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In this paper the energetics of the formation of electron-hole metallic liquids in semiconductors is
examined. The ground-state energies of electron-hole metals are calculated using Hubbard’s approximate
treatment of the electron gas for the following cases: (a) germanium, (b) germanium with a large (111)
strain, (c) silicon, and (d) GaAs. The simple case of a single isotropic maximum for the valence band and a
single minimum for the conduction band is also treated. It is shown that for both Si and Ge, the binding
energy of the metallic state relative to free excitons is 5.7 and 1.7 meV, respectively. These values and the
values of the equilibrium density are in good agreement with experiment. In the isotropic model the metallic
state is not bound while for GaAs and strained Ge the metallic-state energy per electron is essentially equal
to that for a gas of free excitons. The low-density limit of the isotropic band model is examined and the
ground state for this system is predicted to be a dilute gas of molecules. It is argued that the forces between
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molecules are repulsive and will cause this state to break up at relatively low densities. If the density is
increased, the system will undergo a first-order transition to the metallic state. The relevance of these
calculations to the metal-insulator transition problem is discussed. It is pointed out that the fact that
anisotropic and many-valleyed bands favor the metallic state means that the metal-insulator transition must

ultimately be first order.

I. INTRODUCTION

In the last four years considerable experimental
evidence has been accumulating that electrons and
holes in Ge and Si undergo a gas-liquid-type transi-
tion at low temperatures as a function of density.
Such a transition was first suggested by Keldysh,
who said that metallized droplets of electrons and
holes could form as the density is increased. The
first evidence for the existence of such metallic
droplets was given by the photoconductivity ex-
periments of Asnin and Rogachev? and the observa-
tion of shifted recombination radiation attributed to
the droplet state by Pokrovsky and Svistunova. 3-®
More conclusive evidence, however, was obtained
in the p-n junction noise experiments performed by
Asnin et al.® and Benoit 4 la Guillaume ef al. '° and
in the light-scattering experiments of Pokrovsky
and Svistunova. ! The reason such a phase transi-
tion is observable in Ge, in particular, is that the
recombination times are of the order of 5% 107% sec
because of the indirect gap, while the thermaliza-
tion times are 10°® sec. One, therefore, has sev-
eral microseconds in which to study the system of
electrons and holes in thermal equilibrium. Ex-
perimentally, the binding energy of the liquid state
relative to free excitons and its equilibrium density
are reasonably well established for Ge and there is
some evidence for their values in the presence of
strain. Less complete investigations have been
carried out on Si. In this paper we shall examine
theoretically the energetics of the electron-hole
liquid and gaseous states.'? We shall assume
throughout this paper that the “liquid” state is me-
tallic even though this has not been definitely estab-
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lished experimentally.

The simple case of a single isotropic band for
both the electrons and holes is considered in Sec.
II. The interaction between the electrons and
holes is assumed to be the Coulomb interaction
reduced by the static dielectric constant. This
form of the interaction can be justified provided
the effective Bohr radius «a, is large compared to
the lattice constant and the fraction of electrons
excited into the valence band is small.!® The
ground-state energy has been calculated by using
a procedure due to Hubbard!* based on the ran-
dom-phase approximation. It is found that for
mass ratios not very different from unity the me-
tallic state is not stable relative to the decay into
a dilute gas of free excitons. It is difficult to
assess the accuracy of the Hubbard approxima-
tion but, as discussed in Sec. II, it is thought to
be reasonable.

The complications due to the actual band struc-
ture of Ge and Si are added to the calculation of
the metallic energy in Sec. III. As previously
pointed out by Pokrovsky et al.,® the nature of the
band structure considerably reduces the kinetic
energy in the metallic state. In calculating the cor-
relation energy we include the degeneracy of bands
but not their anisotropy. We find that the metallic
state is bound in Ge by 1.7 meV. Experimentally,
the binding energy is estimated to be 2.4-2.7 meV.
The theoretical equilibrium density in Ge is very
close to the experimental value of 2X10'7 cm™3.
Calculations for strained Ge and Si are also dis-
cussed. Independently, Combescot and Noziéres
(CN)*® have performed similar calculations but used
the Nozidres—Pines®® treatment of the correlation
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energy including the anisotropic masses. Their
result for the binding energy is 2.5 meV, in better
agreement with experiment. { Note added in proof.
Recent studies of the temperature dependence of
the droplet state in Ge lead to values of binding en-
ergy ~1.4 meV. Y. E. Pokrovsky [Phys. Status
Solidi (a) 11, 385 (1972)] studied the temperature
dependence of the luminescence under continuous
pumping conditions while J. C. Hensel, T. G.
Phillips, and T. M. Rice (unpublished) studied the
temperature dependence of the time decay of the
cyclotron resonance. The value obtained in these
experiments is appreciably lower than the values
obtained previously and discussed in the text. The

reason for this discrepancy is presently not clear.}

In Sec. III we also calculate the ground-state
energy of an electron-hole plasma in GaAs. Even
though this is a direct-gap material there is some
evidence!” for metalization of electrons and holes
at high pumping powers.

In Sec. IV we discuss the low-density electron-
hole gas in the isotropic band model. It is known
that two excitons bind to form molecules.® The
intermolecular potential is estimated assuming
the excitons interact in pairs. The scattering
length is found to be large and repulsive and,
therefore, no gas-liquid transition is predicted
for the molecules. As the density is increased
the repulsive interaction causes an increase in
the ground-state energy and it is possible that a
first-order transition to the metallic state could
occur.

The relation of the present work to the metal-
semiconductor transition!®~2! is discussed in Sec.
V. In the presence of anisotropic and degenerate
band structures the metallic liquid is lower in
energy than free excitons. Therefore as the en-
ergy gap in a semiconductor is reduced the sys-
tem will undergo a first-order phase transition
to a semimetallic state when the gap equals the
binding energy of the electron-hole metallic liquid.
This occurs at a value of the gap larger than the
excitonic instability. Thus we find that excitonic
phases can occur only for simple band structures.

II. ISOTROPIC BANDS

We begin our discussion of the electron-~hole
liquid by considering the simplest case of isotrop-
ic-nondegenerate energy bands for the electrons
and holes. In the limit that the hole mass m,
equals the electron mass m, the problem is that
of a hypothetical gas of electrons and positrons in
which the radiative recombination of electrons and
positrons is ignored. In the limit m,>m,, the
problem is equivalent to the metallic phase of
hydrogen examined by Wigner and Huntington??
and others. 2

The Hamiltonian H is given by

2mg 1o 2my o1 2 5 KITG - TG
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where the first two terms represent the kinetic
energies of the electrons and holes and the other
terms represent the repulsive Coulomb interac-
tions between like particles and the attractive Cou-
lomb interactions between unlike particles. All

of the Coulomb forces are reduced by the static
dielectric constant k. It is convenient to measure
energy in units of the binding energy E, of an ex-
citon, or single bound electron-hole pair, which is
givenby the standardhydrogenic formula E, = pi/mk?
Ry where p is the reduced mass, u-'=m;'+m;j'.
The corresponding unit of length is the Bohr radius
of an exciton which is a,= (m K/u)ao. The density
of electrons n can be characterized by the dimension-
less parameter 7,, the radius of a sphere whose
volume is equal to »~! measured in units of a3,

At high densities, or small values of 7, the
electron-hole liquid will be metallic. The dom-
inant term in the high-density limit is the kinetic
energy of the degenerate electrons and holes which
gives a contribution to the ground-state energy
per electron,

2 2/3
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where %y is the Fermi momentum of the electrons.
The first correction is the exchange energy which
is the expectation value of the potential energy in
the ground state of noninteracting electrons and
holes:
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Note that the electrons and holes make equal con-
tributions to the exchange energy irrespective of
the mass ratio m,/m,. The remaining contribu-
tion is called the correlation energy. Hanamura®
has used the high-density expansion, which is
valid for r <« 1, to estimate this term. However,
it is known from the study of the single-compo-
nent electron gas that such expansions are limited
to values of ;<1 and, as we shall see, the rele-
vant values of 7 hereare»,> 1. Several schemes'#16
based on the random-phase approximation (RPA)
have been developed to estimate the correlation
energy of the single-component electron gas in
the intermediate density regime 1<7,55. These
procedures, although lacking a rigorous justifica-
tion, give good agreement when compared with
the experiment on nearly-free-electron metals. %
Since the various estimates of the correlation en-
ergy of the electron gas do not differ appreciably,
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we shall use the approximation scheme put for-
ward by Hubbard for the single-component elec-
tron gas. The exact expression for the correla-
tion energy is

1 ‘d)\s a3k 5
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The dielectric constant €, (%, w) can be expressed
in terms of the total polarizability. The \ integral
is over the coupling constant Xe?, In the RPA the
total polarizability is given by the sum of the po-
larizabilities of the electrons 7% and the holes

7", so that

EL(E, w)=1- [ﬂe(l-z, w)+‘n"(§, w)] .

