~r~mnP ~P c — AD
ggmn + ~sk Smn, ~ C i~ mnSmn& j

(16)
implies

V„=C",D, nS „ (19)

and defines the stiffened elastic "constants" ~

The latter can be directly derived from Eq. (2) [on

replacing E, from Eq. (17)].
The foregoing is intended as both a brief review

and a starting point, except perhaps for Eqs. (19)
(which is an explicit statement of a piezodielec-
trically stiffened stress-strain law with direction-
ally dependent constants for piezodielectric ma-
terials) and (15), both of which may not have been

so expressed previously. In the following section,
the potential energy function and the energy-flow
equation are expressed in terms of the c and the
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strain variables. Finally, the electric displace-
ment is expressed in terms of the strain variables
and, as it turns out, modified piezoelectric con-

tants e )~~ .
III. CORRESPONDENCE

The form of Eq. (19) and the existence of Eq.
(17) both suggest expressing the internal energy
function, Eq. (8), in terms of strain variables
alone. This follows directly, and

ItD2U = c&gmnSQ Sn p

a result which could be taken as justification for
obtaining U by multiplying Eq. (19) by S,&. Actual
justification includes the fact that 5 and E are
perpendicular (i. e. , ElD, = 0) for the internal en-
ergy is the sum 7~&S&&+E&D&. Physical stability
requires the positive definiteness of U. The re-
strictions this places on c, c, e, and d and
some other properties of the c will be examined
later.

Next, we consider the substitution of c for c
in the expression for elastic energy flux to obtain
the energy flux for the piezoelectric medium.
Clearly, —P&=c,&„„8„„i,=- r,&it& does not yield
-P&= 7&, ~& —yDl [from Eq. (5)], and vice versa,
under the exchange c c" . The form which nat-
urally admits such a substitution is based upon two
facts: (1) that, for undamped elastic plane waves
propagating in an anisotropic medium, the velocity
v, at which energy is propagated is given by the
envelope of planes perpendicular to the radius
vector of the phase velocity surface, ' or, equiva-
lently, by the normal to the inverse velocity or
slowness surface, ""and (2) that the elastic flux
is in the direction of this normal. ' The scalar
function connecting the two is the energy density
of the elastic plane wave for the particular direc-
tion of propagation. An expression for v~ which
yields the to-be-derived result most easily is the
well-known v~ = »/Sk, and the energy density is
pent~, their product being the energy flux. For
time-averaged quantities and normalized displace-
ment, u&o= 1,

p ~4) j ~(d—P~=pco - -- = pphl (21)
&k~ &k)

For the elastic case p~ =c&&~„u«u~ok&k„ follows
from Eqs. (1), (2), and (12) with all e@„coeffi-
cients zero. Equation (21) yields —P&= r&, uj For.
piezoelectric materials„pu =c&& „u&ou ok&k„, and
Eq. (21) yields

M) OD—2' = 2~v~ usoumokg+ ~&gran, a, usoumokg kn &

(22)

c&gmn, a, =
~k

~ f $8 ~ fft ggP kP g gg k g e fft PgP k Pg g k g
s',~k,kg (d~k p1,)

(28)
Whereas the termwise construction of Eq. (9) fol-
lows from Eq. (22), Eq. (22) is easily obtained by
using a form of Eq. (9),

+s cfmjsSkgum 9+s y (24)

where p is ik, e,„„S„„/e',~k, k, from Eq. (14), D,
ls obtained fl'0111 differentlatlng Eq. (3) and E„ls
from Eq. (16). Clearly, Eq. (22) also yields the
elastic energy flux for purely elastic materials on
c -c, for the last term becomes zero. That
the term is perpendicular to the propagation direc-
tion may be seen on forming and evaluating

8 ggk, -k (c;, „),
8

which is zero. Thus, with the correspondence of
Eqs. (22) and (24) completed, Eq. (22) may be
formally expressed in terms of the c and S~, as

M7 ' & OD+s c j)msSf Jufft ~cijmn&ASSED jSmn (25a)

kD ~ ' & kD+s cfgms~&fum &cfgmff A Skj Sfftn

-P, = (c"„'., + —,'ik„c"„'„„,, )S,,a. . (25c)
('

