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Electronegativity difference was redefined in Paper I of this series as a scaling parameter
which combines the concepts of valence and size differences. A procedure has been developed
for its evaluation in terms of a two-band model. In Paper II of this series it was shown that
this model describes and predicts the ionization potentials and electronic interband gape of
binary A B ""compounds and their alloys. Here the energy of this model semiconducting-in-
sulating solid is evaluated relative to a free-electron gas, i.e. , an idealized metal, as a func-
tion of composition, pressure, and temperature. Using this highly simplified scaling approach,
we obtain suprisingly accurate predictions for the heat of fusion, melting point, and pres-
sure-temperature phase diagrams of these materials. A revised method of calculating the ex-
cess heat of mixing of a substitutional alloy is presented. This calculation is extended to the
case of an arbitrary dilute impurity in an arbitrary semiconducting host; the distribution coef-
ficient at the melting point of the host is obtained.

I. INTRODUCTION

In the first two papers of this series, ' here-
after referred to as I and II, the concept of elec-
tronegativity difference was defined as a scaling
parameter which generalizes the concepts of va-
lence and size differences in the manner proposed
by Phillips. 3 The theory was formulated in terms
of the low-frequency electronic dielectric constant
of a semiconductor c(0) = n, where n is the index of
refraction below the band gap.

The treatment was restricted to diatomic crys-
tals of formula A"Be "which form in the diamond,
zinc-Mende, wurtzite, and rocksalt structures.
Thus only the zp3 hybridized, or tetrahedral co-
valent bond, and, by extension, the predominately
ionic p3 octahedral bonding in the rocksalt struc-

ture was described. However, other authors4
have discussed the extension of this formulation to
several other classes of semiconductors-primari-
ly in connection with nonlinear optical susceptibil-
ities. Amorphous tetrahedral semiconductors
have a].so been discussed. ~

Unlike the electronegativity scales developed by
Pauling and by Mulliken, the Phillips formula-
tion defines the electronegativity difference C be-
tween ions to be dependent upon their crystalline
environment~ rather than simply the difference of
elemental electronegativities. (C is in fact the
dielectrically screened potential difference' be-
tween the fields produced by the ion cores of the
two atoms participating in a given bond measured
at the point of contact of their covalent radii. We
refer to that point as the "bond site.")
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It has already been demonstrated that the dielec-
trically defined scale of electronegativity differ-
ences has several advantages over previous formu-
lations. ' ' 6 It will be shown here that the environ-
mental dependence of the electronegativity differ-
ence and the scaling nature of the description of the
sp covalent bond allow one to estimate thermody-
namic variables by calculating the effect of pres-
sure, temperature, and composition (i. e. , nature
of distant atoms) on optical properties of the semi-
conductor and deducing their effects on the energy
of the bonds. This possibility is totally absent in
earlier empirical formulations, where "bond addi-
tivity" was assumed. (The bond-additivity assump-
tion is that the energy of the whole is the sum of
the energies of bonds between nearest neighbors
and these depend only upon the nature of the atoms
forming the bond —and perhaps their coordination
number. ~7)

The plan of this paper follows: In Sec. II, the
dielectric two-band theory for determining the opti-
cal spectrum of a tetrahedral semiconducting com-
pound ' or alloy' is reviewed.

In Sec. III, simple but accurate methods of cal-
culating the pressure and temperature dependence
of the optical spectrum is described. In Sec. IV,
we consider the energy difference &E' ' for a
given material between an idealization of the semi-
conducting phase, the Penn model, and an ideal-
ization of a metallic phase {of the same composi-
tion), the free-electron gas. It is then proposed
that AE may be identified with the difference in in-
ternal energy between the semiconducting, z, and
high-pressure (P-tin) phases of the IV-IV and III-V
semiconductors. The heat of fusion &H~ to melt
a semiconductor to homogeneous liquid metal is
also obtained from &E.

In Sec. V the possibility of predicting the changes
in volume, 6 V ~ and 6 V~, concomitant with the
phase transition to the P-tin and liquid phases is in-
vestigated. This is accomplished by resorting to
the theory of covalent radii. 5

In Sec. VI the entropy of fusion &S and the en-
tropy of the a-P transition ~ q are estimated
from simple quantum-mechanical arguments.

In Sec. VII the calculated pressure-temperature
phase diagrams are presented and are compared
with experiment. The theory introduces only two
empirical constants for the entire family of semi-
conductors. These are used to estimate the heat
of fusion and entropy of fusion of the metallic
phase. All parameters specif ic to a given semicon-
ductor are calculated self-consistently and are in
good agreement with optical data, Agreement with
experimental temperatures of fusion at 1 atm is
generally within 5/~. Agreement at high pressures
is generally within experimental uncertainty. A

pressure minimum is predicted for the n-P transi-

tion in most IV-IV and III-V crystals; this implies
a metal-to-semiconductor transition with increas-
ing temperature at constant pressure. This fea-
ture has not previously been reported but is con-
sistent with published data~ on InSb and with recent
experiments on Si and Ge.

In Sec. VIII the present theory is applied to cal-
culate the distribution (or segregation) coefficients2'
of an arbitrary impurity in an arbitrary-host semi-
conductor. A revised calculation of the heat of
mixing is also presented. All needed thermody-
namic parameters specific to impurity or host are
calculated without adjustment. Agreement with
available data, principally for Si and Ge, is gen-
erally within a factor of 3 throughout the eight-or-
ders-of-magnitude range covered by measured
distribution coefficients,

II. REVIEW OF DIELECTRIC DEFINITION OF
ELECTRONEGATIVITY DIFFERENCES AND THE

TWO-BAND MODEL

(2. I)

\

1

\

\
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FIG. 1. Penn-model band structure (Ref. 22). The
Jones zone, i. e. , the first four Brillouin zones, which
contains all eight valence electrons is approximated as
a sphere. For the diamond/zinc-blende structure, the
Jones zone is actually a regular duodecagon. The wave
vectors of those free-electron states mixed by the crystal
potential are related by k' = k —2 k&k. In the limit E~ —0,
this Penn model reduces to the free-electron gas or jel-
lium model of a metal.

We begin with the isotropic-Penn-model band
structure (Fig. I), a highly simplified approxima-
tion of a semiconductor which still gives a realis-
tic wave-vector-dependent dielectric function. '
For this model the low-frequency electronic dielec-
tric constant (in the long-wavelength limit) is
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where B=E,/4E~, &u» is the plasma frequency of
all the valence electrons (not just the free car-
riers, thus h~» = 10-30 eV), and E~ is the free-
electron Fermi energy of all the valence electrons.
E is the single band gap in the Penn model (Fig.
1) and corresponds to a weighted average of all the
valence- to conduction-band gaps in the particular
solid under consideration. The weighting of the
average is proportional to the actual oscillator
strength of the transition so that local field or ex-
citonic effects'7 are automatically incorporated by
resort to experimental values of c~(0). Values of
the above parameters for the case of Si are E&
=12.5 eV, E, =4. 8 eV, A~&=16. 6 eV, B=O. l.

In the dielectric theory, F., is decomposed into
contributions due to the symmetric and antisymme-
tric parts of the potential within the unit cell

2 @2~Cs (2. 2)

In (2. 2), E„ is the contribution from the symmetric
part or the "average homopolar band gap. " C is
the contribution from the antisymmetric part and
is defined as the electronegativity difference for
that bond under the prevailing condition. [In the
diamond, zinc-blende, and rocksalt structures
there is only one kind of bond sothe single value
of e&(0) suffices to determine C for all bonds once
&» has been fixed (see below). For structures con-
taining more than one type of bond, one must make
additional assumptions. ] The form of Eq. (2. 2)
may be understood by noting that the symmetric
and antisymmetric structure factors may be chosen
to be pure real and pure imaginary, respectively.
Therefore, the symmetric and antisymmetric
pseudopotential form factors add 90' out of phase.
To first order, their effects, for each particular
band gap, combine as in Eq. (2.2). (The justifica-
tion of this equation has been further investigated
by Heine and Jones. s )

In the elemental crystals (C, Si, Ge, and Sn),
C =0 by definition so P.', = E„. Thus the values for
E„ in diamond and Si can be determined' from
Eq. (2. 1) using experimental values of q, (0) and

the free-electron value of the plasma frequency,
&u»

= 4vNe /m, where N is the total number of va-
lence electrons (four per atom or eight per unit
cell) and m is the free-electron mass. The values
obtained, 13.6 and 4.8 eV, respectively, may be
used to determine the two parameters in a simple
power-law formula for E& as a function of nearest-
neighbor distance y alone:

E„(r)= E„~„[(r/~) ~

„]-'". (2.3)

The assumption that F.„ is a function of y alone is
supported by the observation that the symmetric
pseudopotential form factors are constant in se-
quences of compounds for which z is essentially
constant, e.g. , Ge-oaAs-ZnSe-CuBr.

When (2. 3) is used to determine E»=E, for Ge
and Sn, one finds that use of the free-electron val-
ue of the plasma frequency in (2. 1) will yield a val-
ue for e~(0) lower than experiment by 25 and 45%,
respectively. The reason for this discrepancy is
that the free-electron formula for ~~ presumes that
the total oscillator strength connecting the valence
and conduction band is equal to the number of va-
lence electrons per unit volume. This is a good
approximation for crystals formed of elements
from the first two rows of the Periodic Table (C
and Si rows), but not for elements containing a
filled d-electron shell. ' ~' %hen d-core levels
are present, the matrix elements and oscillator
strength between them and the valence band are
large, particularly for the s-like components of
the sp hybridized bands. These matrix elements
make negative contributions to the f sum. As the
tota, lf sum is conserved, this results in an in-
crease of the oscillator strength connecting the
valence and conduction bands. This effect is de-
scribed by defining N,«, the effective number of
valence electrons,

(dna(M) d(d+ef f
"co0

&u»
= 4mN, «e~/ m = (4n Ne /m)D, (2. 5)

where D is defined by D= N,«/N.
As the experiments required to determine N, ff

are difficult, subject to large errors~'~ (particu-
larly from sample surface contamination), and
affected by a somewhat arbitrary choice of ~„and
as only limited data have been available, I have
been forced to rely on a semiempirical prescrip-
tion' to fix D(AB) in AB crystals:

D(AB) = ~(A)r (B) —[5(A)5(B)—1](z„—z, )' .
(2. 5)

In (2. 5), Z„ is the formal valence of element A.
The parameters b(A) and 5(A) are functions of the
covalent radius of element A-at the prevailing

(2.4)
where &0 is a frequency below the band gap but
above the reststrahl frequency, so that ea(&u) is
the imaginary part of the electronic dielectric func-
tion. ~, is a cutoff frequency above the valence-
to-conduction transitions but below the onset of ex-
citations from the d-core levels. Thus, n,« is the
oscillator strength exhausted by all electronic
transitions in the energy range 0-~. There is a
relatively limited amount of experimental data
available on g.,«, but what there is ' demon-
strates that n,«, i.e. , the valence- to conduction-
band f sum exceeds 4 electrons/atom well before
the onset of d-core excitation (see Fig. 2).

The actual value of the plasma frequency is given
by
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and fifth row at STP are given in Table I.
Having fixed the values of E„and &~ with Eqs.

(2. 3), (2. 5), and (2. 8), a,n experimental value of
&~(0) suffices to fix the value of C from Egs. (2. 1)
and (2. 2) in partially ionic crystals, such as GaAs
or SiC, where CW0, One can also estimate'
C from its definition as the difference in the
screened potentials due to the ion cores of the two
atoms forming the bond at the bond site, i.e. ,
point of contact of the covalent radii. In I, a sim-
plified method of calculation is introduced:

(2.8)

In (2. 8) we again have Z„and y„, the valence and
covalent radii~~ (at prevailing pressure) of ele-
ment A; 4, is the linearized Thomas-Fermi
screening wave number, which may be expressed
as

pressure —alone. (I assume that the ratio of the
covalent radii, ~„/z~, remains constant as the
crystal expands or contracts. ) I use experimental
values of q~(0) in Ge and Sn and the scaled values
of E„[Eg. (2. 3)] to determine the two parameters
in a simple power-law formula for 6:

&(A) =& o.(&~/&~o.)'", (2 7)

where y~G, is half the interatomic spacing in Ge at
STP. These scaling hypotheses, Eqs. (2. 3) and
(2. 7), may be tested by calculating the pressure
dependence of g&(0), or the index of refraction, in

C, Si, and Ge from these formulas and comparing
with experiment. ' 3 The agreement is within ex-
perimental accuracy.

In I the parameters 6(A) were taken to be depen-
dent only on the row of the Periodic Table to which
element A belongs and were adjusted to fit e, (0)
data. (The covalent radii of third-, fourth-, and
fifth-row elements are constant across the row ac-
cording to the Van Vechten-Phillips theory used
here. ) For the first and second, C and Si, rows,
A(A) = 6(A) = 1.0 as these elements contain no d
cores. The establishment of ~ and g for fifth-,
Pb, row elements is described elsewhere. The
three values of 6 and 5 t 1.0 for the third, fourth,

FIG. 2. Experimental N, «(~) vs Ru adapted from
Philipp and Ehrenreich (Fig. 5 of Ref. 31). The oscilla-
tor strength connecting the valence and conduction levels
with energy denominator less than or equal to hen satu-
rates at four/atom or eight/unit cell for Si, but exceeds
that value for crystals containing filled d-core levels at
energies well below the onset of excitation out of the d
levels. d-core excitation begins at 18 eV in InSb and
produces a characteristic knee evident in the figure. The
knee occurs at higher energies for the other compounds.
A theoretical extrapolation of the valence-band oscilla-
tor strength is shown for InSb. The theoretical estimate,
Eq. (2. 6), was used to determine the plasma frequency.

k, = (4k~/rap)
where

k~ =3m N

(2.8)

These scaling formulas have been tested by calcu-
lating the pressure dependence of c,(0) for various
compounds and comparing with experiment~'3~;
agreement is generally within experimental error.

I shall now turn from the problem of estimating
the average band gap and dielectric constant' to
that of estimating particular features in the inter-
band spectrum. I cannot determine where in the
Brillouin zone the Van Hove singularities3 that
produce the various optical features occur; these
are delicate questions of symmetry that are deter-

TABLE I. Parameters used to calculate valence- to
conduction-band oscillator strength and the effective plas-
ma frequency. The deviation of 6 and of 6 from 1.0
represents the effect of d-core levels which is to increase
the valence- to conduction-band oscillator strength by
adding negative terms to the f sum. See Eqs. (2. 5)-
(2. 7), Fig. 2, and Ref. 31.