The RPA polarizability mpp, is given by the Lind-
hard function

(2.4)

(2.5)
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where n3,=1, p<pr, and n,=0 otherwise. At

short wavelengths, or 2> ky in Eq. (2.4), the

RPA result for the correlation energy is seriously
in error, since it treats the correlations between
particles on an equal footing irrespective of their
spin states. However, electrons or holes with par-
allel spins are kept apart by the Pauli exclusion
principle and thus do not contribute to the correla-
tion energy at large 2. Hubbard'* and Noziédres and
Pines'® have proposed modifications of the RPA to
take account of this fact. We shall follow the
scheme proposed by Hubbard. He showed that one
could approximately include the diagrams that are
the exchange conjugates of the RPA bubble diagrams
by replacing mgp 4 by 7y, where

Trp alk, )
1 +f(k)77m: alk, w) ’

where f(k) = 0. 5k?/(k*+ kZ). We can generalize
his arguments straightforwardly to the multicom-
ponent system by making the replacement (2.7)
separately for each component. This complicates
the integration over the coupling constant in (2. 4).
In the equal-mass limit, n°=7" and the correla-
tion energy can be expressed after a little algebra

as
1 (d&r (T, <22(k, w) .
Ee== im (211)3'[0 dw 'k, w) tan

W}[(k) w)= (2. 7)

Z'(k, w)
1-A'(k, w)

—ZZ(k,w))‘, (2.8)

where 7=A +iZ and 2/ =[2 — £%/2(k% + k)] Z and
A’/A=%'/Z. Note that the exchange contributions
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play a less important role than in the single-com-
ponent electron gas and cancel only one-fourth of
the RPA correlation energy at large k. The re-
sults for the correlation energy are tabulated in
Table I and, in Fig. 1, the total ground-state en-
ergy E; is plotted vs »,. The results show a
minimum in E4(r,) at a value of »,=1.95 with a
minimum value of E3=-0.86. This value is con-
siderably lower than the minimum value of EJ
=-0.35 at 7,=1. 7 found by Hanamura.? However,
the minimum value lies substantially above the
energy of free excitons so that within our approxi-
mation scheme we do not find the metallic state
bound relative to free excitons for equal masses.

When the electron and hole masses are unequal,
the substitution (2.7) leads to a complicated ex-
pression for the integrand in Eq. (2.4). Since
the exchange correction is small in this problem,
we approximate it by making the substitution in
Eq. (2.8) of

’r_ kz e h e h
= I—Z(-m')— (Ze+Zh, 22=Z¢+2%, (2.9)
and again set A’/A=Z'/Z. We have evaluated the
correlation energy for a range of values of m,/m .
In Fig. 2 we plot the results obtained in this way
for the minimum ground-state energy in units of
the exciton rydberg. We see that it decreases
slowly as the ratio m,/m, decreases. The equi-
librium value of 7, stays almost constant and
varies only from 7 =1.95 at m,/m,=1 to a value
rs=1.7 at m,/m,=0.1. Note that the absolute
units of energy and length change by a factor of 2
in going from m,/m,=1 to m,/m,=0.

It is interesting to compare our results with
the calculated values of the ground-state energy
of metallic hydrogen. The Wigner-Seitz method
has been applied by Wigner and Huntington?? and
by Kronig, de Boer, and Korringa® to the hypo-
thetical metallic state of H. Wigner and Hunting-

ton find the energy can be written as
E%=-1.05+0.80m,/m "2, (2.10)

with an equilibrium value of 7,=1.63. Their re-
sults are shown in Fig. 2. The square-root de-

TABLE I. Correlation energy at different values of #,.
7s=0.5 1.0 1.5 2.0 2.5

me/mp=1 —0.67 —0.56 —0.49 -0.44

1.5 —-0.68 —0.57 —-0.50 -0.45

2 -0.70 -0.58 -—0.51 =—0.45

4 —-0.76 —0.63 ~-0.55 —0.49

10 —-0.92 -0.75 -0.65 -—0.57

Ge -1.52 —1.07 ~0.86 —-0.73 —0.64

Si —1.64 -1.12 -0.89 =0.76 -0.65

Ge with —-0.84 =—-0.69 -0.59 -0.53

[111] strain
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FIG. 1. Ground-state energy plotted against 7. (a)
Isotropic model with one maximum in the valence band
and one minimum in the conduction band; (b) germanium;
and (c) germanium under a large (1,1,1) strain. The
parameters used are listed in Table II. The bar on the
right indicates experimental binding of the lowest exciton
in Ge. The width is the experimental error.

pendence on the mass ratio arises from the zero-
point motion of the positive charged particles and
is sufficiently large to cause the metallic phase
to be unbound relative to free excitons for values
of m,/m,>1/256. It is clear from Fig. 2 that our
modified RPA calculations account qualitatively
for the correct trends as the mass ratio me/m B
decreases. However, it is also clear that they
break down as m,/m, becomes very small, It
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FIG. 2. Minimum energy plotted against the mass
ratio m,/m;,. The curve labeled WH is obtained from
the work of Wigner and Huntington. The other curve is
obtained from Eq. (2.8) using (2.9).
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should also be pointed out that E%(m,/m,) cannot
be an analytic function in the interval 0<m,/m,
<1, since as me/m,, increases from zero the lat-
tice of positively charged particles must melt,
which leads to first-order phase transition and a
discontinuity in slope of EY at the critical value
of my/mp,

One major weakness of our calculations is that
they do not have the property in the low-density
limit, lim Eg(rg)~ -1 as 4~ %, the energy of free
excitons. This is not surprising since we have
omitted the terms corresponding to the multiple
scattering of an electron and a hole, which give
rise to the exciton bound states. Within our ap-
proximation scheme the second-order correlation-
energy graphs shown on Figs. 3(a) and 3(b) are
included, though the latter are only approximated.
However, while the Hubbard correction includes
3(c) and approximates graphs 3(e) and 3(f) in third
order, it ignores completely graphs 3(d) and self-
energy corrections to one-particle propagators.
As the density is lowered, the electron-hole cor-
relations typified by these higher-order graphs
become increasingly important. We can make an
estimate of their importance in several ways.