The derivation depends upon Eq. (21) extended
to plezodielectric materials. It does Dot depend
upon the addition of an electromagnetic energy
flux and an electrically stiffened elastic energy
f1ux, i.e. , upon the idea of these fluxes as indepen-
dent entities, ' nor does it depend upon the addi-
tion of independent elastic and electrical energy
terms if Eq. (20) [instead of (8)] is accepted at
the outset. The fact that the last term of Eqs. (24)
and (25) may be identified with the quantity Ex 5, ' '

the electromagnetic energy flux or Poynting vector,
does not of itself support the concept of an electro-
magnetic energy flux within the quasistatic approxi-
mation. In order to do this, the introduction of a
magnetic field accompanying the electroelastic dis-
turbance by means of ~x8= D is necessary. Such
an identification is convenient; the formalism and
its properties. have been established without in-
voking Y'xg= gj.

What has been shcnvn so far is a common formal-
ism which describes the elastic behavior of piezo-
electric and elastic materials. In order to de-
scribe the piezoelectric effect, the phenomenologi-
cal equation describing the electric displacement
must be carried over. In this formulation, where
the strain variables are considered to be the in-
dependent ones, E„ in Eq. (3) is eliminated as be-
fore and the electric displacement becomes
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enmn&n &)»&»&»vf I —
~

etmn n» ~
~ mn $mn mn ~ (26)

On forming the divergence of Eq. (I), D...= 0 re-
sults, as required. This directly follows on sum-
ming over the double index l, which results when
kl appears as a multiplying factor after differenti-
ating Sm„.

In summary, the formalism consists of the
following:

AD
~fgmn~mn y

kDDl = elmnSmn y

1S „= »(u„,„+u„„),
AD & ~fjr~r~ &~@
igmn i jmn+ p y g,

cd cd

eamn~a ~l$kQ
lmn = lmn — s s. x.

&cdad
AD2~ = «g nSsgS ~,

M) ~ & AD—Ps = C,yms~~g&m- ~C,ymns~s~

f
—Pg de —

(pug + U) dV .Js 8g

(1)

(19)

(26')

(4)

(18')

(26')

(20)

(25a)

(9')

The propagation of elastic waves in anisotropic
media has been examined ' ' 6 jn terms of three
surfaces-the phase-velocity surface, the inverse-
phase-velocity (or slowness) surface, and the
wave (or ray or energy-transport or group-velocity)
surface-and the interrelationship of these surfaces
developed. These relationships carry over in toto
for the case of electroelastic wave propagation in
piezodielectric materials. The positive definite-
ness of the e, necessary for physical stability,
ensures the reality of the roots of the characteris-
tic equation associated with Eqs. (1), (19), and

(12), and consequently of the reality of the three
sheets of the phase-velocity surface E(v) = 0 and of
the slowness surface t (s) = 0, where s -=sl = (k/&o)1
= (1/v)1. The polar reciprocal nature of the slow-
ness and group-velocity surfaces may be seen to
remain on forming —k, P, . This yields (k, /&o)

(-P,/p~ ) = 1, which is readily recognizable as
s ~ v~= 1, the statement of polar reciprocity of the

The potential part of the wave disturbance, given.

by Eq. (13), exists physically but does not enter
the formalism as an independent variable. The
potential may be modified to take into account a
constant external potential p" and electric field
E~ by writing p= poe' "' ~"&'+E&x~+ p" without
changing the validity of the formalism. Bl,&= Q is
a property of the system.

IV. GENERAL PROPAGATION PROPERTIES IN
PIEZODIELECTRIC MEDIA

slowness and group-velocity surfaces. [The multi-
plication of this equation by the scalar v yields
l ~ v~=&. This is the basis for the statement that
the group-velocity surface is the envelope of
planes perpendicular to radius vectors of length v.
Alternatively, because these radius vectors are
clearly the vectors from the origin of the phase-
velocity surface E(v) = 0 to points on it, 1 ~ v»= v is
also the basis for the statement that the group-
velocity or envelope surface is the (first) negative
pedal surface to the phase-velocity surface. The
pedal surface P(xq)=0 of the surface S(x,)= 0 is the
set of points determined by the planes tangent to
S and the perpendiculars to each of them from a
common origin. S is called the negative pedal of
P. See p. 352 of Ref. 10.]

