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The infrared properties of the H ion in KCl, KHr, and KI are studied using force constants
obtained from quantum-mechanical calculations of the electronic structure of the U center,
The anharmonic sidebands of the H local mode and the induced far-infrared absorption are
calculated. In most cases the calculated force-constant changes give results comparable to
the parametrized values used in previous work. It is emphasized that the force-constant
changes inA@, E~, and T~„displacements are not generally equal. Occasionally, features
not found in previously published experimental or theoretical work are observed. Repulsive
Born-Mayer potentials for the H -K' interaction in the three crystals are extracted from the
quantum-mechanical calculations. Our techniques for handling the numerical evaluation of
Green's functions are discussed briefly.

I. INTRODUCTION

Substitutional H ions (U centers) in alkali halide
crystals have both ultraviolet' and infrareda ab-
sorption bands associated with them. The vibra-
tional properties of crystals containing U centers
have proved to be especially interesting. The H

ion oscillates in a localized mode at a frequency
well above that of the highest in-band mode. Side-
bands '3 containing pronounced structure accom-
pany the local-mode absorption. Since the H ions
destroy the translational invariance of the host
crystal, absorption also occurs in the in-band re-
gion of the spectrum. Because of the light mass
of H compared with the negative ions of the host
crystal, the U' center was quickly recognized as an
interesting system on which to test various aspects
of the theory of localized perturbations. ' The
first calculations' ' of the local-mode frequency
treated the H ion in the mass-defect approxima-
tion. Later calculations ~ showed that force-
constant changes must also be considered in order
to explain both the local-mode frequency and the
structure in the sidebands. In all of these calcula-
tions the force-constant changes were treated as
adjustable parameters. However, good agree-
ment with both the ultraviolet absorption and the

infrared (ir) local-mode frequency has been ob-
tained from first-principles quantum-mechanical
calculations of the electronic structure of the tf
center. '3 A substitutional H ion in an alkali halide
is particularly well suited for this type ot calcula-
tion because it has relatively simple electronic
structure and the same charge as that of the re-
placed ion, so that problems associated with elec-
tronic polarization and lattice relaxation are not
insurmountable.

The primary purpose of the work described in
this payer was to investigate the extent to which
force constants calculated from first principles can
explain the infrared properties of the U center.
%e have also studied the applicability of a Bril-
louin-zone integration technique described recent-
ly to the numerical calculation of phonon Green's
functions, and we shall comment briefly on this.
For these purposes we have calculated the struc-
ture in the sidebands of the H local-mode frequen-
cy and the in-band absorption in the far-ir region.
It should be clearly understood in advance that our
calculations do not improve on the already excel-
lent fit achieved in the most recent parametrized
calculations, ' although they do suggest some fea-
tures not observed in previous experimental or
theoretical work. One interesting by-product of
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the calculations is the set of Born-Mayer param-
eters for the H ion which me have derived from
quantum-mechanical calculations.

The paper is organized into six sections. In
Sec. II we briefly describe the basic theoretical
expressions with which we will be working. In
Sec. III me describe the defect space, force-con-
stant changes, and Green's functions. In Sec. V
me treat the calculation of force constants and
force-constant changes in detail. In Sec. V we dis-
cuss several aspects of our numerical calculations
and give our results. Section VI contains a dis-
cussion of the work.

II. INFRARED ABSORPTION IN CRYSTALS CONTAINING
POINT DEFECTS

The first-order resonance absorption of infrared
radiation by lattice vibrations in a polar diatomic
cubic crystal leads to a single absorption band at
the reststrahl frequency. When an impurity is in-
troduced, the translational invariance of the host
lattice is destroyed, the so-called q= 0 selection
rule no longer holds, and absorption can occur
throughout the entire range of phonon frequencies
of the perturbed crystal. The absorption may in-
dicate the occurrence of in-band resonances and true
local modes both above the continuum and in the
gap (if one exists) between the acoustical and opti-
cal regions. The absorption band due to a local
mode may exhibit sidebands produced by the an-
harmonic interaction between the impurity and the
host crystal. The general theory of these effects
is now well understood and need not be described
here since it has already been extensively applied
to the U center in alkali halides. However, a few
equations are needed in order to describe our own
calculations, and for these me rely heavily on the
work of Timusk, Klein, and co-workers, which has
been discussed in a review article by Klein and
more recently in Ref. 15.

Timusk and Klein have derived an expression
for the absorption coefficient in the one-phonon
sideband region of the U-center local mode. They
point out that the lowest-order anharmonic interac-
tion which mill produce the sidebands gives a con-
tribution to the Hamiltonian of the form

+int 2+0 X'
Q is the local-mode dynamical coordinate of T&„
symmetry and X is a configuration coordinate,
which must have even parity. Because of the ex-
tremely light mass of the H ion, it is sufficient to
limit Q to any one of the Cartesian displacements
of that ion. Also, since the anharmonic coupling
occurs almost entirely through the short-range
forces, it is a good approximation to include only
1nn (first-nearest-neighbor) ions in the coordinate
X. The exact form of X mill be given later. B in

Eq. (1) is the anharmonic-coupling coefficient,
whose form need not concern us at the present lev-
el of approximation since it will be absorbed in an
over-all normalization factor.

The expression obtained by Timusk and Klein
for the sideband on the high-frequency side of the
main band can be mritten as

1'((o) = (haa/4m'~(u~Q~) Im ( X~ G((u~+ i 0')
~
X) .