One is to use the Mott criterion®’ for the metal-
nonmetal transition. This criterion is the con-
dition for the occurrence of a bound state of an

electron and a hole interacting via the screened
Coulomb potential. Such a bound state will not

occur for

(2.11)

where g gy is the Fermi~-Thomas screening vec-
tor.2% For equal masses g% =8me%'%/k and
when substituted in Eq. (2.11) leads to criterion
7s<9.9. This value is a factor of 4 larger in ¥,
than in the case of hydrogen (or m,/m,=0). The
difference arises both from the extra screening
in the presence of two types of carriers and from
the greater difficulty in localizing an electron
and a hole simultaneously. Clearly the equilibrium
value 7, 2 is well away from the Mott criterion.
An alternative method of examining the role of

& U
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(d) (e) (f)

grr>1/a,,

FIG. 3. Various diagrams occurring in second and
third order in perturbation theory. Diagrams of the type
(d) are not included in the Hubbard approximation.
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the ladder graphs is to evaluate the contribution

to the ground-state energy from the electron-hole
pairing instability at very low temperatures.2®

For isotropic bands the Fermi surfaces of the elec-
trons and the holes are identical and the system

is unstable at any density at zero temperature
towards the formation of electron-hole pairs.
instability has been discussed by several au-
thors? 2128 and arises from a divergence of the
repeated electron-hole scattering diagrams in the
metallic state. In Appendix A we estimate the
contribution to the ground-state energy associated
with phase transition to the paired state as a func-
tion of density. It is very small for values of

7s~ 2. Indeed for 7 <8 it contributes less than

2% to the ground-state energy.

The small size of this binding energy does not,
however, give any direct evidence on the impor-
tance of the multiple electron-hole scattering in
renormalizing the electron density near a hole.
One can see this by noting that, if for a single
positron in an electron gas we use the criterion
(2.11) for the formation of positronium, the crit-
ical value is again »,=9.9, where 7, is measured
in conventional Bohr radii. However, it is known®
that electron-positron correlations are quite im-
portant throughout the rangeof 2<7,<5. A consider-
able amount of electron-hole correlation is in-
cluded already within the RPA. This is illustrated
by calculating the electron-hole correlation func-
tion g., (7). The details are given in Appendix B.

In Fig. 4 we plot g.,(7) obtained in the RPA for a
value of r;=1. We see that there is substantial
enhancement of g.,(») at small . The enhanced
density of electrons at the holes is 3g,(0)/473
and may be compared to the density in the exciton
wave function of 77!, For the equilibrium value
of »,~ 2 we estimate g.,(0)= 3, so that the ratio is

This
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FIG. 4. Electron-hole correlation function plotted vs
distance in units of the Fermi wave vector »;=1.
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3g.n(0)/473=0.28. This value is much less than
unity. At first sight this result is disturbing. It
is known from positron-annihilation studies in the
alkali metals that electron density at the positron
is larger than in positronium.? In Na, where the
electronic density is approximately equal to the
equilibrium value, we find for the electron-positron
liquid, the experiments of Weisberg and Berko®®
show an enhancement of 50% over positronium, which
gives an enhancement of a factor of 16 over the
uniform electron density. It is clear, however,
that on passing from the one-positron to the many-
positron problem the kinetic energy of the posi-
trons will reduce the enhancement. A large num-
ber of positrons also presents the electron gas
with an averaged potential that is lowered. There-
fore, the electrons do not gain as much energy by
clustering around the positrons as they would for

a single positron. A more relevant comparison,
perhaps, is to the electronic density at the proton
in the metallic state of hydrogen. In a Wigner-—
Seitz calculation the electron-proton correlation

is treated accurately by solving for the wave func-
tion ¥,(7) of an electron moving in the attractive
potential of the proton subject to the boundary con-
dition that 8¢/87 |,.,,= 0 on the Wigner—Seitz
sphere. Kronig, de Boer, and Korringa? found
an approximate solution for §,(») and we find using
their result that the electron density at the proton
is a factor of 2.2 larger than the uniform density.
This leads to a value of 0. 38 for the ratio of charge
density at the proton in the metal to that in a hy-
drogen atom. This value is only slightly larger
than the value we found at equilibrium ignoring
multiple electron-hole scattering. These calcula-
tions indicate that there is much less correlation
in the metallic states than in the corresponding
atomic or molecular states leading to much reduced
values for both kinetic and potential energies.

They also pose the difficult question of whether
there are much more strongly correlated, and
presumably insulating, states that are lower in
energy in the range 7 ~1.5-2 than the metallic
state we have calculated. We defer further con-
sideration of this question to Sec. IV.

II. EFFECTS OF THE BAND STRUCTURE

Thus far in this paper, we have limited the dis-
cussion to an ideal model with isotropic electron
and hole bands. However, in the semiconductors
of interest the detailed form of the electron and
hole bands is known very accurately and is highly
anisotropic and far from the ideal behavior. We
shall present here detailed calculations in four
cases of experimental interest: (a) germanium,
(b) silicon, (c) germanium in the presence of a
[111] strain that is large enough to completely re-
move the degeneracies of the electron and the
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hole bands, and (d) a direct gap semiconductor,
GaAs.

A. Germanium

In Ge, the minima in the electron (or conduction)
band are ellipsoidal in shape and are located at
the L point of the zone. There are four equivalent
electron ellipsoids. From cyclotron-resonance
studies, the transverse (m,) and longitudinal (m,)
masses are known accurately and their values
are m,;=0.082m and m,=1.58m.% The hole (or
valence) band structure consists of two bands
which are degenerate I'y levels at the center of
the zone, but which are split into heavy- and
light-hole bands away from I'. The detailed form
of the energy eigenvalues is
E*(K)=AR? [ B%*+ CR(R2R2+ 2R3+ R2ED)] Y2 . (3.1)
For the parameters A, B, and C we use the latest
values from the cyclotron-resonance work of Han-
sel and Suzuki®® quoted in Table II.

The anisotropies and degeneracies in the band
structure both tend to stabilize the metallic phase.
This can be seen in the first place by examining
the kinetic energy. The Kkinetic energy per elec-
tron is proportional to the Fermi energy E% [see
Eq. (2.2)] and distributing the electrons among
four ellipsoids lowers the Fermi energy by a fac-
tor 4%%, Secondly, it is straightforward to show
that the mass that enters the Fermi energy is the
geometric mean over the three principal direc-
tions of the ellipsoids. Denoting this density-of-
states mass for the electron as mg, we find

Mee=mE3mi3=0.22 (Ge) . (3.2)

On the other hand, if we use the usual 1s function
as a trial wave function in an exciton, the recipro-
cally averaged, or optical, mass enters:

mii=% @m; +mi'), my=0.12 (Ge). (3.3)

Thus the kinetic energy has a heavier mass, and
therefore a lower value, in the metallic state than
in free excitons.

A similar effect is found for the holes. The

number of states per unit volume #,(€) below an
energy € in the hole bands is

ny€)= gi—sj dr[o(e - E*®) +6(e - E-(K))]. (3.4)

Expressing K in polar coordinates (&, 0, ¢), one

sees that in a given direction (6, ¢) the bands (3.1)
are parabolic and the effect of the degeneracy is
to cause a cubic warping as a function of angle.
Thus in a given direction the integral over 2 may
be done at once and we find
1 #1 27
nal€) = l—z—w—sj d(cose)j do k6, ¢) +£2(6, 8)] ,
-1 0
(3.5)
where

k%06, ¢) =€{A £[BZ+ CH(06, $)]M2} (3.6)
and
¥(6, ¢) = sin*6 cos?p sin’p +sin?6 cos?d. (3.7)

Defining a light (m,,) and heavy (my,) hole mass
corresponding to the first and second terms in
Eq. (3.5) by

(2€)3/2
@)= 28" otz i), 6.9

we obtain values of m,=0.042m and my,=0.347Tm
by numerical integration of Eq. (3.5). [Note that
our value of my, is larger than the value of CN,
who used the approximation (2m ) '=A - (B2 +4C?)V?
and obtain a value my,=0.30m.] Again there is

a large difference between the reciprocally aver-
aged or optical mass mq,(=A™=0.07m) and the
heavy hole mass my, which dominates in the kinetic
energy of the metallic state. From the optical ef-
fective masses we can define a reduced mass u

as pult=m;l+m;l and in Ge we obtain p=0.046m
which, when combined with the dielectric constant
k=15.36 in Ge, yields an approximate exciton
binding energy of E§.=2.65 meV. This value is
smaller than the latest3? experimental values of
3.6+0.3 and 2.8+ 0.3 meV for the two excitons in
Ge. Accurate theoretical calculations including
the anisotropies yield theoretical values in excel-
lent agreement with the experimental numbers. %
We wish again to point out the difference between
average masses entering the kinetic energy in the
metal and the exciton. If we use mgy, and my, as
electron and hole masses, we obtain a value of 7
meV for the exciton binding energy, which is much
too large. The optical effective masses define a
convenient set of units which are as follows: (i)
momentum unit % = (372%2)"%, where n is the num-
ber of electrons per unit volume; (ii) mass p, the
reduced optical mass; (iii) energy E%,= pe'/2x?
=2.65 (Ge); (iv) density; 7, the interparticle

