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'N. Friedman, Bull. Am. Phys. Soc. 16, 123 (1971).A similar
problem, in which only the EDP interaction was considered, has

long been of interest in the case of metals. This study was initiated

by S. Koshino, Prog. Theor, Phys. 24, 484 (1960); a recent paper
by S. Takeno [Prog. Theor. Phys. 42, 1003 (1969)] gives references
to previous work. A difficulty in these papers is that the rigid-ion
EDP interaction employed can be shown to give negligible results
when treated exactly; see P. L. Taylor, Proc. Phys. Soc. Lond.
80, 755 (1962). A work which considers EP-ED effects (but
ignores the EDP interaction) is D. L. Mills, Phys. Rev. Lett.
26, 242 {1971),but this employs a defective scheme of calculation,
as shown in the Appendix here. D. A. Smith, J. Phys. C 4, L145
(1971) also pointed out defects in Mills's calculation.

'The effective absence of electron statistics permits us to use a
simpler formalism than is usual. We follow the formulation of 6.
Rickayzen, in Lecture Notes on the Many Body Problem (Bergen
International School of Physics, New York, 1962), p. 85.

'See Rickayzen {Ref. 2).
"This is why the superconducting state cannot be generated from

a gas of free electrons by perturbation theory, and the result
usually appears in that form. However, note C. Kittel, Quantum

Theory of Solids (Wiley, New York, 1963),p. 7, Eq. (45), in which it
appears that the perturbation treatment fails entirely in case the
exact ground state is orthogonal to the unperturbed ground state.
Should the two differ in symmetry, they would be orthogonal.

'H. Y. Fan, Phys. Rev. S2, 900 (1951).
'G. D. Whitfield, Phys. Rev. 121, 720 (1961).
'This argument is based on a private communication by R.

Brout.
'We follow the derivation of second-order theory by P. A, M.

Dirac [Principles of Quantum Mechanics, 4th ed. (Oxford U. P.,

Oxford, England, 1958), p. 178].
'Such a solution is proposed by Mills; see Ref 1.
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An analytic expression for the ground-state energy of a Wannier exciton, interacting with
the longitudinal-optical-phonon field of the crystal lattice, is derived. The coupling between
the constituents of the exciton, i.e. , the electron and the hole, and the optical-phonon field is
assumed to be weak, and hence second-order perturbation theory as formulated by Dalgarno
and Lewis is used. The theoretically calculated value of the ground-state energy is then com-
pared with its experimentally determined values in various polar crystals and a good agree-
ment is found.

INTRODUCTION

In recent years there has been a great deal of
interest in both the theoretical and experimental
investigations of the energy spectrum of a Wannier
exciton in polar crystals. ' ' Haken, ' for in-
stance, has calculated an effective potential be-
tween a hole and an electron in a polar crystal us-
ing the variational wave functions of Lee, Low, and
Pines. " Because of the nature of the approxima-
tions made in his calculations, the potential he
derives is valid only when the Bohr radius of the
exciton is much larger than the extensions of the
electron and the hole polarons. Recently Mahanti
and Varma' have suggested an interpolation scheme
to calculate the ground-state energy (E~) of a Wan-
nier exciton. in a polar crystal using a method based
on the many-body approach of Sham and Rice. '
Their method, however, involves rather compli-
cated numerical computations. The binding energy
of excitons has recently been measured in a number
of polar crystals. ' Bachrach and Brown, ' for
instance, have determined this quantity experi-
mentally in the case of thallium bromide and thal-
lium chloride. They found that the use of the sim-
ple hydrogenic formula gave values for the binding

energy which did not agree with the experimental
values at all. Assuming a hydrogenic trial wave
function, they also calculated the binding energies
variationally using Haken's' potential and found
that these values differed from the experimental
values by orders of magnitude in the case of thal-
lium halides.

In this paper we derive an analytic expression
for the ground-state energy of a Wannier exciton
in a polar crystal. We assume that the coupling
between the constituents of the exciton, i. e. , the
electron, the hole, and the longitudinal-optical-
phonon field, is weak and hence use second-order
perturbation theory as formulated by I:algarno and
Lewis. ' We then compare the value of the ground-
state energy thus calculated with its experimental-
ly determined values in various polar crystals.
As shown in Table II, there is a good agreement
between the theoretical and the experimental val-
ues.