(2)
M is the mass of the hydrogen atom and Q is the
local-mode frequency mith respect to which & is
given. The notation indicates that the limit of the
imaginary part of the perturbed Green's function
is to be taken as & + j& approaches the real axis
from above. G can be expressed in terms of the
unperturbed Green's function Q as

G=(1+G'~) 'G'.
6 is the change in the dynamical matrix resulting
from the introduction of the impurity; its form will
be considered in more detail in Sec. III.

Klein has derived the following expression for
the infrared-absorption coefficient of an insulator
containing point defects:

n(&u) = E(e) Im( kTo, 0~ t (aF —i 0')
~
kTo, 0), (4)

with

K((u) ~ (u/n((u) ((uo —(u')' .
n(&u) is the real part of the complex refractive in-
dex, which we have taken as

n'((u) = ~„+(c, —e „)(1 —(u'/(uo) ' .
&0 and &„ are the static and high-frequency dielec-
tric constants, respectively. &0 is the frequency
of the transverse-optical mode at @=0 and I kTo, 0)
denotes the corresponding eigenvector. The t ma-
trix for an isolated impurity is related to the un-
perturbed Green's function by

t=h(1+ G b)

The calculation of the matrix elements of Q in
Eg. (3) and t in Ecl. (7) is feasible because (1+ G'L)
need be inverted only within the subspace for which
6 has nonvanishing matrix elements. This "defect
space" will consist of the Cartesian displacements
of the neighboring ions, and the matrix elements
of Go in this representation must be found.

III. DEFECT SPACE, FORCE-CONSTANT CHANGES,
AND GREEN'S FUNCTIONS

A. Defect Space

Following the work in Ref. 15, we have employed
a "relaxation model" for the effect of the impurity
on the host crystal. In this model it is assumed
that the introduction of the defect produces an A.~,
relaxation of the 1nn ions as well as a change in
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TABLE I. Indexing of the defect ion and its first and
fourth neighbors. The index v is given in the body of the
table.

n/site

0
1
2

000 100 010 001 100 010 001

~ ~ ~

10

~ ~ ~

5
11

force constants between those ions and the defect
site. In an A~~ relaxation, the six 1nn ions move
inward or outward along the [100] directions.
These displacements need not be more than a few
percent of the nearest-neighbor distance to sig-
nificantly alter the force constants between the
first and fourth neighbors of the defect. In our
calculations, then, the defect space consists of the
Cartesian displacements of the defect ion, the six
1nn ions, and the six 4nn ions. The defect sub-
space therefore has maximum dimension of 39, but
group-theoretical results ean be used to greatly
simplify the calculations.

The local-mode and far-ir absorption involve
only those linear combinations of defect-space dis-
placements which transform according to the Tz~
irreducible representation of the octadedral group,
whereas the sidebands involve A&, E, and T@.
We will refer to the various normalized combina-
tions of Cartesian displacements as "symmetrized
coordinates" and denote them by q„(r~); I' gives
the irreducible representation, g is an index which
refers to the shells of equivalent ions involved in a
particular q, and p labels the orthogonal compo-
nents which can be constructed for each g and I'.
We set n= 0 for the defect site, a= 1 for first-near-
est neighbors, and n=2 for fourth neighbors. To
simplify the notation, we assign an index v to each
ion in the defect space as shown in Table I.

The symmetrized coordinates of the defect space
can now be written in terms of the small displace-
ments from equilibrium. Generally we will der ote
these by u;„, but for simplicity we will represent
the q's here by their subscripts i and v, e. g.,
ugp» xO;

qi(To„i)=o (s2+y8-s5-y6),

q, (T,g, o) = ,' (z—i+x3 —z4 —x6),

q, (T„,,) = -,' (y 1 + x2 —y4 -x 5);

q, (T«, ,) = (xi+ x4)//2,

q (T«,o) = (y2+ y5)/&2

q, (T«,,) = (zS+ z6)/42 .

(10b)

(10c)

(lib)

(11c)

For each q, (r~) there is an exactly analogous
qo(T~) involving the displacements of the ions in
the fourth shell, but it is not necessary to write
them out since they are obtained simply by the ap-
propriate change in the subscript v.

The configuration coordinate X appearing in Eqs.
(1) and (2) can now be defined in terms of the q's.
%'hen the H ion is vibrating in the x direction,
Timusk and Klein assumed that

X= (xi —x4)/v'2, (i2)

B. Force+onstant Changes

The potential energy of the crystal ean be ex-
panded in terms of small displacements of the ions
from their equilibrium positions in the usual way,
l. e,y

1
U = Up+

2
~ ~ Kg ~, ~,„u]„tv .

jv
(14)

As before, p, and v are site indices, p and j run
over the Cartesian coordinates, and

which implies that the anharmonic coupling with
the lattice takes place through the parallel force
constants between H and the 1nn ions. Intuitively
this is a good approximation and subsequent ex-
perience has supported its validity. From Eq.
(12), X can be written in terms of the q's as

X= [q,(X„)+(/2) q, (Z„,)j/v'2 . (12)

The coupling to T~~ modes is quite small and will
be neglected entirely here.

qo(T«q) = x0, e~ U

Su)~ su~„) o
' (15)

qo(T«, R) y 0

qo(T«, o) ~ 0 i

(8b}

(8c)