Compared to those for purely elastic media,
these surfaces for piezodielectrics are more com-
plicated because the c" are themselves functions
of direction through the stiffening contributions.
Since the piezoelectric constants are involved, the
general symmetry features of the surfaces would

appear to be that associated with a piezoelectric
crystal class. Nevertheless, as shall be seen after
examination of the symmetry properties of the

, the over-all symmetry conforms to the same
symmetry groups as for purely elastic media, and

methods of analysis developed for elastic media
should, in general, be valid for piezoelectrically
stiffened elastics. Whether a simple replacement
of the c by the c is all that would be involved
(an unlikely situation in general) must be deter-
mined by an examination of each particular method
of analysis and of the problem to be analyzed. For
example, such a replacement would not necessarily
yield directions of pure mode propagation' and

of internal and external conical refraction' ' '

of piezodielectrics. Considered in the next section
is the amenability of the c' D formalism to the tech-
niques of variational calculus.

V. APPLICABILITY TO VARIATIONAL TREATMENT
OF PIEZODIELECTRICS

The variational calculus is used to approximate
the normal modes of linearly elastic and piezodi-
eleetrie structures. ' For the former, only the

are involved. For the latter, the formalism.
is expressed, in terms of the c, e, and d, and
Holland and EerNisse (HE) themselves have pointed
out that the potential energy term (actually the
electric enthalpy) in the Lagrangian is not positive
definite for the unbounded configuration and con-
sequently that the monotonic convergence of Ray-
leigh-Ritz procedures based upon it is not assured. '
The resolution of this difficulty is considered in the
context of the "k'D" formulation. The reader is
referred to their presentation of variational-elas-
ticity theory and to their variational treatment of
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piezoelectric problems for review and notation,
as these are the basis of the following discussion.

In variational-elasticity theory, arbitrary varia-
tions in the displacement functions 5u; are con-
sidered. These, in turn, may require modifica-
tion of the c coefficients insofar as the variations
introduce departures from the plane-wave form pf
the u; for which the c are defined. This is not
the case, however, since the variations in the u&

are related to variations in the coefficients of the
trial functions

%n

6u; =Z 5B 'U)
a=i

Also, the U~' ' are pointwise complete, such as the
set of functions cosmx (see p. 99 of Ref. 9), and because
the c' depend upon the propagation direction and
not the harmpnic pf the tr jal functjon, the c
main unchanged. With this stipulation, the equa-
tions of variational-elasticity theory for unbounded
media apply for unbounded piezoelectric solids on
replacing the c by the c . The approximate re-
sults obtained (the resonant frequencies and modal
displacement patterns for particular electrodeless
piezoelectric structures) should be comparable to
those which obtain for similar structures from
HE's variational treatment of the infinite piezo-
electric medium, for which it is not explicit that
the electric enthalpy term is positive definite. With
the former procedure, however, the potential en-

rgy term of the I agrangi
been asserted to be positive definite (on physical
grounds), thus assuring monotonic convergence.

The use of stiffened coefficients in the variation-
al treatment of three-dimensional piezoelectric
structures of arbitrary shape, electrode configura-
tion, and external force distribution is also possi-
ble. In such cases, information about the modal
potential distribution may be obtained from D, ,
= 0, which must hold for each mode v. Specifically,
after variationally evaluating the A" of u; = g, A'"'u,'"',
y'"' follows fram' Eq. (14). For problems
where the finite frequency potential y" must be
included, EerNisse has pointed out that the A'"' ob-
tained from solving the variational problem with the
c"D are no longer suitable. 21 Ways to meet this
limitation and to extend further the use of the c
in variational and other procedures have not been
explored.