Row Group-IV element

Ge
Sn
Pb

6-l. 0

0. 12
0. 21
0.404

6-1.0

0. 0025
0. 005
0. 010

is the Fermi wave number for all the valence elec-
trons (N is eight per unit cell). In (2. 8) y is the
A-B bond length or nearest-neighbor distance. The
parameter k in (2.8) is introduced to account for
the fact that the linearized Thomas-Fermi screen-
ing factor, being a long-wavelength approximation,
will overestimate the screening on the scale of the
bond length considered here. Empirically, one
finds

5= 1.5+10% .
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mined by the long-range order of the crystal and

are therefore outside the scope of a nearest-neigh-
bor bonding theory. Instead, I estimate the chemi-
cal trends in the energy of various critical-point
features of the diamond/zinc-blende structure by
fitting them with a. formula analogous to Eq. (2. 2).
I adopt the Cardona notion37 for the critical-point
features —Eo~ Et~ E2, Eo. , and E&. . I removed the
spin-orbit splitting from the experimental data by
taking weighted averages; thus Zo= —,'[2ZO+ (Zo+d 0)]
RIld Z1 2 [Zt+ (Zi+ hi)]. Thus one is led' to

E2 E2 Q2
g, i h, i

or

about 0. 2 eV (see Fig. 3). I have taken account of
this d-core interaction by modifying Eq. (2. 11) to

z, , =[z„,-az,.(D„-1)](1+c'/z'„, )"',
(2. 13)

where f = 0 or 1, and in analogy with (2. 7),

az, (~) =.sz,
I „(~/~I„)',

and t, is a scaling parameter fitted to experiment

z, =z„,(1+c'/z' )'" (2. 11)

In (2. 11), i ranges over the indices of the particu-
lar features, 0 to 1', E, , is the actual or compos-
ite value of the energy of the particular optical
feature in the crystal with electronegativity differ-
ence C as determined —either experimentally or
theoretically —from consideration of e, (0). (The
same value of C is used for all f,.) The Z„, are
the contributions to E, , from the symmetric parts
of the crystal potential and are determined by fit-
ting the observed values in C and Si to simple
power-law formulas like Eq. (2. 3):

za, l (&~ = zh, & I si(&/&
I s&) ",

+ —+ +~+~P—

lo+ Ao
++

L ++

0

where s, is the scaling parameter for feature j.
(Values of s& range around 2. 0-2. 3; the empirical
values are given in Ref. 2. )

Ecluation (2. 11) must be modified in the case
where the crystal contains filled d-core levels.
As discussed in regard to N,«and ~~, d-core lev-
els interact with the sp3 hybridized valence and
conduction bands. This interaction is nonlocal, 38

i. e. , the interaction with s-like states is greater
than with p-like states. (s-like states feel no
angular-momentum barrier and thus overlap the
core d levels more than do p-like states. Alter-
natively, the s-like states penetrate the d core and
feel more of the nuclear potential than do p-like
states. ) Therefore, s-like valence- and conduc-
tion-band states are lowered in energy relative to
the P-like levels (and also relative to the vacuum
level ). This splitting of the s- and P-like states
weakens the energy of the sP covalent bond. ' It
also reduces the energy of the particular band gap

-which corresponds to transitions from predomi-
nately p-like valence states to predominately s-like
conduction-band states —in this case ' Eo and E&.
This may be verified directly by observing the
trend of these features in alloys such as Si-
Ge, ' ' '" where there is no d core at one end of
the composition range. In the Si-Ge case, Eo
varies by about 3 eV, while E2& Eo'& a d E1'y
which are predominately p-p transitions, vary only

+I)
I2—

Eo+A

0.4—
0

Ge

I

0.2 OA
I

0.6
l

O.e l.O

Si

PIG. 3. Experimental variation of particular energy
gaps or critical-point features in the optical spectrum of
Si, Ge, and their alloys as determined by Klein, Pollak,
and Cardona using electroreflectance, Ref. 40. The Ep
and E~ band gaps are from predominantly p-like valence-
band states to predominately s-like conduction-band
states. The s-like states drop rapidly in energy when
Ge is alloyed into Si due to interaction with the d-core
states. Predominately p-p transitions E2, Ep, and E~
vary only slightly across the composition range as Si and

Ge both have zero ionicity and have similar lattice con-
stants.
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for Sn and Ge. If elements A and B do not appear
in the same row of the Periodic Table, i.e. , if
r„&y~ then the average D value D„ in Eq. (2. 13)
differs from the factor D in Eq. (2. 6) which spec-
ifies the d-core effect on the plasma frequency

The reader will recognize there is a distinc-
tion between the shift in energy of critical-point
features, which may have different strength and
may correspond to different regions in & space
for different materials, and the enhancement of
the valence- to conduction-band f sum. I have pro-
posed

D„(AB)=-,' [(6 —Z„)D(Z„, ~„)

+ (6 —Z, )D(Z„~,)] . (2. 15)

In (2. 15), Z„ is again the valence of A and

D(Z„, x„) is the value of D for the "horizontal
compound" 4 containing element A. Thus, e. g. ,
for InAs, D,„=-,' D(InSb)+-', D(oaAs). Note that if
elements A and B do come from the same row of
the Periodic Table, (2. 15) gives D„=D. Other-
wise, the weighted average, (2. 15), is taken
wherein the cation core has a greater effect on the
conduction-band s-like states which terminate Fo
and E, (primarily 1", and L,) because the cations
have the larger d cores and thus larger matrix
elements with those states.

Equations (2. 11)-(2.15) are an extension and
elaboration of the system of X plots" proposed by
Herman. ' I do not propose that they can super-
sede the various methods that solve the Schrodinger
equation in various approximations '; the dielectric
two-band model (D2BM) provides no information on
wave functions, matrix elements, or on symmetry
questions. Instead of obtaining eigenvectors for
a crystal potential which has been fitted to chemi-
cal trends, as in the empirical pseudopotential
(EPM) and empirically adjusted orthogonalized-
plane-wave (OPW) 4 methods, and dealing with all
the information contained in those eigenvectors, I
have tried to establish the chemical trends in two
of the moments of the optical spectrum of the gp3

covalent bond:

(&2(&)/&) «&
~o

f (d e2((d) did o- COp .
Q)o

&2(m) may not contain as much information as the
eigenvectors. ~s'45 What I do maintain, however, is
that many of the pertinent properties of the ma-
terial, particularly the thermodynamic properties,
can be deduced from just these two moments.
(Wemple and DiDomenico4 have shown that it is
necessary to add only one other moment to de-
scribe optical-dispersion effects. ) Becent studies

E, (x) = E', (x) - x(1 —x)c, (2. 16)

c, = C (AB)/6E & 0 (2. 17)

were suggested by an appeal to Fermi's "Golden
rule. " Stroud has recently provided a more rig-
orous justification of the form of Eq. (2. 16) in
terms of coherent-potential-approximation theory. 4'

In (2. 16), E, (x) is the variation of the f th particu-
lar feature with composition x (the mole fraction
of AC in the alloy). The energy denominator 6E
was assumed to be constant for all materials and
all gaps i in Ref. 18. The value 5E=O. S8 eV was
fixed by observation of the variation of the Fo gap
in ZnS-Te alloys, where the maximum reported
deviation from linearity is found. ~ The agreement
between theory and experiment as regards the var-
iation of E~ is generally quite good 8 s' (see Fig.
4). Stroud argues49 that 6E should be larger for
E, , Eo. , and E,. at high photon energies than for
the low-energy features Eo and E~. &E may even

of central cell corrections to impurity levels 7'

have shown that the 028M and EPM give essential-
ly the same result (but the EPM requires more
labor). In II and Bef. 19, I demonstrated that the
accuracy with which Eqs. (2. 11)-(2.15) predict the
particular band gape in 23 tetrahedral A"B' " crys-
tals was equal to that of both the EPM and empir-
ically refined OPW and that the D2BM used about
—,
' as many empirically determined parameters to
do this.

Finally, the 028M provides an accurate and
simple description of the variation of the various
particular band gaps with composition in substi-
tutional semiconductor alloys. Whereas conven-
tional band-structure calculations~'43'~ rely on the
translational invariance of ordered (pure com-
pound) crystals to define their reciprocal-lattice
vectors, and cannot easily be modified to describe
the effects of disorder, as in alloys '4 or amor-
phous material, ' "the present real-space de-
scription of the chemical trends in the sp3 covalent
bond is ideally suited to interpolate its properties
between the pure compounds.

In the description of the substitutional alloy
A„Bz „C, the effects of disorder" 4' are distin-
guished from the "virtual-crystal" variation of the
optical spectrum that would obtain if the alloy had
a perfect regular lattice with a compositionally
averaged atomic potential at each lattice site. This
virtual crystal variation is calculated by varying
the bond length, C, and D„parameters linearly be-
tween the values determined for the end-point pure
compounds AC and BC. The result, E, (x), is not
a linear variation, as is sometimes supposed. To
treat the effects of the fluctuations of the actual
disordered crystal potential, the formulas
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go through infinity (change sign) so that the highest
features are driven slightly up in energy by the
disorder. Some of the data tend to support Stroud's
argument. 52'53

It is sometimes convenient to approximate the
virtual-crystal variation with a parabola

Symbol Term

Electronegativity difference,
or average antisymmetric
potential

Ref. (Eq. }

1, (1.5); (4. 5);
16, (5. 6)

TABLE II. Glossary of symbols and terms introduced
in the dielectric theory of electronegativity.

E', (x) = a, + xb, + x 'c', , (2. 18) Average band gap 1, (2.7); 20, (2. 2)

E((x) = Q~ + x5) + x cg I
2

where

(2. 19)

where g& and 5,. are fixed by the values of E, in AC
and BC compounds. Therefore the total or ob-
served variation of E, with composition is approxi-
mated as a parabola~'~~ as

Nef f

ith particular band gap

Homopolar contribution to
ith particular band gap

Reduced band gap, E~/4E&

Effective number of valence
electrons

2, (1 7) (3 1)

2, (3.2)

1g, (2. 4); 1, (2. S)

1, (3.10)

Average homopolar band gap 1, (1.5), (3.6)

C] = C] + C~ ~
0 '

(2. 20) g Negus per atom 1 (3 11)

A table of calculated values of c, appears in
Ref. 18.

Table II provides a glossary of the symbols and
terms introduced in the dielectric theory together
with references to the equations of previously pub-
lished work where they are introduced or dis-
cussed at length.

fc

d-core dehybridiz ation
factor, metalization factor

(Phillips) fraction of
covalent character

(Phillips) fraction of ionic
character

Ionization potential

1g, (4. 1); 21 (3);
16, (10.g)

16, (10.13)

2, (5.2); 16, (10.11)

2, (2 1)

III. TEMPERATURE AND PRESSURE DEPENDENCE OF
OPTICAL SPECTRUM

The temperature dependence of g~(0) in the tetra-
hedral semiconductors has been treated by Yu and
Cardona. They separated the problem into two
parts. The effect of thermal expansion was shown
to account for less than 20% of the experimental
(constant 1-atm pressure) values and was treated
according to the theory of Sec. II—scaling on near-
est-neighbor distance as with the pressure depen-

0.5

0.4—

dence' of e&(0). The explicit temperature depen-
dence was calculated by adding Debye —Wailer fac-
tors to pseudopotential form factors following the
analysis of Heine and Jones':

y (T) e- B(T& IG I y (0) (3 1)

In (3.1), G is a reciprocal-lattice vector and Vo

is the corresponding pseudopotential form factor.
In principle (3.1) should be applied to all G's in or-
der to determine (BE, /BT) i v. Heine and Jonesw
relate E, to the G = (111), G = (200), and G = (220)
form factors only. Yu and Cardona found that
(&E,/9 T) I v. and [sc~(0)/8 T] I ~ were evaluated with-
in an accuracy of 10% using only G = (111):

&,(T) = exp [-B(T) I (111)I ] Z, (O) . (3.2)

02 '—

Cl

oo
0.2

O. I

0
In Sb

I

02
I

0.4
I

0.6
I

0.8 In As

Presumably, this occurs because the V»& form
factors are much larger than the V220 and other
form factors for most semiconductors. [An ex-
ception is diamond'7 (C) for which the lack of p-
core states and the concomitant weakness of the
repulsive core psuedopotential introduces large
form factors beyond (220).]

I shall be primarily interested in the effects of
the Debye-Wailer factor at high temperatures,
i.e. , from the Debye temperature Q to the tem-
perature of fusion (melting point) at 1 atm, T
-30. Therefore, for simplicity, I will adopt a
high-temperature approximation58 for B(T);

FIG. 4. Comparison of theory, Ref. 18 or Eq. (2. 19),
with experiment, Coderre and Woolley (Ref. 51), as to
the variation of the Eo, or lowest direct band gap, in
Insb-As alloys at T= 0.

B(T)=35 T/ M2kO~

where M is the reduced atomic mass and 4 j.s
Boltzmann's constant.

(3.3)
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B(r)7' ~ = const && r', I' . (3. 5)

The factor r,'in (3. 5) cancels with that of I (111)~

'
in (3.2), so that

E(V, T)=e" ~ E(V0) (3.6)

I fix the value of the constant A from Si data
e "=0.91. As I shall calculate T~ self-consis-
tently in Sec. VII, (3.4) may be used to provide an
a Priori self-consistent calculation of O.

Regarding the specific temperature dependence
of the particular band gaps, I shall assume that the
predominantly p bonding to p-antibonding transi-
tions E2, Ep, and E& have the same dependence
as E, ,

~ (3.6). (In Ref. 56, &E2/&T was calculated
in this approximation. )

The predominantly p-bonding to s-antibonding
transitions, Ep and E„are known ' to vary with
temperature more rapidly than E&. They also vary
more rapidly with pressure. Again there is some
difficulty because almost all data (known to the
author) have been taken at constant 1-atm pressure
near room temperature or below, whereas the de-
sired quantities are the derivatives at constant
volume and elevated temperature. For CdTe, data
to 1000 'K are available8~; these data indicate
(&ED/s T) ~~ is not independent of T. Another dif-
ficulty in interpreting experimental data is the
question of the spin-orbit splitting. (Recall that I
calculate the weighted average of Ep and Ep+ hp and
of E~ and E&+b, . ) Brust and Liu concluded that
the splitting 4o and h~ should vary as I/r~ at con-
stant temperature. I expect they should also in-
crease significantly with temperature at constant
volume as the thermal vibration drives valence-
charge density into the core region. However,

In order to use (3.3) we must determine the
proper value of O. This is not straightforward be-
cause (a) experimental values vary over a range
of up to 30%, presumably with the crystalline per-
fection of the material"; (b) experimental values
are not available for many of the semiconductors
of interest; (c) 0 is, in principle, a temperature
dependent quantity because the elastic constants
have an explicit temperature dependence (through
the Debye-Wailer factors acting on the form fac-
tors).

One is therefore forced to develop a theoretical
prescription for the high-temperature 0 or equiv-
alently B(T). I adapt the Lindemann melting for-

laeo fox this purpose

T = (x /9A ) MAO r, , (3.4)

where r, is the Signer-Seitz radius and x is a
critical fraction of r, such that melting occurs
when rms displacement of an atom from its lattice
site exceeds this value. Comparing with (3.3), we
find

when the experiment is done at constant pressure,
this explicit temperature dependence should be
partially canceled by the effect of lattice expan-
sion. Thus experiments indicating that (s&/sr) IJ,

is small do not exclude the possibility that both
effects are large but nearly cancel in the (low-)
temperature range examined.

I again resort to pseudopotential theory '65 and
observe that the values of sEO/8 VG and BE~/8 V~
are large for G= (220) and G= (311) relative to G
= (111). To obtain the total temperature derivative,
BED/8 VG must be weighted by the Debye-Wailer
factor e ~, for which gi~G, times V~. The "ef-
fective G value" to be used in the analog of Eq.
(3.6) for E, and E, is intermediate between 3 [(111)]
and 11 [(311)]; I have chosen the value 6 for both

Ep and E&. Thus,

E (V T) e 2AT/T E (V 0)
(3.7)

E,(V, r)=e-'"""E(V, O) .
In view of the difficulties noted above in inter-

preting available data, a meaningful comparison
between (3.7) and the experiment may not be pos-
sible at this time. However, I will note that for
CdTe I calculate

over (0-1000) 'K, whereas experimentallys

=-4.5x10-' eV/ K;
8E
8T

for GaAs I calculate

B~z(Eg+ Eg+ b g)

8T
=-4.1x10- eV K

for (0-300) 'K and experimentally~

= —4. 0&&10 4 eV/'K .BT

[I do not choose to fit the assumed G values in
(3.7) to a particular theoretical value obtained
from pseudopotentials because the nonuniqueness
of the pseudopotential implies a nonuniqueness in
the calculated temperature variation. 6']

The choice of effective G' values for (3.7) can
undoubtedly be improved when the relevant data
become available. For the purposes of this paper,
i. e. , thermodynamics, (3.7) will be important
only for calculating the d-core dehybridization fac-
tor' Q [see Eq. (4.4)]. Thus we need only to have
the average of Ep and Ej correctly described.
Compensating errors between the two will not af-
fect the result and a single value for G suffices.
As the total effect of the Debye-%aller factors is
not large, little improvement in the over-all ac-
curacy of this estimate of thermodynamic proper-
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a(P)
1+0.0067[a(0)/a(P)]

(3.3)

where a(P) is the lattice constant at pressure P.
In the calculations reported here I have relied

on Ref. 66 for experimental values of the bulk
modulus at 1 atm for the various semiconductors.

IV. HEAT OF. FUSION, 0(-p TRANSFORMATION, AND
PENN-MODEL SINGLE-PARTICLE ENERGY

ties can be obtained by assumption of other possi-
ble average wave vectors.

Now we consider the pressure dependence of the
optical spectrum. The variation of e&(0) and the
various particular band gaps with nearest-neighbor
distance as the material is compressed may easily
be determined from the functional dependence of
corresponding equations in Sec. G on nearest-
neighbor distances; i.e. , directly from the as-
sumed nearest-neighbor scaling. The accuracy
with which this method describes the experiment
was demonstrated for e, (0) in I and for the particu-
lar band gaps by Camphausen, Connell, and Paul.