The potential energy can also be expanded in terms
of a complete set of symmetry coordinates of the
type defined above for the defect space. Thus,

qg(z~, q) = (I/2/8) [2(x1 —x4) -y2+y5 —@3+g6j,
(eb)

(9c)qg(Eg, o}=—', (y2-y5-zS+s6);

q1(AJ, ) = (I/&6) (x 1 —x4+ y2 —y5+zS —s6), (aa)

with

U= v, +- Z Q x„(rp)q„(rp)q„(rp),
1

yam I'P
(16)
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g. and nz run over all the shells of equivalent ions
in the crystal, I" runs over the irreducible rep-
resentations of the point group, and p again labels
the orthogonal components of each F. The contri-
bution to a defect matrix element from the force-
constant changes can now be defined by

~„„(rp)=x„„(rp)-x'„„(rp),
where the superscript 0 denotes the force con-
stants of the perfect crystal and the X„(I'P) are the
force constants when the substitutional impurity is
present.

The advantage of working the Q representation is
that the force constants are diagonal with respect
to I' and p. For a defect space consisting of the
displacements of the impurity and the first few
shells of neighboring ions, it is quite feasible with
the aid of a computer to evaluate the second deriv-
atives in Eq. (16) directly. Such an approach will
show clearly that the force-constant changes for
the various symmetry modes are by no means the
same. Although this may be an important consid-
eration for some types of impurities, we do not
believe it is for the U center. Therefore, in order
to make more direct comparisons with quantities
appearing in the shell model, we will relate the

force constants X and E by using the transforma-
tion

.;.=~ ~ &.;.I Q.(rP)& Q.(rP) .
n pp,

We find that

x. (rP) =~ ~ & Q.(rP) I ~~.& «.,~.& "~.I Q (rP) & .
(ao)

This equation makes it very simple to generate the
X„(rp) from the force constants between individual
ions (the X;„,;„)when only repulsive interactions
are considered.

C. Green's Functions

We saw in Sec. D that both the anharmonic side-
bands and the far-ir absorption directly involve
various symmetry projections of the Green's func-
tion of the crystal containing the impurities and
these, in turn, involve the Green's functions of the
perfect crystal, i. e., G of Eq. (3). A representa-
tion of G in terms of the symmetry coordinates
Q„(I'P) is easily found. First we note that G, like
the dynamical matrix itself, is diagonal with re-
spect to I' and p, and so we can write

G:.( ', rP) =& Q.(rP)
I

G'I Q.(rP)&

=g g & Q„(rP)l,(qi)& & ~(qi)l G'I ~(q'j')& & ~(q'j')I Q„(rP)&
aj a j

=~
& Q.(rP)

I
~(qi)& l~'- ~'(qj)] '& ~(qi)l Q (rP)& . (21)

n(q j) is the phonon eigenvector of the perfect crys-
tal with wave number q and branch index j. We
have used the closure relationship and the fact that
Qo is diagonal with respect to the phonons of the
perfect crystal with eigenvalue [+2 —&u2(q j)] '. The
v s are given by

v(qj)=X ' 'Z (M„) ' 'e (x;qj)e""'" (22)
nial

in which e (x; q j) is the nth Cartesian component
of the polarization vector of the gth type of ion in
the q jth normal mode. R(l) is a lattice vector.

We now add a small imaginary part & to the fre-
quency and find the limit as & approaches zero.
Denoting this limit as before by 0' and using the
well-known relationship

lim(x+ie) '=I'I'(x ') —its(x) as e-+0, (23)

we find for the imaginary part of the matrix ele-
ments of t"o

imG„'„(~', I'P)= w Z (Q„(IP)l v(qj)&

x& (qj)IQ.(rP)) 6( '- '(qj)), (24a)

lmG!.(~, »)=,'—~ & Q.(rP) I ~(qi)&

x ( v(q j) Q (rp) & s((o —(u(q j)) . (24b)

Once the imaginary parts have been found by nu-
merical techniques, the real parts can be found by
using the Kramers —Kronig dispersion relations in
conjunction with a scheme for evaluating the prin-
cipal part of the integral. This has become a fair-
ly straightforward calculation by now and we need
not go into it here since again we have followed
Timusk and Klein closely. The numerical cal-
culation of the imaginary parts is of more interest
and we shall return to it in Sec. V. We note here
a sum rule or normalization condition for Img
which is indispensable in the numerical work. We
integrate Eq. (24b) over &u and carry out the sum-
mation over q j to find

v J ImG„((u, I'P) 2(ud(o= 6„ (as)
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IV. CALCULATION OF FORCE-CONSTANT CHANGES

Quantum-mechanical calculations of the elec-
tronic structure of the H" ion in various host alkali
halide crystals have been carried out by %'ood and
Qpik" and Wood and Gilbert. " These calculations
give the energy of the H ion as a function of the
displacements of the six 1nn ions and should there-
fore provide force constants for A«and E, dis-
placements. The calculations also give the energy
of the H ion when it is displaced while all of the
other ions are held fixed in their equilibrium posi-
tions. The H ion is polarized in this type of dis-
placement and a force constant for the T,„ local
mode can be extracted and used in the far-ir cal-
culations. Vfe will first discuss the various con-
tributions to the energy of the H ion and relate
them to quantities appearing in classical ionic-
crystal theory when possible.