TABLE II. List of band parameters used in calculation.

my my Moo Mo A B c m Mun K E*(MeV)
Ge 1.58 0,082 0.12 0.22 13.38 8.48 13.15 0,042 0.347 15.36 2,65
Si 0.9163 0.1905 0.26 0.32 4,28 0.75 4.85 0.154 0.523 11.4 12.8
GaAs 0.067 0.067 0.067 0.067 7.65 4.82 7.71 0.074 0.62 12.9 3.62
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spacing, is given by #™'= % 77%a2, where a,= /e’

In these units the kinetic energy per electron in
the metallic state is

E,=4(E5+EJ)

R et feae “1 @9
= === — N33 .
72 4% g " gy \1 + (myy /)Y

le

=0.468/+2 . (3.10)

The evaluation of the exchange energy is more
complicated. First the distribution of the electrons
among four ellipsoids leads to a lowering of the
exchange energy since only electrons in the same
ellipsoid will contribute to the exchange energy.
Since the exchange contribution is proportional to
the Fermi wave vector there will be a reduction
of 43 from this effect. Secondly, although the
exchange energy does not depend directly on a
mass it is weakly dependent on the shape of Fer-
mi surface. Combescot and Noziéres have given
an elegant analytic derivation of the exchange en-
ergy in an ellipsoidal band. Using their result we
may write

- 3¢? -0.916 o¢(p,)
Eix: 4nK ke¢(pe)=7%'l/_§; (3.11)
where p,=m,/m, and k,=kp/4Y*® in Ge and
s a1(] _ )12
o (p)=pvs 22 (1-p) for p<1. (3.12)

(1-p)t2

In Ge p,=0.0525 and the correction factor ¢ =0. 84,
thus, the anisotropy and degeneracy reduce the ex-
change energy but by a much smaller amount than
in the kinetic energy.

The calculation of the exchange energy for the
holes is considerably more complicated. There
are matrix elements of the Coulomb interaction
between the heavy and light hole bands. The cal-
culation of the exchange energy can be reduced to
a four-dimensional integration which has been
calculated numerically. The details of the calcu-
lation are given in Appendix C and using the re-
sult (C3) we have

-0.916/ m \?
ngz ———_"<——> B,

a (3.13)
Vs iy,

where (m%)¥2=m¥2 +m3? and the evaluation of the
coefficient g is described in Appendix C. Sub-
stituting the values for germanium and combining
with the result (3.11) for the electrons, we find
the following result for the total exchange energy:

—-0.486 _0.650  1.136

Eex_— Eex-!'Eex:
L S 7 S L S

(3.14)

In the calculation of the correlation energy there
will be effects from both the anisotropies and de-
generacies in the band structure of Ge. 1t is

straightforward to incorporate the latter with the
modified RPA but not the former. In particular,
the complex structure of the hole bands poses a
formidable obstacle to a direct evaluation of the
RPA. We chose instead to ignore the effects of
the anisotropy in the correlation energy and to
approximate the band structure by four isotropic
electron bands and two isotropic hole bands. As
the characteristic mass we chose the optical mass
since this mass characterizes the plasma fre-
quency and behavior of €(g, w) for w> vpq (Where
vp is the Fermi velocity). This is clearly a fairly
crude approximation, given the highly anisotropic
nature of the bands in Ge, and it will tend to un-
derestimate the correlation energy. CN have
chosen to approach the problem in a different way.
They have used the Noziéres—Pines (NP) approxi-
mation to the correlation energy. This is very
similar in spirit to Hubbard’s modification of the
RPA. Inthe NP approximation the integrand in
the final integral over % in Eq. (2. 8) is expanded
around the small- and large-% limits. At small
k the RPA result is expanded in powers of 2 while
for large k all the second-order diagrams are in-
cluded. In between a simple interpolation is used.
Using this scheme, CN have found it possible to
include the effects of the anisotropy. They find
that the effect of the anisotropy is to increase the
magnitude of the correlation energy by 20% over
the isotropic approximation employed here. A
detailed discussion of the effects of the anisotropy
on the plasmon energy, etc., can be found in their
paper. *®

The calculation of the correlation energy pro-
ceeds as outlined in Sec. II with the substitution
in Eq. (2.8) of

T=4n°+27", A/A'=Z/T',
Z'=4[1-F/12(F% + k2)|Z°
+2[1 - F¥/12(k% + B3 /2832

Note that the correction factor for the exchange
diagrams is now of only marginal importance and
represents only a 3% change in the correlation en-
ergy. The angular integrations over K are trivial
and one is left with a double integral that can be
evaluated numerically. In Table I we quote the
results obtained in this way for the correlation
energy. Comparing to the values obtained by CN
we see that the effect of incorporating the aniso-
tropy is to enhance the correlation by some 209
in the case of Ge. In Fig. 1(b) we plot the total
ground-state energy of the electron-hole liquid
vs 7s. The shape of the curve has changed con-
siderably from the isotropic model discussed in
Sec. II. There is now a deep minimum at 7,
=0.63 at a value of E% = - 2.0 leading to a binding
energy of 1.7 meV relative to the experimental

(3.15)
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value of the free-exciton binding energy. In Table
III, we list the values obtained by us for the bind-
ing energy and equilibrium density and also the
values of CN and the experimental values. The
latter were determined (a) from the phase diagram
studies of Pokrovsky and Svistunova® and (o) from
the recombination radiation studies of Bendit 4 la
Guillaume, Voos, and Salvan.® Since at equilib-
rium the sum of the chemical potentials

p‘e+ I“Lhz ﬂ%lﬁv(_yﬁﬂ :EC(;](’VS) ’
the binding energy is given by the difference in
energy of the upper edge of the shifted recombina-
tion and the lower edge of the free-exciton line.
The equilibrium density has been determined in a
number of ways, as discussed in Ref. 35. Compar-
ing theory and experiment we think that the agree-
ment in regard to the equilibrium density is very
good. Our value of the binding energy is smaller
than experiment and the incorporation of anisotropy
of the band structure in the correlation energy by
CN leads to a theoretical value in excellent agree-
ment with experiment.

Finally we wish to remark that at the equilibrium
density of 2x10!7 cm™3, the electron density at a
hole is already larger, evenexcluding enhancement
factors, than the value in the free exciton of 1.1
x1017-1.5%10'" cm™. We estimate the latter from
the theoretical calculations of McLean and Lou-
don. 3

B. Silicon

The band structure of Si is very similar to that
of Ge. The main differences are that the bands
are much less anisotropic and that there are six
electron ellipsoids centered at the set of points
obtained from (0. 85, 0, 0)27/a. The calculation of
the ground-state energy proceeds in an identical
manner. The values of the band-structure param-
eters used are given in Table II.3"'% The kinetic
energy per electron is given by

1515

_&gl[ W L(m)yﬂ (3.16)

T2 6
=0.727/72 . (3.17)

Using k,=kp/6' in Eq. (3.11) and the results of
Appendix C, we obtain the exchange energy:

En=-1.157/7,. (3.18)

In the calculation of the correlation energy the cor-
rection of the exchange diagrams now cancels only
+ of the RPA contribution at short wavelength.

The results of the calculation are shown in Fig.