All that remains to be done here is to establish
the relations between pressure and nearest-neigh-
bor distance. As we willbe interested inpressures
extending over 2000 kbar, we cannot simply use the
1-atm bulk modulus at all pressures. Thus we must
consider the derivatives of the bulk modulus with
nearest-neighbor distance, the third-order elastic
constants, "as well as the ordinary (second-order)
elastic constants and bulk modulus. Reliance on
the 1-atm modulus of Si up to the transformation
to the P-tin form at about 150 kbar (at 300 'K) ~8

would induce an error of 5. 5% in the n-phase vol-
umes' at that pressure. We use this experimental
datum together with an argument that the third-or-
der elastic constants should scalee' as 1/r, just
as the second-order constants scale70 as I/rs, to
fix the pressure dependence of the bulk modulus g.
Thus

lence-band states is lowered by —,
' the band gap

from the Fermi level; the unoccupied conduction-
band states are raised in energy an equal amount
from the Fermi level. One might thus conclude
that the difference in energy between the metallic
and semiconducting phases can be estimated as the
difference between the total single-particle energy
of a free-electron gas (idealization of the metallic
phase) and that of the Penn-model idealization of
the semiconducting phase ' ' (see Fig. 5). For the
idealized metal phase one has the total single-par-
ticle energy per valence electron,

Etlt 3 E + Efft (4. 1)

where E~ is again the Fermi energy of all the va-
lence electrons and E, is the "bottom-of-the-band"
energy, ~~ i. e. , the zero point for the free-electron
parabola. As we shall only be interested in the dif
fexence in energy between phases, we set EP=0.
For the idealized Penn-model semiconductor, a
very good approximation to the exact total single-
particle energy per valence electron is 0

Eq =E~[-,'+3B (1+ ln2B) —4B ]+E„.
In (4. 2) as in (2. 1), B=Z /4E~, where Z is the
dielectrically defined average band gap. E, is the
bottom of the (eight-electron) valence-band ener-
gy relative to that of the metal E, .

The immediate quantitative application of (4. 2)
seems unwarranted because I have not prescribed
a method to calculate Eb, The assumption that E,
is zero or negligibly small, i.e. , E, = E„, is very

E(k)

Nature abhors a metal. Although any compound
would be a metal if it assumed any of several feasi-
ble structures, —,

' of elements are metals in their
standard state and a huge number of metallic com-
pounds and alloys are known, the materials found
in nature are invariably semiconducting or insulat-
ing. (Exception can be found in the core of the
earth and in meteorites. At sufficient pressure any
material should transform to a metallic state. )
The reason for this circumstance must be that
semiconductors and insulators are inherently lower
states of free energy (at STP) than the correspond-
ing metallic phases.

A simple explanation of this observation can be
derived from the band gap that distinguishes non-
metals from metals. ~ '~ To first order in the
crystal potential, the energy of the occupied va-

FIG. 5. Penn-model band structure showing the re-
duction in the single-particle energy of the idealized
semiconductor relative to the idealized (jellium) metal
as a function of wave vector k as the shaded area.
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aE = —E~ [3E'(I+ In~a) -4a'], (4 3)

where ~E is energy per atom pair and E~ is per
electron.

It has been noted repeatedly ' '» ' that the
simple Penn model is not adequate to describe Ge,
Sn, or any material containing filled d-core levels.
Just as one has to take account of the effects of the
interaction between d-core levels and valence- or
conduction-band s-like states when calculating the
plasma frequency and the Eo and E» critical-point
band gaps in Sec. II, so one must take account of
the concomitant weakening of the sp hybridized
covalent bond. As interaction with the d core
lowers the energy of s-like states relative to p-like
states, hybridization is diminished, and the stabil-
ity of the semiconducting phase relative to possi-
ble metallic phases is reduced. [Recall that the
value of E is independent of the presence of core
d levels while the values of ~~, e~(0), Eo, etc.
clearly are not. ] Mooser and Pearson have ob-
served this "metallization" trend in a wide variety
of materials and structures. 74

In their analysis of the heats of formation» of
tetrahedral semiconductors, Phillips and Van
Vechten proposed an empirical formula for the
"d-core dehybridization" of the sp covalent bond
which introduces a single adjustable parameter b:

n =1 —I [2E,/(E, +E,)]', (4 4)

so that the difference in internal energy per atom

dubious. One might expect that the localization
charge into covalent bonds or ionic charges con-
comitant with formation of the band gap would in-
crease the bottom of the band-gap energy relative
to that in a (jellium) metal where the interaction
charge density is rather constant. 3 (Obviously,
the Fermi levels of the various phases will be
equal when they are in contact. )

However, it has been observed '7» that to within
experimental accuracy the difference in internal
energy per atom pair between the semiconducting
diamond (n) phase and the metallic tetragonal P-
Sn phase of Si is equal to the difference of the total
single-particle energies per electro~ between the
free-electron gas and the Penn model when both
models are evaluated at the critical pressure (vol-
ume) of the actual solid-solid phase transformation.
Thus —', of the energy gained by opening the band gap
in Si is lost forming the localized bond charges.
The fact, as demonstrated in Ref. 21 and below,
that this -,'factor can be extended to the other
tetrahedrally coordinated semiconductors is indi-
cative of the power of a scaling approach to such
problems. Therefore, the equation for the differ-
ence in internal energy between a metallic phase
and a semiconducting phase that approximates the
Penn isotropic two-band model is

pair between the semiconducting and metallic
phases of compounds containing a filled d core,
i. e. , containing elements occurring after Ca in the
Periodic Table, is

(4. 5)

In (4.4) Eo, E~, and E2 are, again, the energies of
certain critical-point features of the optical spec-
trum which may be obtained from experiment or
calculated for arbitrary composition, temperature,
and pressure using the simple formulas of Secs. II
and III. E2, the strongest peak of the q2(&o) spec-
trum which occurs near E, results from a pre-
dominately bonding-p to antibonding-p transition
and shows very little explicit dependence on the
presence of a d core4'4' (see Fig. 3). E, and E,
result from predominantly bonding-p to antibond-
ing-s transitions; their energy is similar to that of
E2 in Si and other crystals lacking any filled d-core
levels. As noted in Sec. 0 and Fig. 3, the E~ and

E, energies decrease with increasing d-core inter-
action. Thus the ratio 2E~/(Eo+E~) provides an
easily calculable measure of the extent to which &-
like states have been separated (dehybridized) from
p-like states. In the case of grey or z-Sn, the
2E2/(Eo+ E~) reaches the maximum value found for
any tetrahedrally bonded material.

The d-core dehybridization reaches a corre-
sponding maximum, as grey n-Sn is well known to
be in equilibrium with the metallic white or P-Sn
phase near STP (292 'K at 1 atm). Thus the value
of b in Eq. (4. 4) was fitted~ to this datum for Sn
at STP. In Ref. 21 it was shown that (4. 5) pre-
dicts the n Ptransition e-nergy of Ge, within ex-
perimental accuracy, although no experimental
parameters specific to Ge are invoked.

It should be noted that the fact that ~-Sn is a
semimetal, i.e. , the spin-orbit split Eo& 0, is not
the controlling parameter which heralds the insta-
bility of the tetrahedrally bonded structure against
the metallic phase. cy-Sn is the stable phase below
292 'K although it remains a semimetal at all tem-
peratures. Moreover, HgTe, HgSe, and HgS are
semimetals»9 and so are InSb and InAs at elevated
temperatures, v' yet all remain stable in the zinc-
blende structure (at normal pressures). Thermo-
dynamic properties are controlled by the total en-
ergy of the system so that the small amount of
phase space around I' responsible for Eo cannot
have a controlling effect. As E~ goes through zero,
the concomitant effect on material properties is
slight. ~s

Another case in which Eq. (4. 5) might be ques-
tioned is that of C where the "metallic" graphite
phase77 has slightly lower free energy, about 0. 5
Kcal/mole lower, than the diamond phase at STP.
Actually, Eq. (4. 5) gives a good value for the
transition energy to the high-pressure metallic
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a= 1 —f [2E,/(E, +E,)P+ c[(E,+E,)/2E, )'.
(4. 8)

The constants 5 and c in (4. 6) are fitted to experi-
ment for the z-Sn- P-Sn equilibrium at 292 'K and
1 atm and to ~=1.0 for Si at STP; b=0. 046V, c
=0.08V5 using my theoretical values for Eo, E„
and E2. As the ratio 2E~ j(EO+ E,) is near 1.5 for
crystals not containirg d cores and generally large
for those which do, this modification increases
the value of that mould be calculated for the
former category of crystals by 8-4/o and for the
latter category only very slightly.

In conclusion, I propose here that the difference
in internal energy between the metallic P-Sn or
tetragpnal pr prthprhpmbj, c phases 4'~9 and the
semiconducting tetrahedral phases of the A"B8 "
semiconducting compounds and alloys is

&E 6(g, T) P) =SbE„=&E, (4. 7)

where u is defined by Eq. (4. 6). The values of S
and 4E are calculated for arbitrary conditions of
composition, temperature, and pressure using the
formulas of Secs. II and ID. I shall shorn that this
prescription is in good agreement with available

phase, which is presumably p-Sn, v' as discussed in
Sec. VII. I argue that there is a clear distinction
between the P-Sn metal phase and graphite, be-
cause while the P-Sn is a three-dimensional more-
or-less isotropic metal, graphite, one of the most
anisotropic materials known, has only a tiny Fermi
surface in the plane and has large band gaps around
the rest of its Brillouin zone. v~ The effects of the
small phase space in the plane associated with the
Fermi surface are outweighed by the majority of
phase space, wherein the sp' covalent bonding of
that layer structure has lowered the energy of the
valence-band states from the free-electron values.
Thus graphite is essentially a strongly covalent
insulator which could be treated by an extension of
this theory that properly averaged the wave-vec-
tor-dependent dielectric tensor over all directions.
[This contention is supported by the fact that the
resistance of a graphite (carbon) resistor decreases
with increasing temperature and that the optical
spectrum of graphite shows characteristic o and m

bonding- antibonding peaks near 5 and 15 eV, re-
spectively. ]

In order to treat alloys and impurities which in-
volve the introduction of elements mhich do contain
d-core states into a host which does not, e.g. , Si-. .

Ge alloys or Au-doped SiC, i wish to modify Eq.
(4. 4) slightly. I wish to avoid a discontinuity in the
value of hE =~„by (4. 3), to say, Si, „Hg„with
x «1, for which AE = QbdE„by (4. 5). (I also want
to retain hE„as the calculated value for Si. ) The
modification here proposed is

OF E LECT RONE GATIVITY. . .
data in Sec. VII.

In order to estimate the heat of fusion, i.e. , the
change in enthalpy upon melting, 60~, I note that
the more covalent A"B " semiconductors are
metallic in the liquid phase. 83 Therefore, I divide
the heat of fusion 4H~ of the semiconductor into
the difference in internal energy between the me-
tallic solid phase and the liquid 4E, the pres-
sure times change of volume at fusion term PA t/'~,

and the difference in internal energy between the
semiconducting and metallic solids &E from Eq.
(4.7):

~a~ = ~E+ ~E„'+P~ V~ . (4.8)

In principle, one could determine the density of
a given material in a particular phase at a particu-
lar pressure by calculating its internal energy as
a function of lattice constant. The minimum would
be the predicted lattice constant at zero pressure;
the curvature of the energy-vs-lattice-constant
curve would yield the predicted bulk modulus. Re-
sults for the various competing phases would be
required to determine the change in volume con-
comitant with the phase transformations.

There have been very few attempts to follow such
a procedure. Goroff and Kleinman conducted an
essentially a pyjoyj treatment of diamond; Weaire
and Heine have applied empirical pseudopotential
theory to the case of group-IV elements~~ and some
metal phases. While these investigations have
great academic value, they require an impractical
amount of computation and have not achieved suffi-
cient accuracy to be useful for our purposes.

Instead, I shall rely on the crystochemical con-
cepts of fourfold- and sixfold-coordinated co-

The problem of calculating 4 V~ is discussed in
Sec. V; at pressures below several kilobar, the
P4V~ term is quite negligible. I propose that
4E scales with density as does the (free-electron)
Fermi energy,

&E (P) =4.8455[~,(P=0)/a(P)P kcal/gatom .
(4.8)

(Note 1 g atom of Si contains an Avogadro's number
of atoms, whereas a mole of any of the diatomic
A"B " crystals contain two Avogadro's number
of atoms. ) The constant of proportionality in (4.9)
has been adjusted to experimental data for 40~
in Si; experimentally AB =12.082 kcal/gatom for
Si so that b,E~ accounts for about 40/o of the total
heat of fusion.

The experimental data on 4II~ are rather incom-
plete; by far the most accurate and complete com-
pilation of data is that of the temperatures of fusion
T~ =4H~/d S~. Therefore, we delay compariso~
with experiment to Sec. VII.

V. ESTIMATESOF hV
p

AND DVF
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valent radii y, (A) and z~(A) of the elements. ""
Van Vechten and Phillips have proposed a simple
method of predicting y4(A)'s which achieved an ac-
curacy of 1/0 in the calculated nearest-neighbor
distance between tetrahedrally coordinated atoms. ~

They also accurately estimated the interatomic
spacing in rocksalt crystals of Mg, Ca, Sr, Cd,
and Ag compounds by assuming that z8(A) is a con-
stant multiple of their calculated value for r4(A)
Here I shall refine that hypothesis by assuming

~,{A}=1.0925', (A) {5.1)

—&V ~/V (P) = 0.209 —0.056f; (5. 2)

when the material is in equilibrium between a four
fold- coordinated phase and a sixfold- coordinated
phase. I further assume that the covalent radius
depends only on the coordination of the atom and
not on the symmetry of the crystal structure. (Al-
though difficult to justify, this is a common and
fairly accurate chemical assumption. ~7) There-
fore, I use the same estimate for rs(A) for the )3-

Sn structure ~ and similar sixfold-coordinated high-
pressure phases ~6' ' of the IV-IV and III-V
semiconductor as for a simple cubic rocksalt
structure. (However, the density will depend on
structure. )

The value of the constant in (5. 1), 1.0925, has
been fitted to the empirical change in volume for
the o-Sn to P-Sn transformation of Sn at 292 K and
1 atm, ~V 8= —0.209V . This value is rather
close to that used in Ref. 15, 1.0966, which was
adjusted to fit the lattice constants of AgBr and
AgCl in the rocksalt structure, using the theoreti-
cal values of y4 for Ag, Br, and Cl. Although the
experimental data are probably not sufficiently ac-
curate to distinguish between the two evaluations
empirically, I prefer to use the Sn &V~& value
because the AgBr-AgC1 value was not determined
when the sixfold-coordinated structure was in
equilibrium with a fourfold-coordinated phase.
(The Mg, Ca, Sr, Cd, and Ag compounds are, how-

ever, within 10/0 of the critical ionicity needed to
be stable in a tetrahedral structure. '~6)

With the above assumptions one predicts that
t) V z- —20. 9/z V (P) for any material that trans-
forms from the diamond or zinc-blende structure
to the P-Sn structure. The actual atomic positions
of the III-V compounds in their high-pressure me-
tallic phase have not been determined. However,
one might expect them to assume structures tend-
ing toward the rocksalt structure as the ionicity and
the repulsion between like ions increase. Using
Eq. (5. 1), the predicted change in volume for a
transformation to the rocksalt structure, —&V „
= 15. 3/o of V (P). Therefore, one might guess that
the relation between transformation volume and
ionicity is

where f, is the Phillips ionicity'6

f; = C'/(&a+ C') . (5. 3)

TABLE III. Comparison of theoretical and experimental
values of the high-pressure solid-solid phase transfor-
mation volume. The calculated values are obtained from
Eq. (5. 2). Discrepancies bebveen experimental values
from different sources result primarily from hysteresis
in the transformation, i.e. , the transformation may not
occur at equilibrium.

Crystal

Si
Ge
Sn
AISb
GaSb
InSb

[t) V~13/V~(P)],~g (Ref. )

(%)

22. 7 (69)
20. 7 (69)
20. 9 (69)
16.5 (88)

16.9 (88); 22. 0 (89)
18.5 (88); 19.7 (23)

[SV,/V (P)l,„,
(%)

20. 9
20, 9
20. 9
18.5
19.4
19.1

This hypothesis is compared with available data in
Table III. I conclude that the theoretical estimate
is accurate to within experimental accuracy. No
correlation has been found between 4V

& and
V (P='0).