A. Quantum-Mechanical Treatment of H Ion

The energy of the substitutional H ion in the
crystal is composed of several terms all of which
depend on the positions of the 1nn ions. For com-
parison with the classical Born-Mayer treatment
of ionic crystals, we break the energy up into
Madelung and repulsive terms, i.e.,

E(R) =E„(R)+E„(R). (26)

E„(R)= E,(R) + b,E~(R) + E~„(R)+ E„(R)+ E„(R) .
(28)

E, might be referred to as the self-energy of the
H ion, since it contains those terms such as elec-
tronic kinetic energy and electron-nuclear and
electron-electron interaction energies which would
contribute to the total energy of an H ion in free
space. It even contains a substantial amount of the
correlation energy of the H ion, since correlated
wave functions of the Hylleraas type were used in

The dependence of the Madelung term on the near-
est-neighbor distance B can be made explicit by
writing

E~(R) = —ag/Ro+ 6Z p Zg(R ' —Ro') .
z~ is the Madelung constant, Ro the 1nn distance in
the perfect crystal, and Z& and Z„ the effective
charges of the H and alkali ions, respectively. The
calculations in Ref. 13 do not treat E& as a separate
term, and in subtracting it from E(R) in order to
find E„(R)we have assumed that Z„= —I "~ .Z„
=+ 1. As noted below, an argument can be made
for taking l Z„l somewhat less than unity, which
resembles a result in shell-model calculations.
%e prefer, however, to include the effect in the
repulsive energy.

The repulsive energy is quite complicated and

so we shall break it up as follows:

the quantum-mechanical calculations. The H ion
is not quite stable in free'space, whereas, in its
ground state in the crystal, it is stabilized and con-
fined to the negative-ion vacancy, primarily by the
Madelung potential. If E, is expanded about the
equilibrium value of R, the largest contribution by
far comes from the constant term, but higher-
order terms do contribute and can alter the force
constants.

The term hE~ comes about because the H ion is
not a point charge as was assumed when writing
Eq. (27). Since the tail of the H wave function ex-
tends beyond some of the shells of iona, these ions
do not see a unit point charge at the impurity site.
Calculations indicate that approximately 95/q of the
charge of the H ion is within the 1nn distance. As
mentioned above, it would be possible to account
for AE„approximately by introducing an effective
charge Z„ into Eq. (27).

The terms E,„and E„are the exchange and
Coulomb interaction energies between the H ion
and the six 1nn ions. E,„is attractive and tgus re-
duces the total repulsive energy. Because the ions
of the host crystal are treated as unit point charges
when the Madelung energy is calculated, the quan-
tity E„is really a "penetration energy" and is, in
fact, also attractive. It arises because the elec-
trons of the H ion are able to penetrate the ex-
tended charge distributions of the neighboring ions,
so that the electrons on these ions are not able to
fully screen the nuclear charge.

E„is the overlap repulsive energy arising from
the orthogonalization of the H wave function to the
orbitals on the neighboring ions. It yields the larg-
est single contribution to the repulsive force con-
stants but it is erroneous to think of it as the only
term which contributes, as seems to be implied in
many discussions of lattice dynamics. %e note
also that, primarily because of the orthogonaliza-
tion condition, it is not entirely possible to break
the energy up into a sum of two-body interactions
as is generally done. Nevertheless, the error
made in assuming that one can do so is probably
not great for alkali halide crystals and we will uti-
lize this approximation in the present calculations.

When the H ion is substituted into the crystal,
the neighboring ions will move to new equilibrium
positions. This produces a change in the energy
of the host crystal which we denote by hE . That
part of the total electronic and ionic energy which
will be important for determining the potential en-
ergy at ionic displacements can now be written as

U(R) =E(R)+~E„(R) . (29)

In Ref. 13, ~ was calculated as a function of 1nn

displacements only. In the present calculations,
the change in repulsive force constants between
first and fourth neighbors plays a role, and it would
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seem advisable to also consider the displacement
of 4nn ions. We have studied the effects of 4nn dis-
placements to a limited extent and have concluded
that they are rather small for the U center in its
ground state. In view of the present over-aQ ac-
curacy of our calculations it seems unnecessary
to include them here. The second- and third-
neighbor displacements, besides having little ef-
fect on the force constants, are expected to be very
small indeed.

We conclude this subsection by noting that in a
1 &„ mode in which only the H™ion is displaced there
is a substantial contribution to the energy which
comes about because the H ion can be easily dis-
torted or polarized. In the first-principles cal-
culations this polarization energy is not treated as
a separate term, and we will not attempt to extract
it here. Its effect on the T~„ force constants is
la.rge, and will be discussed below.