THEORY

Our system consists of a conduction electron
and a hole, coupled together by an attractive
screened-Coulomb potential, and both interacting
with the longitudinal-optical-phonon field of the
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crystal lattice. The Hamiltonian of this system
is given by

H= + - — ~ ~ +D ISO "0'~q
2m& 2mp & I r& —rp I

Z —'(a e"' — '-e "'"')
Vg/P a/8 a~» 8

tr = a&(4([(2()[/' ()[/2m(ro)) /', (2)

where (2( (for i = 1, 2) is the dimensionless coupling
constant first introduced by Frohlich' and is de-
fined as

e fl 1& fm &(/

(&J (2%L&)

The quantity U is independent of the mass and is
therefore the same for the electron and the hole.
Here &~ and &„ are the static and the high-frequency
dielectric constants, respectively, and V is the
volume of the crystal.

Making the following transformation to the cen™
ter-of-mass (R) snd the relative (r) coordinates

r, =R+(m, /M)r, (4a)

r, = R —(m, /M)r, (4b)

where M=mq+mp, we obtain
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where p&, m&, and r, are the momentum, band
mass, and position coordinate of the electron, and

pp, m3, and r~ refer to similar parameters for
the hole. The creation and annihilation operators
for an optical phonon of wave vector j are desig-
nated by a and a. , respectively. The optical-

p

phonon frequency ~ is assumed to be independent
of q. The parameter U is defined as

formation. Define
eisHe- is

where

e=(1/a)I K- Z a.qa, a, R
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e

Here K is a constant of the motion, i.e. ,

[H, K]=0 .
The transformed Hamiltonian can then be written

X= Hg+H)+Hp+H3+H4,

where

(10)

H(& =
2p,

Hg =~ IMAgaq (12)
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Ne are essentially interested in calculating the
binding energy (which we also call ground-state
energy with an opposite sign), which is given as the
difference in energy between the states of the ex-
citon corresponding to n= ~ and n= l. %e there-
fore expect that 04 mill not make a significant con-
tribution to this quantity and hence drop it from
E(l. (10).

%'e nom assume that both n, and 0.3 are small
and therefore calculate the ground-state energy
of our system described by E(l. (10) using sec-
ond-order perturbation theory. Treating (H(&+ H&)

as an unperturbed Hamiltonian and (82+ H2) as a
perturbation, we obtain for the shift in energy b,E
of the ground state at temperature T = 0 'K

aE=SE,+aE, +aE, +~E, ,
where

H2 (
~

~

i (m2/&()2 r
~ ) ( ~
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~
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)
/&.E,=—

V 2 q /E —E -t&ar)

In the above expression P is the center-of-mass
momentum, p is the relative momentum, and p is
the reduced mass, i.e. ,

1/ [[= 1/m, + 1/m2 .
To eliminate the center-of -mass-dependent terms
from E(l. (5), we use the following canonical trans-

2 ( ~

-i(m)/e)% 5~ ) ( ~

~i(m)/u&q ~
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In these expressions Ii) and E, designate the eigen-
function and the eigenvalue of the ground state and

In) and E„stand for the eigenfunction and the ei-
genvalue of the intermediate states. The summa-
tion here is over all the states of both positive and

negative energies. The summation over n, how-
ever, is very difficult to perform and therefore
an exact analytic evaluation of hE&, etc. , in the
forms given above is almost impossible. It is,
however, possible to eliminate the summation over
the intermediate states by modifying the above ex-
pressions using the following method. This meth-
od was first suggested by Dalgarno and Lewis'7 to
deal with problems involving second-order pertur-
bation corrections to the hydrogenic systems. To
evaluate bE&, for instance, we define an operator
E such that

2 8F1 2 ((z(2/ 2 Zz - 1 &mz/1/)'4 ~ «(22)VEj t

where
a= &„h2/p, e2 .

To obtain a solution of this inhomogeneous partial
differential equation in an analytic form does not
seem possible. However, if we insert complete
sets of plane-wave states in the expression for
b,E„we obtain

U' 2

~E, = Z —', Z (&zik&&kate'("2™~~ik,&

x &kzlFzlk2& &kzl z)) . (24)

Thus to evaluate bE& we need the matrix elements
of E, between plane-wave states, and these are ob-
tained from Eq. (21). Taking into account the as-
sumption concerning the space dependence of the
operator F„we obtain for these matrix elements

([F„H,]-h.F,)iz&=e-'(-2/»2 «i;&.