5. The ground-state energy has a minimum at
7s=0.84 with a value of E2=~-1.59. This com-
pares with the value of — 1.60 for EQ at 7,=0. 95
found by Combescot and Noziéres. The agree-
ment between the two methods is much better than
in germanium, which is not surprising since the
bands in Si are much less anisotropic. This is
also the reason why the metallic state is consid-
erably less bound than in Ge. Using the experi-
mental value of 14. 7 meV for the binding energy

of the free exciton found by Shaklee and Nahory, 37
we find a binding energy of 5.7 meV for the metallic
state. Although Si has not been as extensively
studied as Ge, from the optical-luminescence
studies of Pokrovsky et al.® we obtain an experi-
mental value of 6.8 meV. The equilibrium density
we find is 3.4x10%, in excellent agreement with
the value of 3.7x 10 estimated in Ref. 8. Over-
all, as in Ge, the agreement between theory and
experimeut is strikingly good.

C. Ge under a [111] Strain

The application of a uniaxial stress lifts the
degeneracies in the band structure.® In particu-
lar, the application of a stress along a [111] direc-
tion raises the energy of the ellipsoids at the other
[111] points relative to the ellipsoid at the zone
boundary in the direction of the applied stress.

In addition, the application of stress lifts the de-

TABLE III. Theoretical and experimental values of the binding energy and equilibrium density.
Binding energy Ge Si
This work 1.7 meV 5.7 meV
Combescot and Nozigres (Ref. 15) 2.5 meV 6.3 meV
Expt: Pokrovsky and Svistunova (Ref. 5) 2.7 meV 6.8 meV (Ref. 8)

Benoit 2 la Guillaume
et al. (Ref. 35)

Equilibrium density

This work
Combescot and Noziéres (Ref. 15)
Expt: Benoit & la Guillaume
et al (Ref. 35)
Pokrovsky et al. (Ref. 8)

2.4 meV eee

3.4% 1018 cm=3
3.1x 1018 cm-3

1.8x 1017 cm™3
2.0x 1017 ¢m=3

1.95(x 0.65) x 1017 cm=3

2.6x 10! cm™ 3.7% 1018 em=3
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FIG. 5. Ground state of the metallic electron-hole gas in
Si and GaAs. The parameters used in the calculation are
listed in Table II.

generacy between the valence bands at I'. In the
presence of a fairly large, but readily attainable,
value of the stress, the degeneracies are split by
a sufficiently large amount that only one band need
be considered for the electrons and for the holes.
The value of applied stress necessary to reach this
limit is estimated at the end of this section. While
it is clear that the state with all of the electrons
in the ellipsoid with the lowest energy is clearly
the ground state of the electron-hole liquid, it is
not a priori obvious that such a state can be real-
ized experimentally. Since in the excitation pro-
cesses the electrons will be in % states near the
center of the zone, their decay via optical phonons
will distribute them equally between the four el-
lipsoids. If the intervalley scattering time r,, is
sufficiently short 7,,<< 1y, where 7, is the decay
time of metallic phase then one can assume all

of the electrons are in the lowest ellipsoid. At
low temperatures, intervalley scattering via zone-
boundary phonons will be very unlikely and the
dominant contribution to 7;, must come from elec-
tron-electron scattering. In Appendix D a crude
estimate is obtained for 7,, and, using the experi-
mental value of 107 sec for 7,, we find 7,,/7,
~1073 sec. Thus we shall make the assumption
that all the electrons are in a single ellipsoid.

In the case of hole bands in the presence of a
large [111] strain, the upper valence band is el-
lipsoidal in shape with mass values of m/m,=A
+%+N and m/m,=A -+ N where N%= 3C%+9B?, lead-
ing to values of m;=0.04m and m, =0.13m. The
evaluation of the kinetic energy per electron is

straightforward and gives
E,=1.616/4%. (3.19)

In the exchange energy the evaluation proceeds
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as before. For the holes we may use Eq. (3.11)
with the appropriate expression for ¢(p):

_pve sinh™!(p - 1)/2

o (p) Taop p>1 (3. 20)
giving

Eg,=-(0.916/7,) [¢(0,) + (04)] 38.21)

=-1.66/7, . (3.22)

The great simplifications make it possible to eval-
uate the correlation energy exactly within the mod-
ified RPA. This is possible because of the simple
relationship between the polarizability with the
RPA of an ellipsoidal band 7$%, and that of an ap-
propriately chosen isotropic band. Using the ex-
pression (2.6) for mgp,, We note that with the sub-
stitution p}=p'2p, and gl=p?y,, with z parallel

to the longitudinal axis, the integral is the same
as for the isotropic band and we get at once

klz
T8All, ©) = 7 0™ orre (R, 0)

where %'?= %2+ kZ+pk2. The evaluation of the cor-
relation energy can be carried out as before and
the extra angular integration required offers no
essential complication.

In Fig. 1(c) we plot the results for E; vs 7.

We find a minimum at a value of »,=1.5 (or a den-
sity of 1.2X10'" ¢m"3) with a value E% =~ 1.07.

To our knowledge there are no accurate measure-
ments of the binding energy of the free exciton in
the presence of the strain. We can estimate it
quite accurately using the theoretical results of
Kohn and Luttinger®® and we find E, = 1.002. With-
in our approximations the metal is bound by a
small amount. CN have a value for the ground-
state energy slightly smaller than ours and do not
find binding. In view of the over-all uncertainties
inherent in the RPA no definite theoretical con-
clusion can be reached.

There are no experimental measurements of the
binding energy under strain. Benoit 4 la Guillaume
et al.% have reported an equilibrium density of
1.8x10" cm™ in the presence of a large [111]
strain and the persistence of the metallic recom-
bination luminescence. It is possible that the
transition to the metallic state occurs under pres-
sure in this case, in analogy with the proposed
metallic phase of hydrogen. Clearly, a more de-
tailed experimental investigation of the effect of
strain would be of considerable theoretical in-
terest.

D. GaAs

We should like to point out that even though the
situation is far less clearcut because of fast re-
combination times, highly excited direct-gap ma-
terials will also have their gap renormalized be-
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cause of the interaction between the electrons and
holes. This point has been emphasized recently

by Johnston. *® Experiments on optically pumped
GaAs have exhibited recombination radiation that

is shifted toward lower energies in a fashion con-
sistent with the present theory.!” If one uses the
band-structure parameters for GaAs listed in
Table II, * the same calculations as were discussed
for Ge and Si can be performed for this material.
Again we assume thermal equilibrium is attained.
The results are shown in Fig. 5. The minimum
energy is quite close to the exciton binding energy
and the density at the minimum corresponds to
2x10' cm™3. At the minimum energy, the ground-
state energy and the chemical potential are equal
so that for this state the recombination radiation
should all appear below the exciton line. If one can
pump to densities beyond 2x10'® cm™%, the sponta-
neous emission will extend over a larger region
both above and below the free-exciton line. It
should also be noted that at densities higher than
those corresponding to the minimum energy of the
curves in Fig. 5, the electron-hole gas is under
pressure and will attempt to expand rapidly into the
lower density regions of the crystal.

IV. LOW-DENSITY REGIME

Thus far we have discussed the metallic state
and how its energy varies with density, i.e., 7.
We now turn to the other extreme, that is, we
start at low densities and ask what happens to the
excitons as the density increases. The discus-
sion is limited to the model used in Sec. II of iso-
tropic single bands for the electrons and the holes.
We make extensive use of the analogy between the
case of a hydrogen gas and a gas of excitons.
These two systems are simply the extreme limits
of the phase diagram obtained from studying a
system of electrons and holes with variable mass
ratio.

First we consider the interaction between two
excitons. Just as for hydrogen atoms, two ex-
citons bind to form a molecule. Of the several
calculations!®4%43 of the binding energy of the
positronium or excitonic molecule that have been
published, the simplest is that of Hylleraas and
Ore, '® who find that the molecule is bound by
0.017 E,. The average separation between the
two excitons in their wave function is ~ 4. 5a,. **
Comparing this separation to that of the two pro-
tons in Hp, namely, 1.5 agz, we see that the ex-
citonic molecule can be though of as two weakly
coupled excitons. The electrons and the holes
are separately paired into singlets in this state
so that the orbital wave function is nodeless. Any
other spin configuration does not lead to binding
since their orbital functions must have nodes with
the consequent cost in kinetic energy. This state-

ment is also true if one attempts to bind three ex-
citons together to make a larger molecule. There-
fore, we need to consider the interaction between
two molecules.