'B. Ca'icuhltion of 8 -K+ Force Constants

Repulsive force constants can be determined
from the quantum-mechanical calculations outlined
above. We assume that the change in potential en-
ergy [Eq. (29)] due to an A& displacement of the
1nn ions can be expanded in terms of the coordinate
q, (A„) as

&~a(&~) = a &i~(&~,) qi(&i, ) ~ (so)

In fact, this is a good approximation, with fourth-
order terms in q~ contributing very little. Cor-
respondingly, we also write

~O"„(W„)= C, q, (a„)+-,'3:"„(X„)q,'(X„),
where'» is the repulsive force constant for an A«
displacement of the 1nn ions. Because the repul-
sive interactions are short ranged, the K+-K' in-
teractions in KCl, KBr, and KI are negligible. In
such cases it is easily shown that the repulsive
force constants for 1nn motion are the same in the
A& and E, modes. This is not true for the contri-
butions from hZ~ and E„. Thus there is no rea-
son why the total force constants for the different
modes should be the same, as has been assumed in
the past. We have found, however, that because of
the small Inn displacements for the U center, the
force-constant changes arising from AE and E„
are small compared with those arising from E„.
In fact, the only really important changes are the
1nn defect and the 1nn-4nn repulsive interactions.
Because of this and the form of the q's, we can
write, e. g.,

Ã[g(Au) =Kg+Km .
K& and Ea are, respectively, the parallel force
constants between a single 1nn ion and the H ion
and between nearest neighbors in the first and
fourth shells. K, can be determined from. the quan-

TABLE II. Repulsive force constant Z~ in Eq. (32) as
a function of the inn displacements. ~ is given as a per-
centage of the nearest-neighbor distance and a minus
sign indicates an inward displacement. E~ is in dyn/cm.

6 KCl KBr KI

6110
6530
7050
7540
8110

14 100
15 150
16 220
17 330
18 470

9 830
10560
11320
12 130
13 040

~sww 3

It(z) =We-' ""
Here, z is the distance between the H and Inn K '
ions in an A«mode. C, A, and p are parameters to
be determined from the quantum-mechanical cal-
culations. Both C and A are functions of the ref-
erence position z, but we will not explicitly indi-
cate this in the notation. The constant C appears
because the self-energy term discussed above is
quite large even when z is near the perfect-crystal
equilibrium value. Denoting the first and second
derivatives of B(z) with respect to z by a prime and
double prime, respectively, we have

p = —It'(z )/It" (z),
in which the derivatives are to be evaluated numer-
ically at s = s from the quantum-mechanical cal-
culations. Once p is known, A can be determined
from the force constants of Table II, since from
Eq. (84)

Z, (Z) =a"(z ) =W/p'.

With p and A known, C can easily be found, although
it is not necessary for our purposes. Table IG

turn-mechanical calculations since E„[Eg.(28)] is
given in the neighborhood of the equilibrium posi-
tions of the ions. In Table II, we show K, as a
function of the 1nn displacements in order to indi-
cate the sensitivity of the repulsive force constants
to the positions of the 1nn ions. One of the prob-
lems in attempting to calculate force-constant
changes rather than treating them as parameters is
the difficulty in determining the positions of the
ions accurately when the impurity is present. Once
these positions have been established, however,
K3 can be easily obtained from Born-Mayer poten-
tials of the perfect crystal.

It is both interesting and useful to cast our 8 -K'
repulsive potential energy into the well-known ex-
ponential form introduced by Born and Mayer. To
facilitate this, we change our notation somewhat
and approximate E„by

E„(Z)= C+ 8ft(z),
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TABLE III. Born-Mayer (BM) parameters for the H ion. Z is the H"-K distance at which the parameters were evalu-
ated. In KC1 and KBr it is Ro and in KI it corresponds to a 1% inward displacement. The last three columns indicate
the quality of fit achieved by the Born-Mayer form at 2% inward displacements from Z. QM stands for "quantum mech-
anical. "

C (eV) a (eV) p (A)
Energy comparison (in eV)

QM BM

KCl
KBr
KI

3.14
3.30
3.495

—13.3720
-13,4525
-13.5705

0, 1998
0. 1511
0. 1157

0.476
0. 496
0. 533

—12.0045
—12.4174-12.7787

—12.0041
—12.4170
—12.7779

X "1 =2K +4K 0

in which

K, =R (zo), K, —so R (zo)

(3V)

(33)

K0 is the perpendicular force constant coupling the K'
ion in the 100 position to the halide ions in the 110,
101, 110, and 101 positions; K, couples the 100 ion
to the 000 ion and the 200 ion. In alkali halide
crystals, K, is negative and usually of the order of
10% of K', . Unless the introduction of the H ion
results in a quite substantial displacement of the
100 ion from its perfect-crystal position, the
change in K, will be negligibly small compared with

shows the values of C, A, p, and z for the three
crystals considered here. Note that z need not be
the equilibrium value of z, although it should be
fairly close to it in order to increase the accuracy
of Eg. (33).

For the Th, mode, we have taken the H -K' force
constants directly from Ref. 13. We chose those
values which include polarization of the H ion but
not 2nn interactions. The polarization effect de-
creases the T&„ force constant by approximately
40/p in KCl and cannot be ignored. As we shall see,
determining the Tj force constants for the perfect
crystal is not entirely straightforward.

C. Force Constants for Perfect Crystal

In order to calculate the change in force constants
when the impurity is introduced, we must know the
force constants of the perfect crystal. Values can
be obtained from shell-model fits to phonon-dis-
persion curves as long as the ions are in their per-
fect-crystal positions, but these values do not pro-
vide estimates of the changes due to the displace-
ment of the ions. These can be found if a reason-
ably accurate Born-Mayer potential for the repul-
sive interaction is known. We believe that the
work of Tosi and Fumi' yields the most reliable
potentials, and since they were used in calculating
the relaxation around the H ion, it seems reason-
able to use them here for the perfect crystal.