VI. POSITIVE DEFINITENESS OF ekD

Already noted is the positive definiteness of the
internal energy 2U=C)g~„SO S~„+ 6'„)E„Eg, a
condition. which must exist for a vibrationally stable
solid. In the form of U expressed by Eq. (20),
the c array must be positive definite for an ar-
bitrary direction of propagation. For the case of
the positive definite c, the tensor components are

related among themselves and zero for each of the
applicable symmetry classes by setting the deter-
minants of the principal minors to be greater than
zero. The components of the c" array can be
similarly treated for each of the piezoelectric crys-
tal classes. The resulting inequality relations
are not particularly useful, because the number of
independent c cpmppnents is generally much
larger than that for the cE tensor and, ultimately,
the resulting relations are expressible in terms of
the c, e, and &' components. For symmetry class
32, some typical expressions are, using the 2-to-1
index contraction,

11 1, 22 2, 3$ 3,

23-32 4, 13-31—5, 12-21—6;
2

— 8 + qii l 1+ eiil 2+ &33 l 3 ~ 0,e11 s 2 s 2 s

cse

2 2eii 2e11 e
8 8 2/ 8 8 E 8 8 + 8 E 2 8cu —(cq4) /c44 cqq c44/c, 4

—cx4 c44- (cz4) /&u

+ &11 l1+ 8 ~11 l2+ ~33 l3
s 2 e14 s 2 s

c44

Whereas for convenient choices of the propagation
direction I such as (1, 0, 0) and (1, 1, 0) the indi-
vidual coefficients of the l, l, may be isolated or
combined and compared to zero, the relations ob-
tained are the same as those which derive from the
9x9 array which expresses U in terms of the c8,
e, —e', and &', where —e' is the negative transpose
of the e subarray. Because e and —e' appear in
this array, the relations do not restrict the size of
the coefficients which describe elastic, piezoelec-
tric, and dielectric effects in terms of one another.
This is compatible with the accepted independent
nature of these effects.

VII. TRANSFORMATION AND SYMMETRY PROPERTIES
OF &kD AND ekD

The apparent simplicity of the fpl malism ls off-
set by the directional dependence of the c'~ and
e~D. The elements of the c array no longer have
the property of a tensor in that they dp not repre-
sent a linear transformation of a strain to stress
for plane stress waves of arbitrary propagation di-
rection (and referring to them as a, "tensor"4 is
inappropriate). Accordingly, identity relations
among the c' components cannot be obtained from
the application of coordinate transformations,
which are invariant for a crystal symmetry class,
and, as shall be explicitly shown later, the addi-
tion of the nonzero stiffening contributions to iden-
tically zero c~, and the addition of unequal contribu-
tions to identically equal c~, are not infrequent.
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TABLE I. Indices for c~lD array of class 32 for arbi-
trary l. Underlined syrhbols denote a stiffened contribu-
tion inconsistent ~th unstiffened sym. retry. c~lD = c ~

12
11

13
13
33

14
—14

0
44

-25
25

0
45
55

-26
2g

0
-25

56
66

The transformation properties of the e~D depend
on those of the c and the stiffening contributions.
Those of the former are known, and, in the Appen-
dix, the stiffened contributions are shown to have
the transformation rule of a fourth-rank tensor.
Like the c, they are invariant with respect to in-
version through the origin. Thus, the e~ are
centrosymmetric and the seven crystal systems
which describe the symmetry of the elastic proper-
ties of an elastic crystal do the same for a piezo-
dielectric crystal. This is so in the face of the
identically nonzero piezoelectric constants of the
noncentrosymmetric classes and is due to the oc-
currence of the piezoelectric constants in the c"D

and in the characteristic equation only as products
of even parity: e,&„e~.

In general, identically nonzero piezoelectric
constants lead to the already mentioned nonzero
and unequal contributions to the c~. The c~D array
for class 32 (n-quartz) takes the form shown in
Table I. The expressions for the stiffened con-
stants are listed in Table II, and for special di-
rections such as (1, 1, 0), (1, 0, 0), and (0, 0, 1)
further simplification results. For most other
symmetry classes, where more than two piezo-
electric coefficients exist, equivalent symmetry
tables and expressions would reveal fewer rela-
tions. Notwithstanding the existence of a different
c~D array for each piezoelectric symmetry class,
with its apparent reduction in symmetry, the higher
symmetry of the seven crystal systems for purely
elastic media apply, as already shown. An analytic
demonstration of this, which keeps track of the ap-
parent symmetry-reducing terms and accounts for
their cancellation or invariance under the symme-
try operations of the crystal class, must be per-
formed for each- class and use must be made of the
symmetry classes' restrictions on the c, e, and

Such a proof being beyond the scope of this
paper, numerical counterexamples were sought
from among representative noncentrosymmetric
classes and none were found.