I note in passing that the above volume consid-
erations give a simple explanation of the fact that
the more covalent semiconductors transform to the
P-Sn-like phases rather than to rocksalt structure
under pressure. Namely, the P-Sn-like phases are
denser than the rocksalt phase and, as demon-
strated in II, these more covalent III-V and IV-IV
materials would be metallic if they did assume the
rocksalt structure. Therefore, the high-pressure
rocksalt phase occurs only when the antisymmetric
components of the crystal potential, and thus C,
are large enough that a positive band gap results
for that structure. ' ' The lowering of the internal
energy due to that band gap must be sufficient to
compensate the increase in the free energy from
the I'V term.

Finally, I consider the change in volume on
melting, d V~. I have been able to obtain remark-
ably little data on this subject. However, it is
well established that the slope of the liquid-high-
pressure (P-Sn) solid-phase boundary is posi-
tive '" ' for the A"8' " semiconductors, so that
the liquid is less dense than the high-pressure sol-
id at the same pressure. It is also well established
that the slope of the liquid-diamond/zinc-blende
phase boundary is negative for these semiconduc-
tors, so that liquid is more dense than the semi-
conductor at the same pressure (That. an sP~ co-
valently bonded solid is less dense than its liquid
phase should be expected from the directionality
of the covalent bond; that property is not peculiar
to water, as is sometimes asserted. ) Although the
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liquid lacks long-range order, the atoms are known
to be nearly sixfold coordinated. ' ' Therefore,
I shall use Eq. (5.1) and assume the liquid has the
same density as would a, rocksalt phase:

~V'/V. (P) = —0. 153 . (5 4)

Publi;shed data for Si and Ge give significantly
smaller values for b, V, 10% and 5k of V (P), re-
spectively. However, the values of the entropy
of fusion b,$ of these materials are accurately
known' as are the positions of the triple points in
the respective P-7-phase diagrams. This infor-
mation, together with the Clapeyron equation

(5. 5)

AS = AS +Sq +Sg+F F F
V

(6 1)

In (6. 1), hS„, S~, and S, denote, respectively,
the entropy of fusion of the solid metallic phase
of the same material, the entropy of fusion (or
dissociation) of the covalent bond which occurs
when the semiconductor transforms to a metallic
liquid, and the entropy of mixing of the liquid
phase. The last term, (BbE/BT) ( „, represents the
contribution to the specific heat, and thus to the

1600
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400

0
0 40 80 120

P (kbar)
160 200 240

FIG. 6. Theoretical and experimental pressure-tem-
perature phase diagrams for Si, Ge, and GaSb. Shaded

triangle below experimental triple point of Si and Ge
indicates that the slope of the G, -P solid-solid equilibrium
boundary is positive or vertical at that temperature
(Ref. 24). The Debye temperature, ddt(P= 0), and
4$ (P= 0) of Si were used to fix parameters in the theory.
For all other substances, there is no empirical adjust-
ment whatever.

suffices to fix AV'". As can be seen in Fig. 6, ex-
cellent agreement for the o.-liquid slope is obtained
for Si and Ge when we assume b V = 15. 3%%uz V„(P)
as per Eq. (5.4).

VI. ESTIMATES OF AS AND M
p

I shall divide the entropy of fusion of an arbitrary
semiconductor into four terms:

entropy, of the semiconducting phase resulting
from the temperature dependence of the optical
spectrum. According to the dielectric theory, a
decrease in the various band gaps, as produced by
increasing temperature, indicates an increase in
the total energy of the material.

The effect is easily calculated using the formu-
las of Secs. III and IV:

(6. 2)

m g 6B 1 5+]n&B

(6. 3)
ea 1-n eB (6.4)

(6.5)

= 2. 75 cal/mole 'K, (6. 6a)

where R is the gas constant. For an elemental
crystal,

(6. 6b)

This factor simply accounts for the fact that the A
and B atoms, which are restricted to their re-
spective sublattices in the solid, are free to mix
and find like-atom nearest neighbors in the liquid
phase.

Equation (6. 6a) is not always a good approxima-
tion for the liquid phase of real semiconductors.
It may happen, as in the case of DI-As com-
pounds, 3 that the constituent elements tend to
phase separate in the liquid. If this occurs, then
the true value of S, is less than Rln4. We shall

The symbols in Eqs. (6.2)-(6. 5) all have the
meanings ascribed in Secs. II-IV. The melting

point at zero pressure or temperature of fusion
T is determined by T~= ~ /AS", so that the en-
tire calculation must be iterated to achieve self-
consistency. Thus one calculates the high-temper-
ature Debye temperature using I indemann's cri-
terion only to justify the use of a constant value
for A in (3.6) and (6. 5). That value was fixed us-
ing an experimental Debye temperature for Si.

One should recognize that both terms in Eq.
(6. 2) are negative, i.e. , BEE/BT increases the en-
tropy of the semiconducting phase relative to the
metallic phase. It is the only term in (6. 1) which
does so. (One takes ES~ =- S,«„«—S„,«& 0. )

The entropy of mixing of the liquid phase, S„ is
assumed to be simply the entropy of mixing of an
ideal solution. For an A B compound with A
0 B, it is simply

S&=Rln4 if A4B



AS~ +S~~ = 16. 66 cal/mole 'K, (6. V)

return to this question when comparing calculated
and observed values of T".

The first two terms in (6. 1), bS +S,„repre-
sent a contribution to the entropy of fusion of an
arbitrary tetrahedrally coordinated semiconduc-
tor which is constant independent of its chemical
composition. I use one empirical parameter to
fix the value of that constant,

(a)

ANTIBONDING

WAVE FUNCTION

(b)

ANTIBONDING WAVE FUNCTION

ANTIBONDING ENERGY LEVEL (EMPTY)

BONDING ENERGY LEVEL
2

S~ = k4N ln2 = 11.04 cal/mole 'K, (6. 8)

where k is Boltzmann's constant. For an elemen-
tal semiconductor, e. g. , Si, one has S", = 5. 52
cal/g atom 'K.

The bonding contribution (6.8) to AS~ can be ob-
tained microscopically from any model of the elec-
tronic states of the semiconductor which contains
two levels (bonding and antibonding). Models of
this type have been discussed by Hall and more re-
cently by Weaire and co-workers. e

Comparing (6. V) and (6.8), we find the entropy
of fusion of the metallic phase must be

where by 1 mole I meantwo times Avogadro's num-
ber atoms. Thus for Si or Qe, I would have 2

g atom. The specific value in (6. V) was determined
so that our calculated value of the total entropy of
fusion would agree with experiment in the case for
which we have the most accurate experimental
datum. That material is Si for which we have'
AS~= V. 1V +0. 01 cal/g atom 'K or 14. 34 cal/mole
'K.

I have divided this constant contribution to hS~
into two terms, bS~ and S~~, because the sum is far
larger than the entropy of fusion of common met-
als. Indeed, AS~ for allthe A"B " semiconduc-
tors is two to three times the typical value for a
metal, i.e. , 2-3 cal/gatom'K. Moreover, if a
semiconductor melts to a liquid which is also
semiconducting, e. g. , Se and Sioa, then the ob-
served bS" is again small and comparable with
values obtaining with metals. Thus I conclude that
the dissociation of the covalent bond which occurs
when the liquid phase is metallic, S~~, makes an
important contribution to the total bS .

A simple explanation for the magnitude of S~ may
be obtained from consideration of the correlation
of the phase of the 4/ sp3 hybridized orbitals cen-
tered on N atoms (see Fig. V. ) In order to form
the covalently bonded solid, the phases. of orbitals
on neighboring atoms must be correlated so that
they add coherently to form the bonding states.
%hen the crystal melts to a metallic liquid, the
phases of the orbitals are randomized so that both
bonding and antibonding states are equally likely to
be occupied. As there are 2~ choices of phase al-
lowed in such a liquid, the contribution to the en-
tropy of fusion is

BONDING WAVE FUNCTION

OVERLAP

I 2
BONDING WAVE FUNCTION

FIG. 7. The very large entropy of dissociation of the co-
valent bond, 5. 52 oal/g atom 'K, is explained in terms
of the phase correlation of the valence electron, s-p3
hybridized orbitals centered on the various atoms must
be phase correlated in order that they interfere construc-
tively with their nearest neighbors to form the (covalent)
bonding states. This phase correlation is lost if the co-
valent solid melts to a liquid metal.

b.S~ = 4. 62 cal/mole 'K, (6.8)

or for an elemental semiconductor, b,S =2. 31
cal/g atom 'K. This value is in good agreement
with exper iment. '

Now we consider the change in entropy concomi-
ta, nt with the transformation from the diamond/
zinc-blende/wurt=ite or o, phase to the high-pres-
sure metallic solid or P phase, bS„&. (If, as in
InSb, several high-pressure metallic phases are
possible, I do not distinguish between them. ) I
will assume bS z to be the sum of two terms:

(6. 10)

(86E/BT) I v is the contribution from the tempera-
ture dependence of the semiconducting phase. It
is fixed by Eq. (6. 2) and is always less than or
equal to zero according to my convention. (bS s
& 0 implies greater entropy in the metallic pha, se. )
Lh,S„denotes the vibrionic or phonon contribution
to the entropy difference.

A rigorous calculation of AS„, starting from a
calculation of the phonon spectra of the two phases,
promises much labor for little accuracy at this
stage in the theory of solids. Instead, I shall rely
on the scaling approach of our dielectric theory
and introduce one constant of proportionality to-
gether with what is believed to be a reasonable
approximation:

b,S„(T)= 20. 8T(T~ —T)'/T~ cal/mole K .
(6. 11)

The form of b S, in (6. 11) assures that b S„(T= 0) = 0
as required by the third law of thermodynamics.
LEquation (6. 2) will yield M,E/BT= 0 at T = 0 if the
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low-temperature expression for the Debye-Wailer
factor is used; then 8B/8T = 0 at T =0. The error
introduced by using Eq. (6. 5) at all temperatures
is slight. ] Equation (6. 11) also implies that b,S„
= 0 at T~. This corresponds to our assumption of
the Lindemann criterion that the amplitude of
atomic vibration is the same for both phases at
their melting points. At all points between 7= 0
and 7, AS„ is positive indicating that the metallic
phase has a lower Debye temperature than the
semiconducting phase at the same pressure. The
factors T(T~ —T)2 were chosen with reference to
specific-heat data on Sn' and on InSb. ~ The value
of the constant of proportionality was picked to
agree with InSb data for TAS ~ at room tempera-
ture.

Because AS„and (8b.E/8T) ~» have opposite signs
and AS„decreases at high temperatures where
8b,E/8T is increasing in magnitude, Eq. (6. 11)
predicts that bS„~(T)= 0 for some T, which is
about 0. 6T for most semiconductors. This is
usually somewhat below the n-P-liquid triple
point. bS ~ is positive below T, and negative above
it. Therefore, a pressure minimum at T, is pre-
dicted. By the Clapeyron equation, Eq. (5.4), the
n-P-phase boundary should be positive as one ap-
proaches the triple point and negative at low (-
room) temperatures. While no explicit report of a
pressure minimum has been published, the data of
Hanneman, Banus, and Gatos ' seem to clearly in-
dicateone(see Fig. 6). Moreover Jamiesonmain-
tains~4 that for Si and Ge the slope is positive ap-
proaching the triple point. That the slope of the a-
P boundary is negative at low temperatures is well
established for Sn and is supported by comparison
of the transition pressure at room temperature and
at the triple point for several cases. se

VII. TEMPERATURE OF FUSION AND P-T PHASE
DIAGRAM

We are finally in a position to compare our the-
ory directly with experiment. We begin with that
quantity which is most accurately known for the
A"8 " semiconductors, their melting points at 1
atm, T". These are calculated from

where, under the assumption that the semiconduc-
tor melts to a stoichiometric homogeneous liquid
metal, nH~ is given by Eq. (4. 6) and &S by Eq.
(6.1).

In Table IV we compare theory with experi-
ment~9 '9~ 9~ for 16 IV-IV and III-V semiconduc-
tors. For the cases of Si, Ge, AlSb, GaSb, and
InSb it is well established ' that the observed liquid
phase is a homogeneous stoichiometric metal.
The III-As compounds were excluded from Table
IV because As is believed to segregate in the liq-
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FIG. 8. Experimental P-7.' diagram of InSb obtained
by Hanneman, Banus, and Gatos, Ref. 23. All transi-
tion pressures were obtained on the up stroke. Hystere-
sis is a problem and the metal phase is retained as a
metastable solid on the down stroke. Other competing
solid phases are shown which have not been characterized
or considered. As the hysteresis must decrease with
increasing temperature, we conclude that a pressure
minimum is present and the O.-P slope is positive at the
triple point.

uid. 3 The II-VI and I-VII semiconductors are ex-
cluded because some of these may be semiconduct-
ing in their liquid phase. (Most II-VI and I-VII
compounds would be semiconducting in the rock-
salt structure at the liquid density and are ob-
served to be semiconducting in their high-pressure
rocksalt phase. 8 ~00) I shall discuss these ex-
cluded cases later.

Of course, the agreement within experimental
uncertainty for the case of Si was guaranteed by my
use of the experimental values of b H~ and 6$~ for
Si to fix the two constants in Eqs. (4.9) and (6.7).
[The Si Debye temperature was also used to fix the
factor A in Eqs. (3. 6) and (6. 5).] However, the
other cases, for which the discrepancy is never
greater than 10%, should represent a fair test.
Note that no information specific to the given semi-
conductor —except for the lattice constant —was as-
sumed. Obviously, one could fit the data exactly
by adjusting the optical-spectrum parameters Z„
Eo, E&, and E& for T". This was not done: The
theoretical values from I and II, 0 with temperature
dependence as per Sec. III, were used.

As noted in Sec. III and Ref. 21, the large val-
ues of the C pseudopotential form factors at large
wave numbers ' imply that the actual tempera-
ture variation of the band gaps in diamond is more
rapid than the present analysis —based on Si—as-
sumes. Thus that I overestimate T~ for C (see
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TABLE IV. Calculated and experimental melting
points for semiconductors for which the liquid phase is
known, or believed, to be a homogeneous liquid metal.
These materials fulfill the assumptions of the theory.
Much of the anomalously large error in the case of InN

can be traced to an error in the calculated spectrum (see
Ref. 2, p. 1014 and Ref. 101). The calculated value of
E()= 0. 1 eV, whereas the experimental value is 2. 4 eV
(ref. 99).

Crystal

C
si
Ge
a-Sn

SiC

&&c~c
(cal/mole ' K)

14. 21
14. 33
13.92
ll, 46

16.70

+calc
('K)

4859
1683
1243
418

2770

~e~t
('K) H,ef.

4400 79
1685 ~ 2 84
1210~1 84

428 + 24 96

2810 97

A18b
GaSb
InSb

BP
AlP
GaI
InP

BN
A1N

GaN
InN

16.53
16.17
15. 57

16.79
16.69
16, 52
16.28

16.64
16, 61
16. 01
10.19

1344
983
745

2250
1853
1623
1357

4758
3487
2791
831

1353
985
809

2300

1740
1343

3300
& 2000

1370

98
98
98

99
99

Table III) should have been expected; it is interest-
ing that the error is only about 10%. A similar er-
ror probably appears in the BN value.