The interaction between two hydrogen molecules
was first considered by de Boer, *® whose method
we shall follow quite closely. He found that the in-
teraction potential is attractive at distances greater
than v~ 5ag and that there is a weak minimum of
~10* Ry between 7~5. 5ag and 6as. This weak
minimum is responsible for the gas-liquid tran-
sition at 22 °K in H,, * For two excitonic molecules
the situation differs in two ways: (i) Because the
separation of the excitons in the molecules is con-
siderably larger, the forces are much more ex-
tended and the net attractive force is weaker; (ii)
because of the light total masses of the molecules,
the weak attractive forces are not sufficient to
cause a gas-liquid transition. To verify the first
statement we note that the van der Waals forces
between two excitons have the same relative mag-
nitude in this problem as in H,, that is, if energies
are measured in terms of exciton rydbergs and
lengths in exciton radii, then the van der Waals
interaction is*’

V,@)/E,=-13(a,/7)®

and the factor of 13 is the same as for two hydro-
gen atoms. The repulsive part of the interaction
between two excitons also scales in this fashion,
but as discussed later, is slightly larger because
of the possibility of exchanging both electrons and
holes. Since the molecule is made up of well-
separated excitons, the effective interaction be-
tween two molecules can be written as the sum of
the interactions between the excitons averaged
over the positions of the excitons. Because the
excitons are much more loosely bound than two
hydrogen atoms, this final average spreads out
the repulsive region considerably, decreasing the
density at which the attractive forces can be ef-
fective.

These facts regarding the form of the potential,
along with the light mass of the molecules, make
it unlikely that a gas-liquid transition will occur
for the molecules. This can be seen by consider-
ing the theory of quantum effects on gas-liquid
transitions by de Boer.* He writes the effective
6-12 potential describing the interaction between
two molecules in the form

o] ()" (3]

and then introduces a quantum parameter
A=h/c(me)2. By plotting the experimental val-
ues of the critical temperature against A he found
that the critical point for the gas-liquid transition
appears to go to zero at A~ 3.5. If we assume

4.1)

4.2)
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that the interaction between two excitonic mole-
cules is the same as that for H, molecules, the
quantum parameter A=~ 76. That the range of the
interaction is actually considerably larger for ex-
citonic molecules is not likely to reduce this num-
ber below 3.5. Inany case, the attractive forces
are only important at very low densities so that
we will ignore thera entirely and ask at what point
the repulsive forces are sufficiently strong to
break up the molecular gas.

Presumably, this breakup will occur when the
product of the scattering length a? and the density
n is approximately unity. In order to calculate
the scattering length, we must determine the form
for the repulsive potential. To do this, we follow
the derivation due to de Boer?®® for calculating the
repulsive potential between two H, molecules.

The wave function of the molecule is taken to be
of the approximate form

Va1, 2)=f(r,,) (610 e 20 4 "0 g""2a) /21 | (4.3)

where the unit of length is again taken to be the
exciton radius, a and b index the holes, and 1 and
2 index the electrons. Following de Boer we as-
sume that this function is an eigenfunction of the
Hamiltonian for the molecule. The total wave
function for the two molecules is written as the
antisymmetrized product of the above wave func-
tion for each molecule. The same approximations
made by de Boer of keeping only terms that are
lowest order in the overlap integrals is also made
here. Let H’ be the sum of the Coulomb interac-
tions between particle (a, b, 1, 2) and particles
(c,d, 3,4). Then there are three types of terms:
(i) the direct Coulomb interaction

H.= [ 955(12)0,4(34)H" $,,(12)1,4(34)dT ;

(ii) the interaction due to the exchange of two elec-
trons

HE= [ 051, 30002, HH (1, 2)8,4(3, 4)dr ;  (4.5)
(iii) the interaction due to the exchange of two holes
Hit= [ 90,(1, 200003, 9HB,(1, 2)4,4(3, 4)dr . (4.6)

The first two of these terms reduce to exactly the
same expression as obtained by de Boer, only they
are averaged over the wave function f(r,,). If

C(r) and J(#) are defined as

Clry)= 7712'] e-zmnmz»(i -2 _2

(4.4)

+ —2—) d*ridPr,  (4.7)
712
and

1
J('Vab): _7_r_2_ e-2lratvragtrpdrpp) (2 2 4

+ —g-)d:’rlda'rz , (4.8)
712

the total contribution from the first two types of
terms is

Hi+HE=4[ d°Ryd°Roaf 2(Ryp) f (R o) [C(Ry,)
-3JR,)] . 4.9)

In a similar fashion the expression for the exchange
of two holes can be reduced to

Hit==2[ [@°R.d°Roof (Rys)f(Rep)

Xf(Rad)f(Rcd) J(Rac) . (4° 10)

This is similar to the conventional form for the
nonlocal exchange interaction with an effective po-
tential 3 J(). Finally we must establish a form
for f(»). Since we are only interested in the long-
range behavior and the best estimate of the molec-
ular binding energy is ~0.02 E,, the f(7) is taken
to be (m/p%)*%e*", where g=(0.02)" 2, In order to
carry out the integrals in a relatively simple fash~
ion and obtain a value of the scattering length, we
note that C(») and J(») both drop off as e?" at large
distances so that the interaction is relatively short
ranged on the scale of the function f(»). There-
fore we replaced both C(») and J(r) by & functions
whose weight is determined by their average val-
ues. Then carrying out the above integrals for a
given value of R=1[R, +R, - R, - R;], We obtain
for the total repulsive interaction

V(R)=H,+H!S+H!!

=108330-45R1 1 L 48R + 1 (48R)?] . (4.11)

The scattering amplitude a; can be obtained ap-
proximately from the variational procedure given
by Messiah.*® The result is

a,=6.9., . (4.12)

The description of the molecular state in terms of
a weakly interacting gas of molecules breaks down
at ¥~ a, This presumably means that the energy
gained by the formation of molecules is overcome
by the repulsive interactions around 7 =7 and the
ground-state energy begins to increase. If this
increase is rapid enough then one can satisfy the
conditions for obtaining a first-order transition
to the metallic state as illustrated in Fig. 6. This
transition would be similar to the proposed metal-
insulator transition in H, but with a larger volume
change. It is, of course, possible that before one
changes to the metallic state the molecular state
is destroyed and some form of excitonic state is
formed. 2! This point is discussed further in
Sec. V.

In conclusion we should like to comment on how
the considerations of this section can be extended
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FIG. 6. Possible phase diagram for the isotropic band
model. The solid curve on the left is the ground-state
energy vs 7, of the metallic state, while the right-hand
curve is a suggested curve based on the low-density con-
siderations in Sec. IV. The dashed line thus represents
a first-order change between the low- and high-density
states.

to more complicated band structures. It is not
expected that anisotropy of the bands alone can
change the sign of the scattering length and modify
our conclusions. For degenerate bands it may be
possible to bind larger complexes since the ex-
clusion principle does not enter until one has com-
plexes with more than two particles per subband.
Whether infinitely large complexes can be formed
in such a way that the repulsive interactions due
to the exclusion principle are overcome by a suit-
able choice of geometry is not clear.