The calculations are outlined in Table III. Ini-
tially, an arbitrary direction of prop~ation (Q = 3',
8=30') was chosen which was neither a pure-mode
direction nor one for which the stiffened contribu-

TABLE II. c&~ expressed in terms of c&@~ and stiffened
contributions, class 32.

= &~yelp

~fD + + e2 E2y~sl

lD M 2 2 sl

c66 = ~~~+«i l2/~lD M 2 2 sl

lD
Cpa =

vpg

~P4 = D14+ e114'144~ sl

c44 = c,44+«4E~/lD M 2 2 sl

&25 + e11 ~144 i2~5

c45 = —e14/~ l2/

css = c44+~i4l2/~lD M 2 2 sl

+«, l& l2/. "lD

C55 —G14+ e11814 l2j5lD sl

tions to the c'D were accidentally identically zero.
Specific elastic properties calculated are the polar
and azimuthal angles of the eigen- or vibration
vector (1t1„, 8„), the sense of which is of course
arbitrary, the direction of energy flux given by

(Q~, 8~), which is sensewise unique, the phase ve-
locity, and the group velocity. Also calculated
are the magnitude and direction of 5 whose sense
depends upon the sense of the eigenvector. These
quantities were again numerically evaluated for a
second direction of propagation, which in all
cases was obtained from the first by an inversion
through the origin of the crystal coordinate sys-
tem. The procedure was repeated for other direc-
tions which are symmetrically equivalent for each
of the seven c".ystal groups that describe elastic
effects, but nonequivalent for each of the piezo-
electric crystal classes. The symmetry element
tested for each direction is also listed and is with
reference to the first, or identity, direction. For
example, trigonal crystal class 32 of e-quartz does
not have mirror planes perpendicular to its two-
fold rotation axes, where the centrosymmetric tri-
gonal group, which is class 3~, does. ~ One such
plane would be the longitudinal plane at Q = 30',
and the reflected direction corresponding to (Q, 8)
=(3', 30') is (57', 30'). For the two directions
considered, the table shows that the calculated
energy flux directions are also related by reflec-
tion in a mirror plane at Q = 30', suggesting that
the symmetry of class 3', not 32, prevails. The
directions of vibration and displacement are simi-
larly related, but to within an arbitrary reversal
of direction, and vector magnitudes p and v are
equal.

%hereas the absence of a numerical counter-
example from among the few cases examined does
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not constitute a proof that none exists-the proof is
the centrosymmetric nature of the transformation
rule derived-the examples demonstrate that, at
least for the materials and directions considered,
the contributions which outwardly appear to reduce
symmetry do not. These contributions are to be
distinguished from morphic effects, which may
indeed reduce symmetry, and their existence pro-
vides the means whereby the values of the piezo-
electric constants are customarily evaluated in
conjunction with obtaining the elastic constants. '

By similar analysis, the symmetry and trans-
formation properties of the modified piezoelectric
constants e""may be developed. Their symmetry
is lower than that of the ordinary piezoelectric
constants, and whereas they too are not a tensor,
their transformation rule is that of a third-rank
tensor. Because, in the examples given, the
strains S „are calculated for symmetry-related
propagation directions, their symmetry is given by
the centrosymmetric groups, and consequently the
symmetry of the electrical displacements D, =e, ~„S „
is also that of the centrosymmetric groups, as
Table III shows. In order that D. ..=0, Eq. (26)
requires the e'~ to have the property k, e", „=-0 for
arbitrary and nonzero S „. That they do indeed
have this property follows from their definition,
as Fdl. (26) clearly shows.

Constants similar to the orientation-dependent

The numerical calculations of Table IG are due
in no small part to the tireless efforts of Frank
Dollak, who programmed the formalism.