In the perfect crystal, the repulsive force con-
stant for the alkali ion at the 100 site participating
in either an A«or an E~ displacement about a halide
ion at the 000 site is

the change in K&. However, even small displace-
ments can result in large changes in K, .

Corresponding to Eq. (34) for the defect, we take
for the perfect crystal

@(+) ge ( o)/Po

and find that

(39)

K, = a/po,0 2 0K, = -a&~o po .

TABLE IV. Comparison of perfect-crysta1. force con-
stants. The Tosi-Pumi values calculated from Born-
Mayer potentials of Hef. 17. The shell-model param-
eters were taken from the references indicated.

Tos1 Fllml
(first set)

Kq

KC1 22 651 —2431
KBr 20 987 —2130
KI 17 089 —1719

Shell model
Kq

23 042 + 1008 —2091
21 495*441" —1945
18 119+ 676c 1474

Tosi-Fumj
(secoIId set)

Kg K~

24 042 —2481
21 016 —2121
17 662 —1731

J. R. D. Copley, R. W. MacPherson, and T. Timusk,
Phys, Bev. 182, 965 (1969); Phys. Rev. B 1, 4193 (E)
(1970).

R. A. Cowley, W. Cochran, B. N. Brockhouse, and
A. D. B. Woods, Phys. Rev. 131, 1030 (1963).

'G. Dolling, B. A. Cowley, C. Schittenhelm, and I.
M. Thorson, Phys. H,ev. 147, 577 (1966).

Tosi and Fumi have given two sets of parameters
which when used in Eq. (40) give very nearly the
same results for the force constants. We have
calculated K, and K, with boih sets, and in Table
IV we compare them with the corresponding values
found from shell-model fits to phonon-dispersion
curves. We have shown the estimated uncertain-
ties in the shell-model K& and comparable ranges
exist for the Tosi-Fumi values. The agreement
between the three sets of values is remarkably good
and suggests that the Tosi-Fumi values might be of
use in shell-model calculations. The agreement
between the K, values is also quite good, but for
reasons we need not consider here they are not ex-
actly comparable in principle. We also note that
Tosi and Fumi determined the parameters in their
potentials from room-temperature data, whereas
the phonons in the shell-model work were measured
at approximately 100 'K.

We believe the methods outlined in the foregoing
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TABLE V. Force-constant changes for the A.~ and E~
modes calculated as indicated in the text. All force con-
stants are in dynjcm.
4

Kcl KBr KI

—2. 3
0. 346
7 250

—10410
—3700

ll 000
-9240 -10020

-2900

discussion give the A& and E repulsive force con-
stants of the perfect crystal with an accuracy con-
sistent with that of the U-center calculations. The
methods fail for the T~„mode because the param-
eters in the potentials do not account for the elec-
tronic and displacement polarizabiDties of the ions.
Although it might be possible to extract information
about these quantities from shell-model param-
eters, me have found it more satisfactory to em-
ploy a simple modification of a procedure described
by Klein in Ref. 16. In this approach all ions ex-
cept the one at the 060 site are held fixed in their
perfect-crystal positions. The force constant cou-
pling this central-site ion to the lattice is then
va, ried until an instability occurs. This instability
is indicated by a resonance at zero frequency„and
the corresponding force-constant change is just the
negative of an "effective force constant" K,« for
that ion. The equation for determining it in this
manner can be obtained from det I 1+G a l = 6 and is
given by

in which M is the mass of the halide ion and Geo(0,
T~) is the zero-frequency limit of the matrix ele-
ment of the Green's function between one of the co-
ordinates defined in Eqs. (Ba)-(Bc). Our method
of determining E„,differs slightly from that de-
scribed by Klein in that he uses the matrix element
of t" in a configuration which allows both. the 1nn
Rnd central-site ions to move. We feel, Rnd our
results seem to bear it out, that it is better to let
only the central ion move, since the force constants
for the H ion are determined under this same con-
dition.

D. Force-Constant Changes

We finally have all the information necessary to
calculate force-constant cAgszges. Table V gives
the data for the force-constant changes used in the
sideband calculation, i. e., for A, and E» modes.
5 is the percentage inward displacement of the 1nn
ions in terms of the nearest-neighbor distance. K&
is taken from column 3 of Table IV, K& is extracted
from TRble II by gx'RphlcRl lnterpolatlon~ Rnd AKg
=Kq -K, . ~s is computed from Eqs. (39) and (40),

TABLE VI. Force-constant changes for the T~„mode
calculated as indicated in the text. Here ~~=X&-K,z&

and the force constants are in dyn/cm. M is the mass
of the negative ion in amu.

35.457 17 960 6860
79. 909 15 040 5350

126. 904 12 560 3700

—11590
-9690
—8 860

—1580
—2900
—3700

again using the second set of data from Tosi and
Fumi for the perfect crystal and the values of 5 in
the top row. We also show the "hardness" param-
eter p for comparison with the values in Table III
for the H -K' interaction. A small value of p indi-
cates a "hard" ion and it can be seen that the H ion
is relatively soft compared with the halides it re-
places.

Table VI gives the T» force-constant changes in-
volved in the infrared absorption. E,«mas cal-.
culated from Eq. (41). K~ was calculated from the
frequencies given in column 3 of Table II in Ref. 13.
These frequencies included the effects of H po-
larization but not the interactions of the H ion with
its second-nearest neighbors. Note that both K,«
and E~ are one-half of the total force constant cou-
pling the central site to the rest of the crystal.
~~ involves only the ions of the perfect crystal and
has been assumed to be the same in all modes.