Equation (1i) then becomes

(21) 2iz (kzl e '' "' '
lk2)

h iz2 —hz —2 Zz(8)/0
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q (E; —E„—bar)

(22)

Thus the summation over n is eliminated and we
are left with an integral over the space coordinates
and a summation over the phonon wave vectors.
We can now evaluate bE, provided we can obtain
an explicit form of the operator E,. Assuming
with Dalgarno and Lewis that the operator F, is
a function of space coordinates only and substitut-
ing explicitly for the ground-state wave function,
l. e. , I i ) = (1/zra ) e "/' in Ezt. (21), we obtain

Substituting this expression in E(1. (24), trans-
forming the summations to integrations by the
usual methods, and using the orthogonality prop-
erty of the plane-wave states, we obtain

2m1U pp (zlk)(kli)
h'V; «q'[(m, /M)q' —2q k+2m, (d/@]

(26)
To evaluate AE~, b,E3, and b,E4, we define opera-
tors E2, F3, and E4, respectively, each one of
them satisfying an equation completely analogous
to E(1. (21). Assuming again that each of these
operators is a function of space coordinates only,
and carrying out similar calculations as in the
case of b.Ej, we obtain

2m, U' pg (ilk) (kli)
h V 2 2 q [(m1/M)q +2q k+2mz(u/h]

2m1U (ilk) (k+jii&
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2mzU pg (ilk) (k —ql i)
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The evaluation of these various contributions to bE is described briefly in the Appendix. We obtain
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where P~ is a Legendre function of order two and
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where
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The expressions for ~E, and ~E, , which are ob-
tained from Eqs. (30) and (31), respectively, by in-
terchanging the roles of m& and m&, are displayed
explicitly in the Appendix. The ground-state en-
ergy of the exciton is now obtained by subtracting
from the total energy of our system the minimum
energies of the electron and the hole when these
are free. The latter are just the self-energies of
the electron polaron and the hole polaron. Thus
the ground-state energy (E2) of the exciton is given
as

E2 = —(e ]1/2e„h )+ bE+ o'1k((/+ o(2hw .
DISCUSSION

(32)

We now use Eq. (32) to calculate the value of the
ground-state energy of an exciton in various polar
crystals and then compare it with its experimental
values. Such a comparison along with the values
of &Ej, &E~, ~E3, &E4, and ~E is presented in
Table II. The values of the various physical pa-
rameters used are given in Table I. In these ma-
terials the values of the electron band mass (m1)
and the coupling constant (o.,) are derived from the
experimentally determined electron polaron
masses. These masses are measured by cyclo-
tron-resonance experiments and are therefore quite
reliable. Similar measurements to determine the
hole polaron masses have not been made, and
therefore the values of m& and n, are known only
approximately in these materials. As a matter of
fact, in many polar crystals the hole polaron
masses are derived from the experimentally de-
termined values of the binding energy of an exciton
using a hydrogenic formula with a reduced polaron
mass and a static dielectric constant. This is
probably a good procedure for weakly ionic crys-
tals such as III-V compounds. However, as dem-
onstrated by Bachrach and Brown, this is not re-
1iable for more polar materials. It is, therefore,
difficult to estimate the accuracy of the hole masses
derived in this manner. In view of this fact, we
have used a somewhat different procedure to com-
pare our theoretical results with experimental
data. We assume that the experimental value of
the ground-state energy of an exciton is given by

TABLE I. Values of static dielectric constant (co),
optical dielectric constant (c„), electron-phonon coupling
constant (~ &), longitudinal-optical-phonon energy (S~),
and experimental exciton binding energy (E~"@).

Material

T1C1
TlBr
CdS
CdTe
AgBr

37.6
35.1
8. 9

10.9
10.6

E'~ Q(

5.1 2.40
5.4 2.10'
5.2 0.60"
7.2 0.35
4.6 1.60

h~
(meV)

21.5
14.3
37.8
21.3
17.4

gexyt
B

(mev)

11+2a

6+1~
29.4
10.0b

16.4 + 0.5

~Reference 10.
"B. Segall and D. T. F. Marple, in Physics and

Chemistry of II-VI Compounds, edited by M. Aven and
J. Prenner (North-Holland, Amsterdam, 1967), Chaps.
1 and 7 ~

'J. W. Bodby, Solid State Commun. 7, 811 (1969).
"Reference 8.