APPENDIX: TRANSFORMATION RULE FOR STIFFENING
CONTRIBUTION TO ELASTIC CONSTANTS

Recall the fact that, for an orthogonal coor-
dinate transformation represented by x, = a&&x&, the
k, and the constants transform as

Qttrr k t» (Al)
S Sr

&cd +ccr+dd'&crd' ~ (A2)

8~y& = Q~~rg~~rg&&re~r~r&r ~ (AS)

The transformation rule of the stiffened contribution

e(d p„e~„,k, /s', dkdk d (A4)

is obtained from a factorwise substitution accord-
ing to Eqs. (Al)—(AS). One obtains

c and e' have been obtained "for rotated coor-
dinate systems where one of the axes is along the
propagation direction. Here, the coordinate system
is fixed along crystallographic axes. While func-
tions of k or I, the coefficients depend on k, /k -=I,
to zero degree, thus not raising the degree of the
equations of elasticity for piezodielectrics. Their
use in calculating elastic properties is warranted,
be they bulk or surface wave properties.
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c is 1 for c'= c"and zero otherwise for ortho-
normal transformations. Summing over c and all
other repeated indices d, s, and z, reduces Eq.
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On commuting the remaining direction cosines to
the left, the transformation rule for a fourth-rank
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Theory of Inelastic Neutron Scattering from Orientationally Disordered Molecular Crystals,
with Particular Application to ND4 Br and ND4 Cl

J. B. Sokoloff and J. M. Loveluck~
Department of Physics, ¹rtheastern University, Boston, Massachusetts 02115

(Received 17 May 1972)

It is argued that the enhancement and narrowing of several single-phonon peaks observed in
the Raman scattering on NH4Br as the transition temperature is approached should also appear
in the inelastic diffuse neutron scattering. Whereas the expression for the Raman scattering
cross sectioncontains several unknown parameters (i.e. , the components of the Raman ten-
sor), all of the major parameters in the neutron scattering cross section are known. Diffuse
inelastic scattering from ammonium chloride is also discussed. The results of this paper
should be at least qualitatively applicable to other orientationally disordered molecular crys-
tals such as ice and NaNO2 and to some magnetic systems.

I. INTRODUCTION

There has recently been a good deal of both the-
oretical and experimental work on Raman scat-
tering by NH4Br and NH4C1. The tetrahedral-
symmetry ammonium ion occupies the body-cen-
tered position in the CsCl lattice structure of these
compounds, and thus is able to take on two pos-
sible orientations. ' Below 243 'K in NH4Cl, all
the NH4' ions have the same orientation, above
243 'K they are disordered. Below 235 'K, the
NH4' ions in NH4Br order such that in a row of
NH4' ions along one of the crystallographic axes
(call it the e axis) all NH4'ious have the same
orientation, and neighboring rows have opposite
orientation. ' In Refs. 1, 3, and 5, it wag found
that in NH4Br in the vicinity of the ordering tem-
perature there are a couple of phonon peaks in the
Raman-scattering spectrum whose intensities are
enhanced and whose widths decrease as we approach
the transition temperature in either direction.
This was explained as being due to coupling of these
modes with the short-range order. A mathemati-
cal foundation has recently been given for this

mechanism. ~ Although this model explains the en-
hancement effect, it does not explain one of the
polarization selection rules that occurs below the
transition temperature, namely, that the mode at
56 cm only occurs for incident and scattered light
polarized along the c axis. ' This effect could be
due to changes in the Raman tensor (i.e. , deriva-
tives of the polarizability) which occur as the crys-
tal orders. Such effects were not considered in
Ref. 6. In this paper, it will be shown that the
enhancement effects observed in Raman scattering
should also show up in a diffuse-inelastic-neutron-
scattering spectrum, which comes about as a re-
sult of ammonium-ion disorder. The integrated
cross section of this effect is estimated to be an
order of magnitude smaller than that of the nondif-
fuse inelastic scattering. The effect is interest-
ing in itself, and also, since the derivatives of the
polarizability tensor do not enter the neutron scat-
tering cross section, neutron-scattering experi-
ments should give a direct test of the mechanism
proposed in Ref. 6 to explain the Raman scatter-
ing experiments. If, as in the model of Ref. 7,
all short-range order is neglected, the Raman