At this point I feel that some note should be made
of the experimental difficulties and uncertainties
encountered in the determination of T~. Most im-
purities that may be present in a semiconductor
will lower the apparent melting point. 0 Another
difficulty is that sublimation may occur below the
melting point at 1 atm. In that case, one must
maintain an overpressure of the volatile compo-
nent(s) such that a stoichiometric liquid is in
equilibrium with the solid. For cases such as the
III-N's, the requirements of pressure (several
kilobar) and temperature [(2-5000) 'Kj are so
severe that experimental melting points have not
been reported. The effect of sublimation is also
to lower the apparent melting point. Therefore,
when selecting from among differing experimental
values of T", I have chosen the. highest value re-
ported within the last 20 years. The case of CdS
demonstrates that if the constituents are rather
volatile, there may be substantial uncertainty in
T even for a widely investigated material. Tiede
and Schleede 3 first determined 2" ~ to be 2020 'K
with an $ overpressure of 100 atm. Then Addami-
ano found T~ = (IV48+ 15) 'K with 2. 5-atm over-
pressure. The current best estimate is probably
that of Reynolds, ~os i.e. , (1825+ 80) 'K with an

equilibrium overpressure of 40 atm.
We return now to consider the III-As com-

pounds. In Table V, I compare experimental val-
ues~ of T with those calculated, as in Table IV,
under the assumption that the liquid phase is homo-
geneous-i. e. , assuming As does not segregate
so that $, = gln4. We note that all experimental
values are about 15% higher than the corresponding
calculated values. Either the calculated 4H~ is
too small or the assumed 4$" is too large. As I
can see no reason why the calculation of ~H
should consistently underestimate true values for
ID-As compounds, as no anomaly was found when
the heats of formation of these compounds were
calculated19 in a similar manner, and as there is
evidence that As segregates in the liquid phase, '3

I conclude that the assumed ~$~ is too large be-
cause g is less than Rln4. Arthur estimated the
As aggregations at between 10 and 15 atoms. 3 If
I assume that $, =0, i.e. , that there is no more
mixing of the metal and the As in the liquid than in
the solid, I calculate the alternate values shown in
Table V. The alternate calculation tends to over-
estimate T~ slightly.

Let us begin our consideration of II-VI com-
pounds with those which are most likely to be me-
tallic in their liquid phase —HgSe and HgTe. These
are semimetallic in their zinc-blende phase. In
Table VI, I compare experimenta]. va]ues' 7' with
those calculated as in Table IV for InSb, etc. The
calculated T is seen to be about 20% less than the
experimental melting point (but above the sublima-
tion temperatures) In th.is case the discrepancy
is most likely due to the anomalous temperature
dependence of the band gaps' in HgSe and HgTe.
Whereas the various particular band gaps in InSb

Crystal

SI=R ln4

&~c~c
(cal/mole ' K}

~cal c
( K}

S,=o

&erat (Ref )
( K)

&&~c
T~, (cal/mole
( K) K)

BAs
AIAs
GaAs
InAs

16.68
16.59
16.31
15.76

1865 2235 13.92
1719 2013 + 20 (106) 2062 13.83
1340 1511 (99) 1612 13.56
993 1216 (99) 1203 13.01

TABLE V. Calculated and experimental melting
points for As compounds. As is believed to phase separate
in the liquid phase of GaAs (see Ref. 93). Such phase
separation is expected to reduce the entropy of fusion and
increase the melting point. Therefore, two calculations
are presented. In columns 2 and 3 values are calculated
exactly as in Table IV, assuming the full atomic-mixing
term S&=R ln4 in 48 . Note that these values of 1 under-
estimate the experiment rather badly. In columns 5 and
6 values are calculated under the assumption that phase
separation is complete so that 8~=0. The same ~ is
used. Note that these values of T overestimate the
experiment slightly.
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and the other semiconductors listed in Tables IV-
VI decrease with rising temperatures, as de-
scribed in Eq. (3. I) and assumed in the calcula-
tion, the lowest, ED, band gaps in HgSe and HgTe
increase.

This anomalous temperature variation is con-
comitant with anomalous amplitudes of thermal
vibration; although heavier, the Hg atoms vibrate
with greater amplitude than the anions. " These
effects may be explained qualitatively by noting that
Eo and E, are so much lower than Ea (-9 eV) be-
cause of the strong interaction between the g-like
conduction-band states (I ~ and 1,~) and the d core
about the Hg nucleus. The vibration of the Hg nu-
cleus reduces this interaction so that Eo experi-
ences a net increase. Because an increase in Eo
affects an increase in S (Eq. (4.6)f and thus a de-
crease in the total energy, the energetic motivation
for this anomaly is clear.

Lacking specific information as to the tempera-
ture variation of the particular gaps other than Eo,
I recalculate e, H, and T assuming dZ;/dT=O.
The important effect is to apply the value of 5) cal-
culated [Eq. (4. 6)] for T = 0 at T = T; the same
value of 5) could arise from a variety of possible
variations of Eo, E„and Ea. The resulting values
of T, shown in Table VI, exceed the experimental
values for HgSe and HgTe by 6 and 3%, respective-
ly.

Table VII shows the values of T for the remain-
ing II-VI elements calculated, as in Table IV for
Si, etc. , under the assumption that the liquid phase
is metallic. We also show experimental val-
ues ' ' " for g~ and available values for the
conductivity of the liquid phase. ' This calculation
consistently overestimates the melting point of the

Crystal

HgSe
HgTe

&&~c
(cal/male 'K)

12.92
13.62

836
750

T t (Ref. )

( K)

1ov2 (1ov)
943 (108)

+calc
dE)
dT
( K)

1161
967

TABLE VI. Calculated and experimental melting points
for HgSe and HgTe. The thermal vibrations and tempera-
ture dependence of the'band gaps in these materials are
known to be anomalous (see Ref. 110), In columns 2 and

3, values are calculated exactly as in Table IV, assuming
that the temperature variation of the various band gaps
were normal. Note that these values of T underestimate
the experiment rather badly. This occurs because the
calculated high-temperature values of E~, in particular,
are too low. In column 5, values are calculated under
the assumption that the band gaps at high temperature
are all the same as those (calculated) at T= 0. Note that
these values overestimate the experiment somewhat.
Therefore, as seems resonable, the true situation is in-
termediate between these extreme hypotheses.

II-VI elements but, in many cases, the error is
only 10-20%. Those errors are small because the
band gaps in the liquid phase, and thus its energy
relative to a metal phase, are sma11 in those
cases. (It may also happen that, as the liquid be-
comes semiconducting, I overestimate ~ as well
as ~ but the estimate of their ratio 1' remains
fairly accurate. )

As the band gap in the liquid phase increases,
the error introduced in assuming it to be metallic
increases. For the I-VII compounds, that error is
a factor of 3 and the band gaps are so large (-3
eV) that electronic conduction is negligible com-
pared to ionic conduction. ' ~

I have not, as yet, attempted to analyze the spec-
trum of these liquid phases in order to account for
their true free energy and thus to correct the esti-
mate of 7.'~.

The calculation of the full P-7-phase diagram
is now straightforward. I calculate the liquid-n
boundary as a function of pressure P using (5.4) to
estimate ~V~ and the theory of Sec. III to deter-
mine the variation of the theoretical optical spec-
trum of the n phase with I' and T. Thus,

T (P, 7) = &H" (P, T)//&8 (P, 7) .
The n-P solid-solid phase transition is calculated,
as a function of T, using the requirement that the
difference in Gibbs free energy of the two phases
be zero at the o, -P boundary,

r G.,= r Z(p, r)+ pr V.,(p, r)

I use the calculated values of 4&„8 obtained from
Eq. (5.2). The intersection of these two phase
boundaries determines the a-P-liquid triple point.
The slope of the P-liquid phase boundary is deter-
mined at the triple point from the requirements
that volume, entropy, and energy be conserved in
a circuit around the triple point. The calculation
is compared with experimental values for the n-P
transition pressure at room temperature
P, (300 'K) in Table VIII and with data~a'~'~~8 for the
triple point in Table IX. Calculated phase diagrams
are presented in Figs. 6 and 9-15. Only IV-IV and

III-V cases are considered because II-VI and I-VII
crystals transform into a semiconducting rocksalt
phase instead of a metallic P-Sn phase under pres-
sure. The reason for this difference was discussed
in Sec. V.

The reader should be cautioned that there are
substantial uncertainties in the experimental data.
These arise chiefly from problems of calibration,
of pressure inhomogeneities, and of metastability.
The standard Drickamer high-pressure resistance
cell, which is commonly used to gauge pressure,
has recently been recalibrated. This recalibra-
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TABLE VII. Calculated and experimental melting points
for II-VI and I-VII semiconductors for which the liquid
phase may not be metallic. The values in columns 2 and
3 are calculated under the (doubtful) assumption that the
liquid phase is metallic in all cases. In column 5 mea-
sured values of the conductivity of the liquid phase appear.
These conductivity values should be compared with those
of materials in Table IV, e. g. , for Ge, 0.= 16000 (Q cm} ~,

Where the liquid phase is not metallic, one will over-
estimate LUX and thus also T . (However, there may be
a compensating effect from an overestimate of 48 . ) As
might be expected, the calculated T" overestimates the
experiment by a relativity small amount in materials,
such as ZnS, which are small-band-gap semiconductors
in their rocksalt phase. The overestimate becomes
progressively worse as one goes to more ionic materials
and the band gap increases.
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FIG. 10, Theoretical P-T diagram of GaN and 8¹
Crystal

BeTe
Mg Te
ZnTe
CdTe

&&c~c
(cal/mole ' K)

16, 73
16.60
16.34
16.10

( K)

1452
1471
1657
1631

~~t (aeS. )
( K)

& 1570 (ill)
&13OO (111)

1563 (112)
1365 (gS)

80
90

sures reported in the present tables and figures, is
probably accurate to about 10% for pressures be-
low 160 kbar. Estimates of the accuracy of the

BeSe
MgSe
ZnSe
CdSe

BeS
MgS
ZnS
cds

16.68
16.48
16.29
16.07

16.71
16.49
16.29
16.21

1964
2484 - 156O (113)
2P59 1788~ 20 (114)
1835 1512 (115)

2292
2783
2294 2196 (114)
2P77 1825*3O (105)

BeO
ZnO

CuCl
CuBr
CQI

AgI

16.52
16, 10

16.32
16.27
16.40
15.98

6058
3621

3094
2453
2055
1847

1975 (97)

7O3 (116)
761 (116)
861 (116)
831 (116)

3. 5

5000 t t i

4000

tion lowered the estimated P, (300 'K) of Si, for ex-
ample, by 33%. (The correction is nonlinear, in-
creasing with pressure. ) This revised calibration,
which has been applied to all experjtmental pres-

Crystal

C
Si
Ge
Sn

1680
148

92
0

150+5 (68)
105-110 (68)

0

SLC

100-115 (68)
65-75 (68)

22 (23)

TABLE VIII. Calculated values for the critical pres-
sure for transformation to the metallic ("P-Sn") high-
pressure phase compared with reported values. For
InP, the reported transition is to the rocksalt structure,
where the material is a small-band-gap semiconductor,
rather than to the metallic structure. The rocksalt phase
has not been considered in the calculation because an
accurate estimate of its optical properties is not avialable.
Note that experimental uncertainties are large due to the
hysteresis and calibration problems. The theory relies
on Eq. (5. 2) to predict AV~~. (The fundamental quantity
is P+V„~.) Equation (5. 2) may not be an accurate formu-
la in all cases.

P~(300 K)~g c P~(300 'K)e~t (Ref. )
'(kbar)

' ' '
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BP
Alp
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220
153

92

401
269
216
141
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FIG. 9. Theoretical P-T diagram for C (diamond) and

SiC. The graphite phase is not considered. The experi-
mental values of T (P= 0) with their estimated uncertain-
ties are indicated.

BN 2110
AlN 900
GRN 870
InN 260

Transition observed is to rocksalt phase rather than
P-Sn. "
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FIG. 11. Theoretical P-T diagram of QaAs, AlAs,
and BAs. Experimental values of T+(P=-0) and of P,(T
=300 'K) are indicated.

TABLE IX. Calculated semiconductor-solid-metal-
liquid-metal triple point. Also shown is the calculated
slope of the phase boundary between the solid metal and
the liquid at the triple point. A few experimental values
have been reported and are shown in columns 5 and 6.
(The pressure recalibration suggested by Drickhamer
has been applied to previously reported estimates. )

Crystal

Calc. triple pt,
P

obar)

Expt. triple pt.
P-liquid slope P
( K/kbar) (kbar)

c
Si
Ge
Sn

1180
108

78
&0

3080
1140

960
418

1.1
3. 1
3. 0

115+10 1100
85 + 10 970

thermal couples used to measure temperature at
high pressure vary from + 2 to + 50 'K. 1

problem of pressure inhomogeneity must be ana-
lyzed according to the particular experiment.
Pressure inhomogeneity generally decreases the
apparent o.-P transition pressure whereas meta-
stability problems cause an overestimate.

The author has neither found nor developed a
comprehensive analysis of the effect on experiment
of metastability, i.e. , ihe persistence of a phase
when the condition of pressure and temperature
changes so that it is no longer the state of lowest
free energy. However, some qualitative comments
are in order. The transition pressures reported

40 80 120
P (kbar)

160 200

pIQ. 12. Theoretical P-T diagram for InP and InAs.
The x indicates the pressure at which InP transforms to
the rocksalt structure. Inp is semiconducting in this
phase also. However, the dielectric constant and spec-
trum of Inp in the rocksalt phase has not been determined.
Therefore, one is unable to calculate the conditions of
equilibrium between these phases.

in Table VID were all obtained on the "up stroke, "
i.e. , when pressure was increasing. (Both phases
were present when the measurement was made. )
If the pressure is raised so that all the material
transforms into the high-pressure metal phase and
is then reduced, the material will generally not re-
turn to the diamond or zinc-blende phase at the
"up-stroke" transition pressure. InSb and GaSb
can be retained in their metallic phases at 1 atm
and low temperatures' 0; Si and Ge can persist in
distorted tetrahedral structures which are denser
than the diamond phases but also semiconduct-
ing. ' ' ' Despite this hysteresis, I believe that
the equilibrium pressure is near (-10/p) the "up-
stroke" pressure because the n semiconducting
phase, which has lower entropy and density, ex-
ists in contact with the p metallic phase there. The
conditions of the experiment tend to inhibit the
-20% volume expansion which occurs in the p to n
transformation. Moreover, a state of greater en-

sic
AlSb
GaSb
InSb

BAs
AlAs
GaAs
InAs
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66
46
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167
125
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700
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FIG. 13. Theoretical P-T diagram of AlSb and GaP.



14S8 J. A. VAN VECHTEN

3000

METALLIC LIQUID

0

1000

0
0 200 400 600

P(kbar)

FIG. 14. Theoretical P-T diagram of A1P and BP,

tropy tends to be metastable because some sort
of nucleation process is required to establish the
more ordered phase; no such nucleation process is
required to disorder the Q, phase. Note that many
liquids may be supercooled to a significant extent,
but very little superheating of a solid is ever ob-
served. (The case of the metastability of diamond
relative to graphite can be explained by noting that
both phases are covalently bonded so they probably
have comparable entropy, and that diamond is
denser. )

The reader should also be cautioned that the re-
sults of the calculation are very sensitive to the
values assumed for ~ V and for ~5. The theory of
Secs. V and VI used to predict these values is
rather speculative. For example, if one were to
use Skelton's experimental value89 for 6 V ~(300

K) for GaSb, 22. 0/p, instead of the calculated
19.4%, the calculated transition pressure would be
66 kbar instead of 73 kbar. If Jamieson's value
of 16.9% were used, the calculated pressure would
be 83 kbar.

The calculation is also sensitive to errors in-
duced by use of the theoretical values for the opti-
cal spectrum. (In II the rms error was found to be
about 0.2 eV. ) This is particularly significant for
small-band-gap semiconductors because 5) is a
rapidly varying function of Eo (P=0, T=O), F&

(P=0, T=O), P, and T in these cases. This is il-
lustrated by the glaring discrepancy between cal-
culation and experiment which occurs in the case
of InSb (Fig. 15). This error can be traced to the
assumed temperature dependence of Eo and E&.
Whereas the theory~ is in reasonable agreement
with experiment at T=O, the semiconductor be-
comes a semimetal as T increases; Eq. (3. I) can-
not reproduce this behavior. If the true values of
Eo and E, near the triple point were used to cal-
culate S, the calculated pressure would undoubtedly
be in better agreement with experiment. To illus-

trate the sensitivity of the calculated transition
pressure to P = O, T, I note that the calculated tran-
sition pressure for n-Sn drops from 23 kbar at 7
= 0 to 1 kbar at T = 70 'K.

However, it is obvious that the phase diagrams
could be fitted perfectly if one were allowed the
freedom to adjust the assumed optical spectrum.
As there does not at this time appear to be ade-
quate high-temperature data, I will not try to im-
prove or empirically refine the rough estimates
made in this paper. We must be content with the
level of accuracy achieved using only the calculated
values.

In closing this section I note that previous pre-
scriptions for estimating n-P transition pressures
have been advanced by Jamieson~ and by Mus-
grave. '2' Both these approaches assumed that
the transition involved the promotion of elec-
trons from a Fermi level in the middle of the for-
bidden gap to the conduction-band minimum of the
semiconductor. (This promotion would make the
semiconductor metallic. ) However, Adler~a~ has

1200

T. n Sb
METALLIC L I Q UID

800'H
———EXP.