With the force-constant changes calculated it is
straightforward to construct the defect matrix, and
we can now proceed to the calculation of the absorp-
tion coefficient via Eqs. (2) and (4).

V. NUMERICAL TECHNIQUES AND RESULTS

A few details of the numerical techniques used in
the calculations may be of interest to some readers.
Two methods were used to evaluate the imaginary
part of the Green's functions in Eq. (24b). For
most of the calculations a combined linear- and
quadratic-interpolation (CLQ) scheme described in

a recent paper by Cooke and Wood mas utilized.
The final calculations mere then carried out within
the framework of the mell-known Gilat-Rauben-
heimer (GH) method's which employs linear inter-
polation and extrapolation only. The rationale for
this is that our experience with the tmo methods, in
the form we are using them, shows that the CLQ
scheme is considerably faster than the GR scheme,
but that the latter is probably more accurate if suf-
fice.ently small meshes are used. The reasons for
these relative merits are rather subtle and we will
not discuss them here since they may change with
further developments.

In most of the calculations with the CLQ scheme
the eigenfrequencies, eigenvectors, and overlap in-
tegrals ( v(q j) I Q(l p)) of Eq. (24b) were evaluated
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from shell-model results at 916 points in the irre-
ducible sector of the Brillouin zone (BZ). These
first-principles values were then used in a qua-
dratic interpolation over a regular mesh formed by
dividing the 1 -to-X direction in the BZ into ten
equal intervals. Twenty-seven first-principles
points are used in each of these cells to determine
by a least-squares fit the ten independent coeffi-
cients in the quadratic-interpolation formulas.
After this step the products of the overlap integrals
and the frequencies are given in analytic form
throughout the entire BZ. Next a finer mesh is
formed within the quadratic mesh. The products
of overlap integrals are determined at the center
of each of these fine mesh cells and assumed to
have this value throughout the cell. The analytic
integration introduced by Gilat and Haubenheimer
is then used to determine ImG„„ from Eq. (24b). It
is not necessary to hold the overlap integrals con-
stant within the small cell,s, but we have such a
fine mesh that it has proved to be quite an accept-
able approximation. Once the imaginary parts of
the Green's functions have been found, the real
parts can be found straightforwardly via the KI a-
mers-Kronig dispersion relations as already men-
tioned.

In practice, though not in principle, the BZ inte-
gration schemes we have used both represent the
Green's functions by histograms. Generally speak-
ing, we have tried to keep the histogram box width
of the order of 0. 02 THz. When calculating the per-
tubed Green's functions we have found it useful to
employ complex arithmetic, matrix inversion, etc.,
directly in the machine and separate the real and

imaginary parts at the end of the calculations. We
have also found that the programs are sa fast on
the IBM 360/91 that the entire calculation including
the generation of the first-principles eigenvec-
tors, eigenvalues, and overlap integrals, the eval-
uation of the unperturbed Green's functions, the in-
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FIG. 2. Anharmonic sideband of the local-mode
frequency of H ions in KBr.

version of complex matrices, etc., can be carried
through from the beginning each time. A typical
run requires about 1—,

' min to generate the Green's
functions. After that the final results for a very
large number of force-constant and mass changes
can be generated with little additional computer
time.

The results of the infrared sideband calculations
are shown in Figs. 1-4. The dashed curves were
taken as best we could fram the work in Ref. 15.
All of the curves have been normalized to the broad
low-frequency peak in order to avoid anharmonic
effects associated with sharp narrow resonances.
We have shown two curves for KI in order to illus-
trate the sensitivity of the calculations to small
changes in the force constants. The region just
above the local-mode reference frequency is sub-
ject to considerable uncertainties. For example,
the origin of the structure below 1 THz in the ex-
perimental curve for KCl is not clear. On the other
hand, the calculated curves also have uncertainties
associated with them in this region because of poor
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PIG. 1. Anharmonic sideband of the local-mode
frequency of H" ions in KC1.
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FIG. B. Anharmonic sideband of the local-mode fre-
quency of H ions in KI. The calculations give an I;~ gap
mode at - 2. 2 THz and an A~ gap mode at - 2. 8 THz.
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resonance shown. Had we chosen to show the local
mode on Fig. 3 and if we were able to calculate its
anharmonic broadening, the structure on the two
figures would be very much the same. The param-
etrized calculations in Ref. 15 give a somewhat
better fit in the case of KI than we obtain. A com-
parison of their force-constant changes with ours
indicates that our values of d K& are probably some-
what small. The most likely reason for this is an
inaccurate determination of the relaxed positions
of the 1nn ions. In contrast to the situation in KI,
our calculations for KC1 showed that fairly sub-
stantial changes in 4K~ hardly affected the spec-
trum. In fact, the choice of de&=0, as in Ref. 15,
gives agreement with experiment comparable to
that in Fig. 1. This insensitivity to ~~ undoubted-
ly stems from the lack of a true resonance in the
KCl case. The small spike on the KCl curve at
=4. 5 THz is a remnant of the very sharp, intense
spike in the unperturbed density of states at the
same frequency.