V. RELATION TO THE THEORY OF METAL-INSULATOR
TRANSITIONS

In recent years there has been considerable
theoretical interest in the transition at low tem-
peratures between metallic and semiconducting
phases. It was suggested by Mott?® that such a
transition must be intrinsically first order at
zero temperature because of the long-range Cou-
lomb forces between electrons and holes in semi-
conductors. Subsequently the problem (reviewed
in Refs. 20 and 21) of an uncrossing of overlap-
ping bands was examined in detail by a number of
investigators using a Hartree~Fock approxima-
tion. They found that near zero-energy gap a
sequence of excitonic phases characterized by
spin or charge density waves could be stable.
These phases were bounded on the semiconducting
side by the condition that the binding energy of a
single exciton is greater than the (indirect) ener-
gy gap. The excitonic phase relieves the instabil-
ity towards the creation of a large number of ex-
citons by introducing a pairing in the ground state
between electrons and holes. 2»2! Within the Har-
tree~Fock approximation the interaction between
excitons is repulsive and hence the excitonic state
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is stable. However, as already mentioned, two
excitons are known to bind so that Hartree—Fock
theory cannot be correct. *°

It was pointed out by Halperin and Rice, 2! that
the study of the excitonic instability reduces to
the study of an electron-hole gas at a constant
chemical potential. That is, instead of studying a
system of electrons and holes at a constant den-
sity, as we have been doing in this paper, one
considers a variable number of electrons and
holes but adds a term H'=(E;/2) (N, +N,) to the
Hamiltonian in Eq. (2.1) to represent the gap.
This term acts like a negative chemical potential.
The proposition that excitonic phases occur near
zero gap is equivalent to the proposition that in
the electron-hole gas a Bose condensed phase of
excitons is the stable phase at some value of the
chemical potential. We have seen in this paper
that in semiconductors such as Ge and Si where
there is considerable anisotropy and degeneracy
in the band structure that the state with minimum
energy at zero temperature is the metallic liquid.
Therefore, for such semiconductors if one re-
duces the indirect energy gap continuously, a first-
order transition occurs directly to the metallic

phase, bypassing all excitonic phases. The
transition occurs when the energy gap is equal to
the ground-state energy per particle of the metal-
lic phase. In such a case we would expect a phase
diagram of the form shown in Fig. 7, where the
critical temperature T, is that for the liquid-gas
transition in the electron-hole system.

If the energy bands are only slightly anisotropic
and are not degenerate, our calculations indicate
the metallic state is not the state of minimum
chemical potential but rather, as discussed in
Sec. IV, the molecular state. Under such cir-
cumstances the theory discussed in Refs. 20 and
21 may be applicable. The excitonic or Bose con-
densed phase may be stable as the chemical po-
tential increases and the molecular correlations
between excitons become unimportant. The ex-

SEMICONDUCTOR METAL

tP)

FIG. 7. Expected phase diagram for the metal insula-
tor transition. The transition is first order with the or-
der parameter the density of electrons in the conduction
bands.
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citon-exciton interactions are then effectively re-
pulsive. However, the final transition to the me-
tallic state is likely to be first order since the
band structure in the intermediate excitonic phase
may be expected to have multiple extrema and to
be anisotropic. Thus it would seem unlikely that
a series of excitonic phase changes will occur.

In conclusion it should be remarked that the ex-
periments in Ge are relevant to the considerations
of metal-insulator transitions in that they confirm
experimentally for the first time the idea that the
density of electrons in a given band can be used
as a bonafide order parameter to describe a phase
transition. This idea has been the basic assump-
tion in the area of excitonic insulators and much of
the work on the Mott transition.
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APPENDIX A: +-MATRIX CALCULATION

In order to estimate the importance of the mul-
tiple scattering of an electron and a hole we cal-
culate the bound-state energy of an electron and
a hole interacting via the screened Coulomb inter-
action. For isotropic bands this binding energy
is nonzero for all values of 7, and its value was
previously discussed in the high-density limit by
Kozlov and Maksimov. 2® Let §(%) be the Fourier
transform of the electron-hole-pair wave function
with binding energy w measured relative to the
sum of the Fermi energies of the electrons and
holes. (k) must satisfy the equation®

2 5 2 e
[;ﬂ— (k - kF)lP(k) - 4176 jk'>kF (2—11)5

TRy Y] meve . A
We have tried several types of variational solutions
to this equation and have found that there are two
regimes depending on whether 7,2 7.5. I 7, is
less than 7.5 we find only a Cooper-pair-type so-
lution and we use a trial function

¥,(k)=A/R(RE-pB?) . (a2)

Here the & in the denominator is introduced in-
stead of a high-energy cutoff and g is to be de-
termined variationally. The only solutions with
this trial function are those with g nearly equal to
unity and we can expand the energy in powers of
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1-Bk'=6. We find that

@ =—45[a1n?(5) +b1ns] , (A3)
where

—_ w 1 4+V2>

o= T——kF/Zm , a—4h1n<—§——v , (A4)
and

f el ] w

. 1+x) dx \(1 - x)2+v%%/

Here 2= k%-T/k,? and the dimensionless coupling
constant X =»%/8. Minimizing & with respect to
5 we find the energies plotted on the enlarged
scale in Fig. 8. We see that the binding energy
in this region of 7, varies from 2x10™* (k%/2m)
to 1072 (2/2m).

A slightly better trial function for larger », is

Py(k) = “’;2—(52%67) . (A6)

This function has essentially the same properties
as ¥, for small »¢ but develops a second minimum
at g=0at »,~ 7.5. Above 7»,=8. 2 the minimum
energy switches over to §=0. The g=0 values
for this function are the dashed line in Fig. 8.
Above 7 ="17.5 it is more profitable to use a hy-
drogenic-type solution of the form

A

The minimum energy for ¥ is plotted as the solid
line in Fig. 8. We see that the state moves out
of the continuum, i.e., @<-2at v4,=10.5. This

(A7)
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FIG. 8. Calculation of the binding energy of an elec-
tron and a hole using various approximate wave functions.
The high-density curve was obtained using the wave func~
tion (A2), the dashed line (A6), and the low-density curve
(AT).
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is quite close to the Mott criteria, which does not
include the orthogonality to the Fermi sea con-
tained in Eq. (Al).

It should be noted that for » <7.5 the supercon-
ducting-type instability contributes a total energy
of order w?/e to the binding energy of the metal
since only a fraction w of the electrons and holes
are involved in the pairing. Therefore we conclude
that the contribution to the ground-state energy due
to the formation of electron-hole pairs is quite
small in the regime of interest.

APPENDIX B: ELECTRON-HOLE CORRELATION
FUNCTION IN RPA

In a multicomponent system we can define a
function g*%(r) that gives the probability of finding
a particle of type o a distance » from a particle
of type B8, in terms of the corresponding correla-
tion function $*#g, ¢) %°

1 d®
eB(FY _ 1= a9 ,ittgas
g -1 W}’ g5 ¢S (@,0), a*g (B1)
where #* and #® denote the densities of particles of
type o and B, respectively. The function $*(g, t)
is defined as

S*4(d, )= (ol 0§ (D)P%(0)[¥,) (B2)

where pJ(¢) is the Fourier transform of the density
operator in the Heisenberg representation of the
particles of type a. Using the relation between
the correlation function and the corresponding di-
electric function

&3 &5 Ime™(q, w) = (21e?/g?) [S*(g, - w) - $*%g, w)] ,
(B3)

where {,=~1if a is an electron and {,=+1if

« is a hole, we obtain the result

- 1 2 (= 1
S*4d, 0)= _C:Z'; Z;r‘lge—gjo dwlIm/e u,la(q, w)] . (B4)

The dielectric function €, which relates the in-
duced particle density of type o to the perturbing
potential acting on the particle density of type g
is given simply within the RPA, for o #8, by

1 - WEPA(qiw)ﬂ%PA(q; w) (B5)
€as(@w) 1-[1%A@, w) +78p 4 w)]

___7%palg, ) (B6)

T 1-2mgpalg,w)’

in the isotropic single-band equal-mass electron-
hole liquid. If we express mgp, in terms of the
dimensionless variables x=q/kr and y = w/Ep, then
we can write

Trpa(g, w) = (e®m/kg) F(x, 5)
=200 ,F(x,9) s ®B7)
where a,= (4/97)Y3.