CALC.

0
0 40

P (kbar)
80

FIG. 15. Worst-case analyses. The discrepancy be-
tween the calculated P-T diagram of InSb and experi-
ment (see Fig. 8 and Ref. 23) may be traced to errors
in the calculated optical spectrum of InSb at high tempera-
tures. The theory of Ref, 2 achieved agreement within
0. 2 eV with experimental values at T=0. However, for
a narrow band-gap semiconductor, & and AE are very
sensitive to errors in Eo and E~ tsee Eqs. (4, 6) and (4. 7)'j.
As T increases, the calculated Eo, and probably also
E~, gaps do not decrease as rapidly as do the observed
values. Above 500'K the experimental Eo becomes nega-
tive, while the values calculated from Eq. (3.7) clearly
cannot go to zero. The calculated Eo is always greater
than 0. 3 eV. The dependence of the error in P~ on the
error in Eo is highly superlinear at low pressure because
Eo increases rapidly with pressure so that ~ also in-
creases rapidly. Note that the error in the temperature
variation of Eo increases the calculated DS . This error
compensates that in ~ so that the calculated Tz is &%

less than experiment.
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The distribution coefficient El„of an impurity I
in a semiconductor host H is defined as the equi-
librium ratio of the concentration of I in the solid
phase to its concentration in the liquid phase when
the two phases are in contact. K» is sometimes
also called the "segregation coefficient. " It has
great technological importance as the controlling
parameter in the zone refining and in the doping
of semiconducting materials.

The evaluation of K,~ poses a rigorous test for
any theory of covalent bonding. To be successful
one must accurately determine bond energies both
in the perfect pure-host-semiconductor and in the
impurity-host-semiconductor systems. Thus, one
must understand both the ideal state and the per-
turbation.

As the melting point of a solid is dependent upon
its composition, K» may be regarded as a function
of temperature, K»(T). In this paper I shall con-
sider only the limit of infinite dilution of an impuri-
ty element in a pure semiconducting compound. In
this limit the equilibrium temperature tends to the
melting point of the pure host, T~. This restric-
tion to K»(T") is indicated not by the theory, but

by the availability of experimental data. . Extensive
compilations are available only for K», (T~) and

K, o,(T~). Hereafter, I shall denote K,„(T")as
simply Z, H.

The thermodynamic relations relevant to K»
were advanced by Thurmond and Struthers. ~~ Their
method was to determine chemical potential of the
impurity in both the liquid and the solid phase rela-
tive to a fixed reference state and to equate the
two.

I treat the problem only within the regular-solu-
tion approximation, ~+ i.e. , I will assume that, al-
though H and I atoms interact with different poten-
tials and the presence of I atoms perturbs the en-
thalpy of the system in a nonlinear manner, the
disorder of the system is negligibly affected by the
difference between H and I. The partial molar en-
tropy of I in a regular solution is the "ideal-en-
tropy-of -mixing" value

~$q = —Rlnxr, (8. 1)

noted that the increase of the forbidden band gap
of the semiconductor with pressure does not sta-
bilize that phase nor does the doping of the ma-
terial have a significant effect on the transition
pressure. I add to these criticisms that the zero
band gap in HgTe, HgSe, and, at high tempera-
tures, in InSb and InAs does not imply that they
transform to the p phase at zero pressure. I con-
clude that although these prescriptions achieve a
surprisingly good empirical correlation, they have
little fundamental content.

VIII. DISTRIBUTION COEFFICIENTS

n.H.(x, ) = H(x, ) -x,H(I)— (1 x—,)H(H—), (a. 8)

where H(xz), H(I), and H(H) are, respectively, the
enthalpies of the solution containing a mole frac-
tion y, of I, of the pure I species, and of the pure-
host species. ~HI is then given by

s[(n, +e„)&B (x,)))I
nH

(8.4)

where z, and m~ denote the number of moles of I
and of H, respectively, present in the system.
(The motivation for casting this definition in terms
of g» and n„ is that xr and xH cannot be taken as in-
dependent variables. ) In terms of n.HI, the heat of
mixing n.H (x~) is given by

&H (x~) = x,&H~+ (1 —xl)&H„.

Therefore, one must be able to determine the
excess heat (enthalpy) of mixing b.H„(xz). As all
the data~39 ~3~ available to me were obtained at low

pressure (& 1 kbar) and as volumetric effects are
small, I may neglect the PV term and consider
only the internal energy.

Furthermore, I shall only attempt to calculate
b H~(xI) because I have not developed a theory of
liquid-phase interactions. Therefore, I shall first
assume AII~I = 0 and later attempt to analyze ex-
perimental data. A solution for which ~II, =0
and with entropy given by E(l. (8. 1) is said to be
an ideal solution. ~3~ Thus, in an ideal solution the
different atoms I and H interact with the same po-
tentials. It is generally found that liquid-phase
interactions affect the value of K» relatively little
when H is the liquid phase of a semiconductor.
The largest empirical correction known to the
author is a factor of 5. 6 for In in Si; in most
cases the correction is a factor of 3 or less. This
magnitude is to be compared with the eight orders-
of-magnitude range of experimental values, ' 9

e.g. , K~ 0,=17 while KT& si=10 ~ In many

where R is the gas constant and x, is the mole frac-
tion of I in the solution. This is a common and ap-
parently an accurate approximation. oi~ i ~

In this regular-solution approximation, with the
pure elemental solids at their respective melting
points chosen as the reference states, the Thur-
mond-Struthers result is

Z,„=exp ([~H', n. H-,'+ &Sf (T,' T) t-)/It T} .
(s. 2)

In (8.2), ASI~ and T~~ are the entropy and tempera-
ture of fusion of the (elemental solid) impurity
species; T= T~ of the host semiconductor in the
present case (dilute limit of I). r H~z and b, Hz~ are
the differential heats of solution of I in the liquid
phase and in the solid phase, respectively. 4@~
may be defined in terms of the heat of mixing
~H„(,x):
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the experimental value is uncertain within a factor
of 3. Thus I conclude that the approximation of the
liquid phase as an ideal solution, in the absence of
experlrnental data, ls reasonable.

In my view, the reason that the liquid phases of
these doped semiconductors are effectively ideal
is that they are metallic. In contrast with the co-
valent bonding of the semiconducting phase, me-
tallic bonding, in, for example, the jellium ideal-
ization, is nonspecific and primarily dependent on
average charge density. 4 The difference in va-
lence between I and the host atom for which it sub-
stitutes, II,

~z= /s, -z„), (s. 5)

has little effect on the metal phase because there
is no band gap at the Fermi level. VVe shall see
that AZ has a dominant effect on the semiconduct-
ing phase (provided the forbidden band gap is
larger than about 0.2 eV.i~)

For a limited class of solutions, namely, the
substitutional alloys such as GaAs-P or GaP-ZnS,
for which the (effective) b, Z= 0, the author has al-
ready presented one method for calculating the heat
of mixing. '35 This was to calculate the composition
dependence of the heat of formation, using the
Phllllps-Van Vechten spectroscopic theoryq from
the theoretical1 variation of the optical spectrum
with composition —Eqs. (2. 16)-(2.20):

&HF = &Hof; m/as, (a. 6)

where 4II0 is an empirical constant and a is the
virtual-lattice constant. By the definition of 60~
this method uses the standard chemical states of
the pure elemental constituents as the reference
states for the enthalpy of the solution. This is the
same choice as was made by Thurmond and
Struther and ln Eq. (8.2).

In Ref. 135 the author showed that the range of
miscibility of the substitutional alloys could be
explained and predicted by calculating the heat of
mixing using Eq. (8.6). More recently, String-
fellow' ""has used the same method to calculate
the liquidus-solidus-phase diagram of the III-V
substitutional alloys with good success. As the
ratio of the solidus to liquidus composition at a
particular temperature is the distribution coeffi-
cient at that temperature, the problem is effective-
ly solved for isovalent (AZ= 0) cases, such as p
on the N site in GaN. '37

However, to treat the more difficult cases where
AZt 0, such as In in Ge, I wish to avoid the use
of Eq. (8. 6) and to change the reference states to
the (hypothetical) metallic phase of the same com-
position —just as was done to calculate T~ and I',.
This is because to use (8. 6), one would have to de-
termine the value of f,. and of a for each bond6 with-
in the range of the perturbation caused by I. As

that range usually includes many shells of
atoms, ~'4 this would be an unappealingly compli-
cated task and the accuracy of the result would
probably not be acceptable. Moreover, I have not
developed a method to calculate 48~ and T~l for
the various metallic, gaseous, etc. , standard
states of the impurity elements.

Therefore, instead of considering the mixing of
elemental I into the host semiconductor II, I shall
consider the mixing of a hypothetical compound HI
into the HH host. (If the host is a compound semi-
conductor, one would have 0„-H~ with 4Z depen-
dent upon which site I occupied, However, as the
available data are for Si and Ge, I will denote the
host species simply as H. ) I calculate the opti-
cal spectrum of HI that would obtain if one could
remove the excess or deficit electrons contributed
by I without perturbing the spectrum. Given this
spectrum I calculate ~Br and THI Then I cal-
culate the composition dependence of the substitu-
tional alloy of HI with HH under the same assump-
tion.

To determine the excess heat of mixing, I con-
sider two contributions:

(s.v)&H(x„,) = ~H, (x„,)+ ~H, (x„,) .
4H0 results from the variation of the optical spec-
trum in a manner analogous to that of Ref. 135 ex-
cept that the (hypothetical) metallic phase is used
as the reference state, rather than the standard
states of the elemental constituents, and Eq. (4. 5)
is used instead of Eq. (8. 6). Thus,

~H, (~„,) = ~z(x„,) —x„,~z(Hf)

—(l —x„,)~z(HH) . (a. 8)

~H, (x„,) = —,
' x„,~z„~ze, (a. e)

where d E„~is the forbidden band gap of the host
semiconductor and e is the magnitude of the charge
of the electron. Equation (8.9) results from the
assumptions that the Fermi level of the intrinsic
semiconductor is at the center of the forbidden gap
and that the excess electrons (or holes) must oc-
cupy the lowest conduction-band (highest valence
band) states at an energy 2hZ„M from the Fe-rmi
level. %'hen complexing and nonionization are be-
lieved to occur, '38 '40 we shall take

~H. (x„,) = o (s. lo)

The contribution d H, results from the effect of
excess or deficit electron contributed to the crys-
tal due to the difference in valence between I and
the 0 atom it replaces, hg. In the present dilute
limit, and assuming that the impurity does not
comp/ex or cluster so as to be nonionized-as hap-
pens, e. g. , with As 138P 139 and 8140ln Sl the
magnitude of this effect should be
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&H(x ~) =x„x„„Q~„. (8. 11)

Then this value of 0» was assumed for the differ-
ential heat of solution AIIi~ in the analog of Eq.
(8.2), i.e. ,

on the pressumption that the complex allows the
electron or hole to be accommodated at or near
the Fermi level. (The complex would not form
were it not energetically favorable to do so. )

For practical reasons (computer precision),
&Ho was not calculated for an infinitely dilute con-
centration of I I.nstead it was calculated for a 5%
solution of I in H—or rather 10% HI in HH. The
resultant value of AH(x„, ) was fitted to the formula

+IH p([ IP ~HI (~HI T tlH) JI+~HH) '
(8. 12)

A solution A-B for which the differential heat of
solution 4H„= const, g~, i.e. , for which Q is con-
stant, across the entire composition range is
called "strictly regular. "'" The strictly regular
solution approximation is often made'~' 3' 8 for the
semiconductor-dopant solutions under considera-
tion. While a few exceptions are noted, 3 ~ it is
generally found to be acceptable. In order to test
whether or not the present calculation would pre-
dict the same value of 0» if it were performed in
the limit of very dilute concentration of I as was
obtained with 5% I, the calculation was repeated

TABLE X. Comparison of calculated and observed distribution coefficients of nontransition-metal impurities in Si
and in Ge. For this table the theory assumes that the liquid phase is an ideal solution (see Table XI). In each case a
value is presented, in column labeled w/o comp, , calculated under the assumption of Eq. (8. 9), that the impurity does
not form a complex which accommodates the excess or deficit ~ electrons at the Fermi level. Where the experiment
indicates otherwise, e. g, Refs. 138-140, a second value is calculated for the contrary assumption, Eq. (8. 10).

Impurity

C
Si
Ge
Sn
Pb

B
Al
Ga
In
Tl

N

P
As
Sb
Bi

Be
Mg
Zn
Cd

Hg

0
S
Se
Te
Po

F
Cl
Br
I
Cu+2

Cu"
A +2

Ag+i
Au+2

Au'i

0. 1-1.0
1.0
0. 33
0. 016

0. 8
2xlo 3

8 xlo"3
4xlO 4

(4 —8) xlp ~

0. 35
0. 3
0. 023
7xlO 4

4xlp 4

0. 5
1O-'

4xlO 4

4 x 1O-'

2. 5 x].0+

Si
&c~c

w/o comp.

1.81
1.0
P. 21
P. 074
0. 062

P. 096
8. 0xlp"
1.4x10 '
4. 9xlo 3

3, 3x10 3

P. 14
0. 029
0. 016
P. 0057
3, 7xlo"3

3, 9x10"
8, 7xlp 4

9.8xlo 4

3.8xlp 4

2. 9 x 1O-4

9. Oxlo '
1.9 x10"3
1.2xlp 3

4. 9 x 10-4

3. Qxlp 4

5. Oxlp 4

1.3xlO '
8. 2xlp ~

3. 7 x].0-'

1O xlO-4

6. 7xlp '
4. 8xlp 4

3. 2 x 10-'
2. 6x10 4

1.7xlo '

&c~c
w comp.

1.98
0.41
0. 22
0. 082

l. 84

5. 5
1.0
0. 020
1, 7 x 10-4

17
0. 073
0. 087
1xlo 3

4xlp 5

P. 080
O. 02
3x10 3

4. 5xlo 5

4 x1O-4

&1 x 10-'
2x1pxlo z

)lo-'

1.5xlp '

4x10 z

1.Sx10 5

Ge
+@ale

w/o comp.

1.01
2. 42
1.0
0. 084
3. 3 x].0-4

0. 044
0. 065
O. 0070
1.4xlQ 3

8. 0 xlp-z

8.4xlp 3

O. 055
0. 016
6, 3xlo 3

4. 9xlp 4

1.2xlo 3

1.5 x 10"3

1.9xlp 4

1.1 xlO-4

1.4 xlp"z

2. 4xlo 5

1.1xlo 3

7. 2 xlO-4

8. 0xlo 4

1.5 xlO-4

4 x10"8
2. Oxlo '
2. 2xlO '
3. 8 xlp"~

2. 4xlQ 4

4, 6x10 6

7. 9xlp 4

1.6xlp 5

4. 7xlO '
9x10 z

&c~c
w comp,

1, 63

3 0~10

0. 31

0. 034



with a concentration of 25% I (or rather 50% HI)
assumed, and the corresponding values of 0&H

were obtained. The variation in these calculated
values was usuaDy such as to produce a change in
the calculated Kz„(T~) of less than 25%%u~. There-
fore, I conclude that the use of the value of 0,„
fitted at 5/& introduces a negligible error in most
cases.

In Table X we compare experimental values of
K,„(T~) for H=Si and Ge with those calculated un-
der the assumption that the liquid phase is an ideal
solution. Where there is reason to believe that
the impurity forms a complex, the calculation
was repeated using Eq. (8. 10) and both results are
shown.

I also show two calculated values for the noble
metals Cu, Ag, and Au in Table X. These may
assume a valence of either116'7 141 +1 or +2. Ex-
perimentally it is not clear which state they as-
sume as an impurity in a given host semiconductor.
Therefore, I calculate K» for both possible va-
lences and compare them with the single experi-
mental value. If the energies of the two states of
the atom are roughly the same, one would expect
the +2 species to dominate as an impurity due to
the energy required to produce the additional hole
concomitant with a + 1 valence. We see that for
Cu and Au in both Si and Ge, the ZI = 2 calculation
is indeed in good agreement with experiment. Por
Ag the Z, =1 calculation agrees with experiment
for Si and is rather larger than the experimental
value for Ge. The chemical experience is that the
polyvalent state of Cu and Au is quite stable, while
Ag' is "very unstable. "' Therefore, except for
the anomalously small experimental value of
K„,6„ the agreement between experiment and
theory guided by chemical evidence is excellent.