The importance of anharmonic effects is indi-
cated in the experimental results for KI. The peak.
at approximately 2. 8 THz is due to a true local
mode of A&, symmetry whose broadening is most
likely due primarily to anharmonic interactions
with the perturbed band modes. It seems safe to
assume that a somewhat comparable broadening can
be expected for resonances which are sharp in the
harmonic approximation. For this reason alone
we would not expect to get very accurate agreement
with the intensities and widths of some of the sharp-
er features of the spectrum.

In a series of calculations on KBr in which A%3
was changed in steps of 300 dyn/cm, the intensities
in the two peaks between 2 and 3 THz could be
shifted relative to each other and to the rest of the
spectrum without greatly altering their frequencies.
Some one or more of these results might be supe-
rior to that shown in Fig. 2, but in the light of the
other inaccuracies in calculated and experimental
values and the neglect of anharmonic interactions
we feel that our calculated force constants are quite
satisfactory.

Qn first inspection, the calculated far-ir spectra
bear only a qualitative resemblance to the experi-
mental results of MacPherson and Timusk as giv-
en in the third paper of Ref. 15. Closer examina-
tion shows that there are, in fact, quantitatively
similar features in the calculated and measured
curves and we shall concentrate our attention on
these.

The measured absorption in KC1:H shows a
' broadband peaking at about 2.97 THz and a much
narrower peak at 3. 2V THz followed by the sharply
rising absorption in the reststrahl region. Gur
calculated curve gives the broad peak very well,
shows no trace of the 3.2V-THz peak, and indi-

cates a pronounced shoulder at 3. 51 THz. In very
recent work, Nard and Timusk have measured the
far-ir absorption for KCl and KBr containing many
different impurities. In KCl their results can be
summarized by saying that there is always a peak
at about 3. 27 THz, a sharp minimum at 3.30 THz,
and a broad shoulder and sometimes an actual peak
at about 3. 51 THz. %ard and Timusk suggest that
the 2. 9V-THz peak in the work of Ref. 15 is due to
a resonance and that the 3. 2V-THz peak is the same
one exhibited by all other impurities in KCl and is
most likely due to a Van Hove singularity in the un-
perturbed density of states. We suspect that the
work of MacPherson and Timusk may have simply
missed the 3. 51-THz shoulder in KCl: H . This
would leave only the 3.2-THz peak unaccounted for
by the calculations. Assuming the experimental
results are correct, it seems to us that there are
two likely explanations for the discrepancy: (a}
The shell-model phonons and eigenvectors for KCl
are not accurate enough in this region and (b) the
two interpolation schemes we have used may en-
counter difficulties in regions where the eigenvec-
tors and frequencies are changing rapidly. There
is another interesting feature of the KCl calcula-
tions which does not appear in the experimental
curves published thus far but which would probably
show up with better resolution. This is the type-
M& Van Hove singularity which occurs at 1.72 THz
in both the ir absorption and the perfect-crystal
density of states.

Measurements of the absorption in KBr: H have
been reported in Ref. 15 and by Nard and Timusk.
Although the results of the two sets of-measure-
ments appear to differ rather significantly, com-
mon features are discernible. These may be sum™
marized as follows: (i) a strong peak at -2. 6'7 THz
attributed to a T~ resonance, (ii} changes in slope
at - 2. 31, 2. 49, and 2. 61 THz, (iii) a sharp mini-
mum, nearly reaching the base line, at -2.28 THz
and, in Ref. 19, a broad low-intensity band peaking
at about 2. 19 THz. Most of these features stand
out prominently in the calculated curves of Fig. 6,
and slight changes in slope can be discerned at- 2. 34 and 2. 64 THz. The T,„resonance is slightly
high in our calculations, coming at - 2. V3 THz. It
could be shifted by further changes in force con-
stants, but since our value is probably within the
combined errors of calculations and experiments,
it seems acceptable to us.

The measurements of MacPherson and Timusk'
on KI:H show three prominent peaks, at - 1.74,
1.83, and 1.92 THz. The calculations show a cen-
tral peak at about 1.86 THz with a shoulder on each
side which might be associated with the two peaks
at 1.V4 and 1.92 THz. However, the calculations
also yield a sharp resonance at about 2. 1 THz in
the lower curve and a true localized gap mode at
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about 2. 2 THz in the upper curve. The experi-
ments would certainly have picked this up if it actu-
ally existed apart from the three peaks. We con-
clude therefore that the resonance in our calcula-
tions is too high in frequency. However, attempts
to push it to lower positions yielded about the same
results as MacPherson and Timusk obtained in their
parametrized calculations; i.e., the three-peaked
nature of the experimental curve was lost. One
feature of the calculated curve which was probably
missed in the early experiments is the broad hump
beginning at about 1.7 THz and extending to lower
frequencies. As we have seen, a similar hump was
found in the very recent measurements on KBr and
it is likely that it would now also be found in KI.

We can summarize our impressions about the
agreement between calculated and measured ab-
sorption curves as follows. The model and the cal-

culations give the absorption in the sideband region
in an entirely satisfactory manner when the obvious
sources of disagreement are considered. The sit-
uation in the fa,r-ir region is not quite as satisfac-
tory. It is not clear at this time that the differ-
ences which do exist are entirely due to shortcom-
ings in the model or in our calculations. In any
case, it seem to us that the over-all agreement be-
tween the quantum-mechanical and the parametrized
calculations is quite remarkable and that the agree-
ment between theory and experiment is encouraging.
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