Substituting in (B1) we obtain the result

ESEp A% x%e % *ThF
n®*nPt L Ane® 8n®

Vi 2 212
Xso d 4&0’)’& (x, 2) (B8)

g ¥) - 1=

Y 1= 4a g, F(x,y)

- 32ﬂ§a§5 1—4a07’sF(x’y) ’
(B9)
The expression (B9) is very similar to that used
to calculate the correlation function g"(#) for
electrons of opposite spins in the single-component
electron gas. The integrand of Eq. (B9) is the
same as in g"(r) if we replace the coefficient
4a7, in the denominator by ag,. Thus we can
scale the results for the electron gas at a value of
7s=1 in Bohr radii, to the electron-hole gas at
7s=4 in exciton units by multiplying the answer by
+. Using the results of Lobo etal., °2 who calcu-
lated g'*(») within the RPA for the electron gas,
we obtain the curve for g®*(») at a value of » = 1.
The results in Fig. 4 show an enhancement of
approximately a factor of 2 at the origin. If we
use the results of Ref. 51 and extrapolate to
7,=2 we find an enhancement of g*"(r) of approxi-
mately a factor of 3 at the equilibrium value of
Vg

- oy dexxzei(ioko)sndy F3(x, y)
0

APPENDIX C: VALENCE-ELECTRON EXCHANGE

In order to calculate the exchange between the
valence-band holes we must take into account the
detailed nature of the wave functions near the va-
lence-band edge. The exchange energy including
the effect of these wave functions can be written as

e d &% 4
sn @21)° ) s (20)° 1K-K'I7

1¢?
Eax=5 ¢

3

n,n?

3

x| (bn|dpme)|2. (CL)

Here the integrals over k and kK’ are restricted to
the occupied regions of the bands » and »n’. The
¢, are the wave functions at k which are written
in terms of the wave functions at k=0 by the k-§
method.®® For Ge there are four bands which are
degenerate in pairs, so that the occupied region
is determined by two Fermi surfaces. Inorder
to reduce (C1) to a convenient expression for
computation, we measure all momenta in units of
kp = (2mez/n%)2. Then dividing by the density
n=(mé/m)*?3 /37 and measuring energies in units
of E,, we have

Eh o m 3/2 oce dsk d3kl
n—E“ =37 (7;1-;,[) (kpa)< :L}' Ssnﬁﬂ—)ss o @0

x

XTITL%'_IZl(‘P;"M?'"'Hz), (c2)
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where the momentum variables are in units of kp.
Substituting for (kga) in terms of 7 gives

El [3(9'”)“3 1](7}1)2

e =

nE, 27\ 4 7 mva 8 (C3)
where

oce d3E dak,' 47 2
= 3 ——— T e ’
p=2m %2 sn (21r)§§sm @Cmdlk-k'I2 | @l 2|

(C4)

The product g8(m/m?%)? represents the correction
to the exchange energy from its value for the iso-
tropic single-band model. In calculating (C4)
considerable simplification can be obtained by
using the fact that

331 }(¢Enl¢i'n'>,2=1 ‘ (CS)
Use of this fact allows us to distinguish three re-
gions of integration, depending on whether k and
K’ are inside the smaller of the two Fermi sur-
faces S;. In regionl, k and ¥’ are both inside
S, and the sum over »z and »’ of the matrix ele-
ment adds up to 4. In region II, either k or k'
but not both is inside S; and the sum over » and
n' adds up to 2. In region III neither K nor ¥ is
inside S; and the matrix element must be calcu-
lated explicitly. We have calculated these matrix
elements by calculating the eigenfunctions of the
4x4 k- P matrix given in the review article by
Kohn. ¥ We need only the eigenfunctions for the
heavy-mass band. After considerable algebra
we find that

5 [(n] dd|2=2{14+ (/XX NEP - BEP' - EY)

n,n’=1
X(RR' * + R*R’ +S*S' +88'*)~ P —E(|R' |*+ |8 |?)
-GP -E"3(|R|%+|S|®]}. (C6)

Here P, S, and R are the same functions of k de-
fined by Kohn. The primed functions are these
same functions with k’ replacing K. The variable
E is the energy of the state kn and X is defined to
be

X=GP-EP?+|R|%+]S|2. (€7

The expression (C6) depends only on the angles
K and K’ make with respect to the cubic axes.
Therefore we can perform the integrations over
the magnitude of k and K’ in Eq. (C4) for B. If
k1(6, ¢) and %,(6, ¢) are the magnitudes of the Fer-
mi momenta in the direction (6, ¢) for the smaller
and larger Fermi seas, respectively, we can write
B as

B- #(f dQad Ik, &)| ¢ |2+ ZJ’deQ’I(ka,k{)

x(2 - (¢|2)+j aQ dQ' I(k,, g)f¢[2‘) , (C8)
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where |¢ |2 is defined to be the expression (C6) and

ki 2 i 12 ar’ (C9
Hkik)=), ® dkjo B T s :

where u is the angle between ﬁ and K. Perform-

ing the above integrals we obtain

1 B r b= o8B )
ks, b)) = Z{ (RikS+ER,) +u|ik§lx}(—}+—k?—-k‘b-&>

i
kS +Rki- 2Rk 2pf-1
+k;‘ln< jkj ]“)]+(1—“21/z

1)
k (1 )1/2 (k(l - “2)1/2)
4o -if By 4p0n-1f i .
x[kitan , —k m >+IeJ tan ky Pyl

The remaining integrals over the four angular
variables in Eq. (C8) have been carried out numer-
ically.

The integrand that is obtained after one of the
Q integrals has been performed has been found to
be a slowly varying function with respect to the
final @ variables. This allows one to use a small
number of mesh points in the final integration.
The results appear to be accurate to three signifi-
cant figures. Using the parameters in Table II,
we determined g to be 0.0903 for Ge and 0. 249
for Si.

APPENDIX D: INTERVALLEY SCATTERING TIME

Consider the situation in the presence of the
strain field that has split off one ellipsoid by an
energy A relative to the other ellipsoids. Since
in the excitation process the electrons are pro-
moted to high-energy states mostly in the center
of the zone, it is reasonable to assume that the
populations in all the ellipsoids are equal after
the initial decay via optical and acoustic phonons.
We therefore take as our initial state one in which
there are equal numbers of electrons in all four
ellipsoids (in the case of Ge). Now we are inter-
ested in the situation in moderate strains and
densities so that A and E} (the initial Fermi en-
ergy relative to the bottom of the ellipsoid) are
much smaller than the energy of a zone-boundary
phonon. Therefore, there can be no transfer of
electrons between the ellipsoids by emission of
phonons and, since we are at low temperatures,
by absorption of phonons either. However, it is
possible to relax the distribution by electron-elec-
tron scattering and we shall now proceed to cal-
culate this rate.

If we take an applied strain along (111) and con-
sider an electron in the ellipsoid at (111), for ex-
ample, it can scatter with an electron in (111) and
transfer to (111) or (11 1). The rate can be cal-
culated using Fermi’s “golden rule” and for A
> Ef is given by



|3

g - 4m, inT N(A)E,

ot (D1)

where 773, is the density of electrons in the (111)
ellipsoid, N(A) is the density of states of an elec-
tron at energy A from the bottom of the ellipsoid,
and I is the matrix element for scattering. To
estimate I we use a single symmetrized combina-
tion of plane waves of L,~type symmetry for the
wave function and find

1= 127e2
90%(r/a)? ’
where K is the average dielectric constant at large
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wave vector. Following Penn® we take R~ 2.
Solving Eq. (D1) we find by using 111=11T and
731, () =n447(¢) that

g1 ( "113(”2

at T Tnn'i(t: 0) ’ (Dz)

with 7~ 2. 5% 10"° sec for A= 20 meV. Solving for
n(t) we find
n413(t) = nyy3( = 0)7/(t + 7) (D3)

so that after 1 psec, n;7 has dropped by a factor
of ~400 from the starting value of 5% 10" cm™®
and is negligible.
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