It should be noted that the present calculation
only considers substitutional impurities. Inter-
stitial impurities are also known. These could
have the effect of making the experimental value
larger than expected but not smaller. In some
cases, such as 0, the interstitial impurity forms
bonds with the host (SiP,). In such cases I feel
justified in classing the interstitial as a "complex"
and applying Eq. (8. 10).

It is also important to note that Eq. (8. 12) is
not simply equivalent to Eq. (8.2). The distinc-
tion between the assumptions of monatomic and of
diatomic species affects both the entropies of the
solution and the heats of mixing. The magnitude
of the effects of this distinction may be illustrated
by the case of Si in Ge. The calculation, consid-
ering GeSi in GeGe, finds 0=0, i.e. , the solid
phase is predicted to be an ideal solution. If one
were to assume an ideal solution of Si in Qe„al-
most exact agreement with experiment would be
obtained using Eq. (8.2). However, as I use

(8. 12), I find

SQesi(TGesi TGeoe) s Ssi(Tsi oe)

Therefore, the calculated value differs from the
experimental value by a factor of about 2. 4, i.e. ,
(K„„)=K,„„for this particular case.

Experimental values for the liquid-phase inter-
action'3 provide some indication as to which as-
sumption is appropriate for a particular case.
When the experimental liquidus curve is analyzed
from the monatomic point of view, both positive
and negative values for the differential heat-of-
mixing constant AIII or 0», which is also denoted
as "b" in Refs. 132 and 133, are found. A nega-
tive value implies an attractive interaction between
II and I so that the III species tends to form in
those cases. Therefore, the factor

in Eq. (8. 2) may be viewed as an empirical cor-
rection to cancel the error induced by the assump-
tion of a monatomic (ideal) solution for the case
b& 0. Then my assumption that the liquid is a di-

Impurity

As
Al
As
Al
Ga

Sn
sb
Ga
In
Sn
In
Sb
Bi
Pb
Tl

Hpst

si
Si
Ge
Ge
Ge

Si
si
Si
Si
Ge
Ge
Ge
Ge
Ge
Ge

0. 35
0. 5
0. 54
0. 36
0. 80

4. 5
4. 1
1.6
5. 6
1.4
1.4
1.4
2. 9
5. 2

4

&mpt

0. 3
2x10 '
0. 02
0. 073
0. 087

0. 016
0. 023
8 x 10
4 x 10"4

0. 020
1xlo 8

3 x 10"8

4. 5xlo"
l. . 7 x].0-4

4xlo 5

&mc
ideal liq.

0. 22
8. Ox 10"8

0. 016
0. 065
0. 0070

0. 074
0. 083
1.4x 10"
4. 9xlo 3

0. 084
1.4xlo 8

6. 3x10 3

4. 9xlo"4
S, SxlO 4

S. OxlO '

(Ze-"'"')

0. 016
0. 020
8, 6x10
8.7xlD 4

0. 062
1.Oxlo 8

4, 4xlo 3

1.7xlO 4

6, 4xlo 5

6.8xlo 8

TABLE XI, Analysis of the effects of nonideality in
the liquid phase. Experimental values for b parameter
(the differential heat of mixing in the liquid) have been
obtained (Ref. 132) for the impurity-host systems repre-
sented. This experimental analysis proceeded on the
assumption that both phases contained only monatomic
species. The present theory, in contrast, assumes di-
atomic species. In cases where b is negative, those
listed first in the table, the experiment indicates forma-
tion of diatomic species so that the assumptions of the
present theory are approximately correct. Note that
the discrepancy between theory and experimentis general-
ly small in these cases. Where b is positive, opposite
species repel each other so that no diatomic species will
form in either phase. However, a rigorous treatment
of the correction to theory appears to be very complex.
However, a simple approximate correction e is sug-
gested and compared with experiment. Note that the
experimental correction is never larger than a factor
of 5. 6, whereas experimental values range over eight of
magnitude,
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atomic ideal solution should be appropriate and my
calculated values should not need adjustment. In
Table XI we see that this is correct.

The case that b &0, i.e. , that H and I repel each
other in the liquid, is more difficult to analyze.
Surely my assumption that only diatomic HI and
HH species are present in both phases is in error.
However, it would not be correct to apply the
empirical correction e ~, deduced from the as-
sumption of monatomic species, to the presumed
ideal diatomic solution. Such a correction would
only affect the free energy of the liquid and would
clearly overestimate the effect there. It seems
probable that the error in the solid phase is greater
than that in the liquid.

It appears that no rigorous treatment of this
problem is available and that any accurate correc-
tion will be quite involved. 4 However, one can
make the simple observation that the factor e
suffices to reconcile calculation with experiment
in eight of ten cases for which values of 5&0 are
available (see Table XI). Moreover, the two
cases where this factor does not seem to be ap-
propriate, Pb in Ge and Tl in Ge, both involve val-
ues of K„„less than 4 && 10-4 and then K„„=K,„„.
For six values of K„„greater than 2x10 4 the
proposed correction always works well. Thus one
may distinguish those cases where the proposed
correction factor will suffice from those where
it probably should not be applied.

Finally, I wish to compare the present method of
calculating the distribution coefficients with one
well-known previous method —that proposed by
Weiser. 3 This is probably the most successful
treatment previous to the present work. Weiser
used the elements as reference states and thus
used Eq. (8.2). He also used experimental values
for ~9~ and T~ for all species as well as for
&H~z (which he denotes as b). Thus he only pro-
posed a method for calculating 4H~ in the regular
solution approximation. Weiser considered two
contributions,

Hs @s+@bI (8. 13)

where E ' is a "bond-strength" term, i.e. , a func-
tion of only the elements forming the bond indepen-
dent of their nearest-neighbor distance. The term
E' is the "strain energy" derived from the mis-
match of the atomic radius of the impurity atom and
of the host lattice. Weiser assumed that the excess
or deficit electrons contributed to the lattice had
no effect on the energy of the system. Thus he as-
sumed &H' was independent of b Z, . This is in
sharp contrast to the present theory where ~Z,
makes a very important contribution as indicated
in Eci. (8.9). The present work also calculates the
total band energy as a function of both composition
and interatomic spacing without resort to the arti-

ficial separation into two constructs E' and E b.

In order to estimate the value of Eb, Weiser
made use of an interesting empirical rule suggested
by Allen~43 relating the cohesive energy of com-
pounds to those of the constituent elements,

(8.14)

where H~ and H ~ are the heats of vaporization of
the elemental I and H solids. It should be noted
that Allen's rule applies to the energy of bonds
with unstrained bond lengths. These energies are
clearly dependent upon the interatomic distance.
Weiser used empirical values for all the H"s.

The remaining problem was to determine the
"strain-energy" term E'. To do this Weiser re-
placed the diamond lattice with a simple cubic
monatomic lattice and treated the region outside
the nearest-neighbor shell as a continuous medi-
um. He ignored the bond-bending force constants~44

which stabilize the lattice. He introduced the
empirical bulk modulus and one adjustable pa, ram-
eter which was fitted to K» data. His final result
was

E'=170(h R/A) kcal/gatom for Ge,
(8. iS)

E'=22 0(h ft/A)
2 kcal/gatom for Si,

where 4R is the difference in tetrahedral covalent
radii between H and f. (Weiser used the Pauling-
Huggins table'4' of tetrahedral covalent radii. .)

Although considerable criticism can be leveled
against the assumptions in Weiser's model, it
must be admitted that he achieved an impressive
degree of success accounting for the distribution
coefficients of some group III-V impurities in Si
and Ge.~3~ Here I wish to determine how well his
method can be extended to other impurities and to
other host semiconductors. First, in Table XII
I compare the result of my calculation with that us-
ing Weiser's method for all impurities in Si and
Ge for which I have data. [The empirical values
for T ~, ~$~, and H" required for Weiser' s meth-
od were taken from the compilations~46 of Wagman
et al. (U. S. National Bureau of Standards). Weiser
did not indicate where he obtained his values, but,
where direct comparison can be made, the dis-
crepancies are small. ]

As can be seen, Weiser's method is not reliable
for group I, II, or VI impurities. I believe this
results from his neglect of the effect of adding or
removing electrons from the semiconductor's
eight electron bands. In some cases, such as 0
in Si, it is obvious why the calculation is in error
by a factor of 10 ~, but it is not clear how the vari-
ous complexes should be treated in the Weiser
model. The present method provides a simple
prescription and accuracy comparable with that of
the experiment.
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TABLE XII. Comparison between the previous semiempirical theory of Weiser (Hef. 133) and the present work. As
Weiser's calculation uses experimental values of b to improve its accuracy, I feel justified in using the empirical cor-
rection for liquid-phase nonideality for the purpose of comparison also.

Impurity

C
Ge
Si
Sn
Sn
Pb

B
B
Al
Al
Ga
Ga
In
In
Tl
Tl

Zn
Zn
Cd

Hg
Cu
Cu

Ag
Ag
Au
Au

P
p
As
As
Sb
Sb
Bi
0
S
Te

Host

Si
Si
Ge
Si
Ge
Ge

Si
Ge
Si
Ge
Si
Ge
Si
Ge
Si
Ge

Si
Ge
Ge
Ge
Si
Ge
Si
Ge
Si
Ge

Si
Ge
Si
Ge
Si
Ge
Ge
Si
Si
Ge

0. 1-1.0
0. 33
5. 5
1.6xlp 2

O. 020
1.7xlp '

0. 8
17
2xlp 3

0. 073
8. Oxlp
O. 087
4 xlp-4
1 xlp 3

4. 8 xlp-'
4xlp ~

4 xlp+
4xlQ 4

&1 xlp-'
2xlp 7

4 xlp"4
1.5xlp 5

4xlp 5

4 xlp"~
2. 5xlp 4

1.3xlp '

O. 35
P. 080
0. 3
P. 02
0, 023
3xlp 3

4. 5xlp ~

O. 5
10-'

&10 '

&c~c
Weiser

1.6xlp 4

0. 18
1.7
9. 7 x].0"3

0. 022
1.9xlp 4

O. 027
1.9xlp
3. 5 x 10"2

0. 16
6. 8xlp ~

0. 030
2. 4xlp 4

1.5xlp 3

2. 6 x 10-'
4. 2x 10-'

3. 2xlp ~

2. 2xlp '
5 xlp-9
5. 2xlp ~'

0. 028
0. 28
1.4 x 10-'
4, gxlp 4

7. 3xlp 4

g. 4xlp 3

0. 096
O. 49
O. 013
0. 16
0. 0027
2. 4 xlp"2
1.5xlp+
1.1 x 10 22

6. 7 x 10
3. Oxlp 5

K,~, ideal liq.
present work

1, 81
0, 21
2. 42
7.4xlp 2

0. 084
3, 3xlp 4

l. 38
l. 63
8. 0 xlp
0, 065
1.4 xlp"2
0, 0070
4. 9xlp 3

1.4 xlp"
3.3xlp"3
3, Oxlp 5

9.8 xlp"4
1, 9xlp 4

1.1xlp '
1.4xlp 7

1, Oxlp 3

2. 4xlp 4

3. 2xlp '
1.6xlo '
2. 6xlp 4

4, 7 xlp-'

O. 41
0, 055
0, 22
P. 016
0. 082
6. 3 xlp"
4. 9xlp 4

1.84
1.g xlp"3
8. Oxlp 4

(~ -b/RT)

present work

~ ~ ~

1.6xlp 2

0. 062
6.4xlp ~

~ ~ 0

8. 6 xlp-3
~ ~ ~

8. 7 xlp-4
1.Qxlp 3

~ ~ ~

6. 8 xlp"6

~ I ~

~ ~ ~

0. 020
4. 4 xlp"3
1.7 xlp-4

One could conjecture that the problem with
Weiser's method lies with the use of the Pauling-
Huggins tetrahedral covalent radii. ~4~ Use of the
Van Vechten-Phillips tetrahedral covalent radii~5
would significantly change many values, but would
not greatly improve the over-all accuracy of the
method. If the radius of the impurity is treated as
an adjustable parameter, it would be possible to
fit many experimental values. However, for some
cases, such as Hg in Ge, even setting 6g = 0 so
E'= 0 would not suffice to obtain the experimental
value '3'

Now consider the application of both methods to
host materials other than Si and Ge. The adapta-
tion of the two methods is trivial but, as noted
earlier, good quantitative experimental values of

KIH are lacking. However, I can make a qualita-
tive point. dreiser's calculation is independent of
the forbidden gap of the host, whereas, in the pres-
ent theory, the term AII, in the heat of mixing is
proportional to the forbidden gap. For charged
impurities in Si and Ge the 4II, term is dominant.
However, for small-band-gap semiconductors,
4II, will be proporti. onately smaller and the dis-
tribution coefficients will be much larger. It is
well established ' ~4 that the distribution coeffi-
cients in PbTe, SnTe, etc. , are a11 greater than
0.01. (Charged impurities in semiconductors with
a gap less than about 0.2 eV tend to not be elec-
trically active. ' This makes accurate measure-
ment of Z difficult. ) The distribution coefficients
in metals are also generally much larger than for,
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say, Zn in Ge. Therefore, one may conclude that
the present theory is in at least qualitative agree-
ment with experiment in the small-band-gap semi-
conductors and semimetals. However, this will
clearly not be true if dreiser's method is applied.
The value of Kfor Hg in SnTe, for example, will
be in error by at least a factor of 10.

ACKNOWLEDGMENTS

The author has greatly benefited from discus-
sions with several colleagues. He is particularly
grateful to Dr. F. Bundy, Dr. H. C. Casey, Dr.
A. A. Jayaraman, Dr. D. B. McWhan, Dr. J. C.
Phillips, Dr. G. B. Stringfellow, and Dr. C. D.
Thur mond.

J. A. Van Vechten, Phys. Rev. 182, 891 (1969).
J. A. Van Vechten, Phys, Rev. 187, 1007 (1969),

3J. C. Phillips, Phys, Bev. Letters 20, 550 (1968).
B. F. Levine, Phys, Rev. Letters ~22 787 (1969).

5B. F. Levine, Phys. Rev. Letters ~25 440 (1970).
6B. F. Levine (unpublished).
7C. R. Jeggo and G. D. Boyd, J. Appl. Phys. ~41

2147 (1970).
D. S. Chemla, Phys. Rev. Letters ~26 1441 (1971).

SSee also J. C. Phillips and J. A. Van Vechten, Phys.
Rev. 183, 709 (1969); D, A, Kleinman, Phys. Rev. B 2,
3139 (197O).

J. C. Phillips, Phys. Status Solidi (b) 44, Kl (1971),
J. A. Van Vechten, Solid State Commun. 11, 7 (1972).

~~J. A. Van Vechten {unpublished).
L. Pauling, J. Am. Chem. Soc. 54 3570 (1932).

4R. S. Mulliken, J. Chem. Phys. 2, 782 (1934).
5J. A. Van Vechten and J. C. Phillips, Phys. Rev.

B 2, 2160 (1970).
J. C. Phillips, Rev, Mod. Phys. 42, 31V (1970);

Covalent Bondi~ in Crystals, Molecules, and Polymers
(University of Chicago Press, Chicago, 1969).

~L. Pauling, The Natm. e of the Chemical Bond (Cor-
nell U. P. , Ithaca, 1960).

J. A. Van Vechten and T. K. Bergstresser, Phys.
Rev. B 1, 3351 (1970).

J. C. Phillips and J. A. Van Vechten, Phys. Rev. B2,
214V (19VO).

2 J. A. Van Vechten, Phys. Rev. 170, V73 (1968).
~J. A. Van Vechten, Phys. Status Solidi (b) 47, 261

O.ev1},
D, Penn, Phys. Rev. 128, 2093 (1962).
R. E. Hanneman, M. D. Banus, and T., C. Gatos,

J. Phys. Chem. Solids 25, 293 (1964).
+J. C. Jamieson (private communication).

C, D. Thurmond and J. D. Struthers, J. Phys, Chem.
57 831 (1953).

H. Nara, J. Phys. Soo. Japan 20, 778 (1965); G.
Srinivasan, Phys. Rev. 178, 1244 (1969); J. P. Walter
and M, L. Cohen, Phys. Rev. B 2, 1821 (1970).

2~J. A. Van Vechten and R. M. Martin, Phys. Rev.
Letters 28, 446; 28, 646(E) (1972).

M. Cardona (unpublished) has suggested a slightly
different version of Eq. (2. 1) connecting e~(0} with E~,
which multiplies E~, in effect, by (3) . Other workers
have also suggested other models, e. g. , Ref. 46. I
continue to use (2.1) and (2. 5) because I believe that the
values of E~ so defined, which are close to those of the
optical peak E2, yield a better measure of covalency ef-
fects. In part this is because of the separate treatment
of the effects of metallization on the Eo and E~ gapa. It
is also possible that other models cauld yieM satisfactory
scaling results, but because of the success of the present
approach I have not explored this question.

29M. L. Cohen and T. K. Bergstresser, Phys. Rev.

141, v8e (1e66).
V. Heine and H. O. Jones, J. Phys. C 3, 719 (1969).
H. R. Philipp and H. Ehrenreich, Phys. Rev. 129,

1550 (1963).
32M. Cardona, in Atomic Strlctgres and ProPerties of

Solids, edited by E. Burstein {Academic, New York, to
be published); M. Cardona, W. Gudat, B. Sonntag, and

P. Y. Yu, in Proceedings of the Tenth International Con-
ference on the Physics of Semiconductors, edited by S.
P. Keller, J. C. Hensel, and F. Stern (U. S. AEC, Oak
Ridge, 1970), p. 209.

33D. F. Gibbs and G. J. Hill, Phil. Mag. 9, 367 (1964);
M. Cardona. , W. Paul, and H. Brooks, J. Phys. Chem.
Solids 8, 204 (1959).

4A. M. Jean-Louis and J. A. VanVechten{unpublished).
K. Vedam and T. A. Davis, Phys. Rev. 181, 1196

(1969).
Cf. J. C. Phillips in Solid State Physics, edited by

F. Seitz and D. Turnbull (Academic, New York, 1966),
Vol. 18, p. 55.

~Cf. M. Cardona, K. L. Shaklee„and F. H. Pollak,
Phys. Bev. 154, 696 (1967).

M. L. Cohen and V. Heine, in Solid State Physics,
edited by H. Ehrenreich, F. Seitz, and D. Turnbull
(Academic, New York, 1970), Vol. 24, p. 245.

~J. C. Phillips and J. A. Van Vechten, Phys. Rev.
B 2, 2147 (1970).

J. S. Klein, F. H. Pollak, and M. Cardona, Helv.
Phys. Acta ~41 968 (1968).

4~K. Schmidt and K. Vedam, Solid State Commun. 9, 1187
(1ev1).

F, Herman, J. Electron ~1 103 (1955).
J. C. Slater, in Methods in Computationa/ Physics,

Enemy Bands of Solids, edited by B, Alder, S. Fernbach,
and M. Botenberg (Academic, New York, 1968), Vol. 8,

p. 1 and following articles.
4F. Herman, R. L. Kortuxn, C. D. Kuglin, J. P.

Van Dyke, and S. SkiQman, in Ref. 43, p. 193.
4~J. J. Hopfield, Phys. Rev. B 2, 973 (1970).
6S. H. Wemple and M. DiDomenico, Jr. , Phys. Rev.

B 3, 1338 (1ev1).
~4A. Baldereschi and J. J. Hopfield, Phys. Rev. Let-

ters 28, 1972.
4 A. Baldereschi, J. Luminescence (to be published).
49D. Stroud, Phys. Rev. B 5, 3366 (1972).
50S. Larach, R. E. Schrader, and C. F. Stocker, Phys.

Rev. 108, 58V (1959).
~VS. M. Coderre and J. C. Woolley, Can. J. Phys. 48,

463 (1970).
52A. G. Thompson, M. Cardona, K. L. Shaklee, and

J. C. Woolley, Phys. Bev. 146, 601 (1966).
53S. S. Vishnubhatla, B. Eyglunent, and J. C. Wooley,

Can. J, Ihys. 4V, 1661 u.969).
4M. Cardona, Phys. Rev. 129, 69 (1963).

55A. G. Thompson and J. C. Woolley, Can. J. Phys.



J. A. VAN VECHTEN

45, 255 (1967).
6P. Y. Yu and M. Cardona, Phys. Rev. B2, 3193

0.970).
J. A. Van Vechten, R. M. Martin, and B. H. Henvis

(unpublished).
Cf. J. M. Ziman, PH'nciples of the Theory of Solzds

(Cambridge U. P. , London, 1964), p. 62.
~~F. I. Fedorov and T. G. Bystrova, Kristallografiya,

11, 368 (1966) [Sov. Phys. -Crystallog. 11, 333 (1966)].
"F. A. Lindemann, Z. Physik 11, 609 (19.0); J. M.

Ziman, in loc. cit. Ref. 58, p. 63.
M. Cardona, J. Appl. Phys. ~32 2151 (1961); D. E.

Aspnes, Phys. Rev. Letters 28, 913 (1972).
62D. deNobel, Philips Res. Rept. 14, 361 {1959), espe-

cially p. 394.
D. Brust andL. I iu, Solid State Commun. 4, 193 (1966).
R. R. L. Zucca and Y. R. Shen, Phys. Rev. B 1,

2668 (1970).
J. P. Walter, R. R. L. Zucca, M. L. Cohen, and Y.

R. Shen, Phys. Rev. Letters 24, 102 {1970);J. L. Shay,
Phys. Rev. B 4, 1385 (1971).

"D. I. Camphausen, G. A. N. Connell, and W. Paul,
Phys. Rev, Letters 26, 184 (1971).

7J, C. Phillips and J. A. Van Vechten (unpublished).
H. G. Drickaxnar, Rev. Sci. Instru. 41, 1667 (1970);

(private communication).
@J. C. Jamieson, Science 139, 762 (&963).
~oR. M. Martin, Phys. Rev. B 1, 4005 (1970).

D. Weaire, Phys. Status Solidi 42, 767 (1970).
~2J. P. Walter and M. L. Cohen, Phys. Rev. B 4, 1877

(1971).
F. Seitz, The Modems Theory of Solids (McQraw-

Hill, New York, 1940), p. 349.
~4E. Mooser and W. B, Pearson, Acta. Cryst. 12,

1015 (1959).
W. M. Coderre and J. C. WooH. ey, in The Physics

of Semimetals and Naxxozo-Gap Semiconductors, edited
by D. L. Carter and R. T. Bate (Pergamon, Oxford,
1971), p. 535; J. Phys. Chexn. Solids S32, 535 (1971).

~~G. W. Pratt and A, Das, in Ref. 75, p. 279.
~VG. W. McClure, in Ref. 75, p. 127.
78D. P. Wagman, W. H. Evans, V. B. Parker, I. Halow,

S. M. Bailey, and R. H. Shumm, NBS Technical ¹te
No. 270-3 (V.S. GPO, Washington, D. C. , 1968), p. 106.

~SF. P. Bundy, P. Kon. Nederlandse Akad. B72,
302 (1969).

J. C. Jamieson, Science 139, 845 (1963).
8~A. Jayaraman, W. Klement, and G. C. Kennedy,

Phys. Rev. 130, 540 (1963).
82A. Jayaraxnan, W. Element, and G. C. Kennedy,

Phys. Rev. 130, 2277 (1963).
83V. M. Glazov, S. N. Chizhevskaya, and N. N.

Glagoleva, I ibid Semiconducto~ s (Plenum, New York,
1969).

R. Hultgren, R. L. Orr„P. D. Anderson, and K. K.
Kelley, Selected Values of Thermodynamic Properties of
Metals and Alloys (Wiley, New York, 1963).

I. Goroff and L. Kleinman, Phys. Rev. B I, 2574
(1970).

~V. Heine and D. Weaire, in Solid State Physics, edited
by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic,
New York, 1970), Vol. 24, p. 250.

R. W. G. Wyckoff, Crystal St~ctuwes, 2nd ed.
(Interscience, New York, 1965), Vol. 1,p. 28.

8J. C. Jamieson, Science 139, 845 {1963).
E. F. Skelton {unpublished).

~ When transformation to the rocksalt structure occurs,
an increase in conductivity of as much as a factor of 10~

may be observed. I'See S. Minomara, G. A. Samara,
and H. G. Drickamamer, J. Appl. Phys. 33, 3196
(1962), ] However, the conclusion that the rocksalt phase
is metallic is unjustified. The conductivity of the rock-
salt does not exceed 100(0 cm), which is about 10"
times a metallic value. This level of conductivity may
be explained by the fact that, as shown in II, the band gap
of many of these compounds is rather small in this phase
and that many defects are introduced by the phase trans-
forxnation. I:On the latter point see C. J. M. Rooymans,
Phys. Letters 4, 186 (1963); J. C. Phillips, Phys. Rev.
Letters 27, 1197 (1971).]

G. B. StringfeQow and P. E. Greene, J. Phys. Chem.
Solids 30, 1779 (1969).

F. P. Bundy, J. Chem. Phys. 41, 3809 (1964).
J. R. Arthur, J. Phys. Chem. Solids 28, 2257 (1967),

especially p. 2266.
84B. K. Chakraverty, J. Phys. Chem. Solids 30, 454

(1969).
G. G. Hall, Phil. Mag. 43, 338 (1952); D. Weaire,

Phys. Rev. Letters 26, 1541 (1971); D. Weaire and M.
F. Thorpe, Phys. Rev. B 4, 2508 (1971).

96C, D. Thurmond (private communication); estimated
from AS and ~ of P-Sn plus AS~& and ddE„& reported
in Ref. 84.

~~F. P. Bundy, Central Glass and Ceramic Res. Inst.
9, 138 (1962).

98V. M. Glazov, S. ¹ Chizhevskaya, and 8. B. Evgen'ev,
Russian J. of Phys, Chem. 43, 201 (1969),

M. Neuberger, III-V Semiconductirg Compounds
(Plenum, New York, 1971); for III-N compounds see J.
B. MacChesney, P. M. Brindenbaugh, andP. B. O' Connor,
Materials Res. Bull. ~5 783 (1970).

A. L. Edwards and H. G. Drickaxner, Phys. Rev.
122, 1149 (1961).

~~For AlP, AlAs, and GaN recent experimental values
for e~(0) sited in Ref. 6 were used to determine C rather
than the estimates made in I. Moreover, the band struc-
tures of aQ coxnpounds were calculated as described in
Sec. II. Thus a modification to the theory for skew com-
pounds containing first-row elements, e. g. , GaN, sug-
gested in II, p. 1020, was not made. [Dzv rather than
D is always used in Eq. (2. 13).] It has turned out that
modification makes the discrepancy between theory and
experiment worse rather than better. See Ref. 18 and
G. B. Stringfellow, J. Electrochem. Soc. 119, 1780 {lg72),

O. Kubaschewski, E. L. Evans, and C. B. Alcock,
Metallurgical Thermochemistry, 4th ed. {Pergamon,
London, 1967), p. 58.

E. Tiede and A. Schleede, Ber. Deut. Chem. Ges.
538, 1717 (1920).

~+A. 'Addamiano, J. Phys. Chem. 61, 1253 (1957).
~05D, C. Reynolds (private comxnunication),

W. Kischio, Z. Anorg. Allgem. Chem. 328, 187
0.964).

T. C. Harman, Physics and Chemistry of II-VI
Compounds, edited by M. Aven and J. S. Prener (North-
Holland, Amsterdam, 1967).

M. Hansen, Constitutzon of J3inaxy Alloys, 2nd ed.
(McGraw-Hill, New York, 1958).

S. H, Groves, C. R. Pidgeon, A. W. Ewald, and R.
J. Wagner, J. Phys. Chem. Solids 31, 2031 (lg70).

E. F. Skelton, P. L. Radoff, P. Bolsaitis, and A.
Verbalis, Phys. Rev. B 5, 3008 (1972).



QUANTUM DIELECTRIC THEORY OF ELECTRONEGATIVITY. . . 1507

«««W. M. Yim, J. P. Dismukes, E. J. Stufko, and R.
J. Paff, J. Phys. Chem. Solids 33, 501 (1972); A. Kuhn,
A. Chery, and M. J. Naud, J. Cryst. Growth 9, 263
(1ev1).

J, Carj.des and A, G, Fischer, Solid State Commun.
2 21v (1964).

A. D. Butherus {private communication).
P. Algrain and M. Balkanski, Selected Constants

Relative to Semiconductors (Pergamon, London, 1961).
««F. A. Shunk, Constitution of Binary Alloys, 2nd Suppl.

(McGraw-Hill, New York, 1969).
O. Kubaschewski et al. , in Ref. 102, Table A.

~M. J. Rice and W. L. Roth, J. Solid State Chem.
4 294 (1ev2),

A. Jayaraman and L. H. Cohen, in Phase Diagrams,
edited by A. M. Alper (Academic, New York, 1970), Vol.
1, p. 245.

D. B. McWhan (private communication).
A. J. Darnell and W. F. Libby, Science 139, 1301

(1963); S. Geller, D. B. McWhan, and G. W. Hall,
Science 140, 62 (1963); D. B. McWhan, G. W. Hall, T.
R. R. McDonald, and E. Gregory, Science 147, 1441
(1e65).

««R. H. Wentore, Jr. and J. S. Kasper, Science 139,
338 {1963).

F. D. Bundy and J. S. Kasper, Science 139, 340
(1963).

+J. S. Kasper and S. M. Richards, Acta. Cryst. ~17

v52 (1964).
4For theoretical analysis of the Si III and Ge III struc-

tures see R. J. Kobliska, S. A. Solin, M. Selders, R.
Chang, R. Alben, M. F. Thorpe, and D. Weaire, Phys.
Rev. Letters 29, 725 (1972) (vibrational modes and elastic
constants) and R. Alben, S. Goldstein, M. F. Thorpe,
and D. Weaire, Phys. Status Solidi 53, 545 (1972) (band
structure) .

M. J. P. Musgrave, Proc. Phys. Soc. (London) 84,
585 (1e64).

«6P. N. Adler, J. Phys. Chem. Solids 30, 1077 (1969).
VE. A. Guggenheim, Mixtures (Oxford U. P. , London,

1952).
J. H. Hildbrand and R. L. Scott, The Solubility of

Nonelectxolytes, 3rd. ed. (Reinhold, New York, 1950).
'2~F. A, Trumbore, Bell Sys. Tech. J. 39, 205 (1960).

E. Schibli and A. G. Milnes, Mat. Science and Engin.
2 1V3 (196V).

«3«Y. Darviot, A. Sorrentino, B. Joly, and B. Pajot,
Infrared Physics ~7 1 (1967).

C. D. Thurmond, J. Phys. Chem. 57, 827 (1953).
K. Weiser, J. Phys. Chem. Solids 7, 118 (1958).

«34C. Kittel, Introduction to Solid State Physics, 3rd ed.
(Wiley, New York, 1967), p. 244.

J. A. Van Vechten, in Proceedings of the Tenth Inter-
national Conference on the Physics of Semiconductors,
edited by S. P. Keller, J. C. Hensel, and F. Stern (U. S.
AEC, Oak Ridge, 1970), p. 602.

G. B. Stringfellow, J. Phys. Chem. Solids 33, 665
(19v2).

~G. B. Stringfellow, J. Electrochem. Soc. 119, 1780
(1ev2).

«~ R. O. Schwenker, E. S. Pan, and R. F. Lever, J.
Appl. Phys. 42, aXeS (19V1).

R. J. Jaccodine, J. Appl. Phys. 39, 3105 (1965).
H, J. Quissler, J. Appl. Phys. ~32 1776 (1961).

4 N. V. Sidgwick, The Chemical Elements and Thei~
Compounds (Oxford U. P. , London, 1950), Vol. 1, pp.
148, 174, and 177.

«4 C. D, Thurmond (private communication).
T. L. Allen, J. Chem. Phys. 27, 810 (1957).

«44R. M. Martin, Phys. Rev. B ~1 4005 (1970).
4~L. Pauling and M. L. Huggins, Z. Krist. 87, 205

(1934).
Reference 78 and D. D. Wagman, W. H. Evans, I.

Halow, and R. M. Dudley, in American Institute of Phys-
ics Handbook, 2nd ed. (McGraw-Hill, New York, 1963),
pp. 4-170.

A. J. Strauss (private communication).
J. W. Wagner and R. K. Willardson, T. Met. Soc.

AIME 242, 366 (1968).