Eq. (32) and then derive the value of the hole cou-
pling constant, referred to as n2"'"" in Table II.
We compare these values of n& with those that are
estimated from experimental measurements in
these polar crystals and find that these are in good
agreement.

Equation (32) is based on the use of second-order
perturbation theory and is, therefore, assumed to
be valid for small values (~ 1) of o., and n2. How-
ever, in the case of TlCl and TlBr, where the cou-
pling constants are somewhat large, we also find
a r easonably good agreement between our theory
and experimental data. This may not be entirely
unexpected. It is well known that second-order
perturbation theory as applied to the free-polaron
problem gives results which are valid for a much
larger range of values of the coupling constant than
one generally expects. ' For instance, one knows
that the free-polaron mass as given by second-
order perturbation theory agrees very well with
that derived from the path-integral method of Feyn-
man" for values of the coupling constants up to
about 3 or so. Feynman's method is quite general
and is valid for all values of the coupling constant.
This suggests that even though we have a more
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TABLE II. Values of hole-phonon coupling constant (&2 )calculated such that the theoretically calculated value of
the ground-state energy (E&) is equal to the experimental value (E&~ ), experimentally suggested values of hole-phonon
coupling constant (o. & ), and values of ~&, ~~, ~3, ~4, ~, and —e p/2e„S . All the energies are measured in
units of meV.

Material

TlCl
TlBr
CdS
CdTe
AgBr

& thea'et
Q2

4. 90
4. 17
0.98
0.55
2.15

4.2
3.2a

1.2'
0.7 + 0.2"
2.5+ 0.3

—49.54
—31.03
—29. 63
—10.10
-31.63

—206. 50
—122.36
-78.25
—20.62
-57.12

69.90
43.26
34.87
9.05

40.59

152.90
84. 85
41.22
S.99

56.09

-33.24
-25.28
-31.78
-12.69

7.94

e p,

2c

—133.69
-70.26
-57.11
—15.23
—89.47

~g.eference 10.
"B. Segall and D. T. F. Marple, in Physics and Chemistry of II-VI Compounds, edited by M. Aven and J. Prenner

(North-Holland, Amsterdam, 1967), Chaps. 1 and 7.
'Reference 8.

complicated situation than that of a free polaron,
our perturbation results as given by Eq. (32) may
be valid for larger values of the coupling constants
than are customarily regarded appropriate for per-
turbation theory.

In deriving Eq. (32) we have made use of two ap-
proximations. First, we have neglected the con-
tribution of H4 to E~ and second, we have replaced
[F, Ho] by [F,p /2p, ]. We know that in the limit of
n& and n, going to zero, E~ is determined only by
the relative coordinates. It is, therefore, reason-
able to expect that neglecting H4 will not make sig-
nificant difference in E~ for small values of the
coupling constants. Also, as we have stated earli-
er, E~ is the energy difference between the states
of the exciton corresponding to n = 1 and n = ~, and
it is quite possible that H4 will not contribute sig-
nificantly to this quantity even when n, and n& are
not too small. The second approximation that we
have made is essentially the same as has been
used in the calculation of the ground-state energy
of the hydrogen atom in the presence of a uniform
electric field using second-order perturbation the-
ory in spherical coordinates. One obtains a re-
sult which is identical to that obtained by the exact
summation of the second-order perturbation term
expressed in parabolic coordinates. " Thus in this
particular case, replacing [F, Ho] by [F,p /2p] is
not an approximation. Recently, the energy spec-
trum of a polaron bound to a point defect via the
Coulomb potential has been calculated using sec-
ond-order perturbation theory, as formulated by
Dalgarno and Lewis, making the foregoing ap-
proximation. The theoretical results thus ob-
tained agreed very well with the available experi-
mental data. The exact second-order perturbation
correction to the ground-state energy of a bound
polaron has recently been evaluated numerically
by Engineer and Tzoar. They find that the re-
sults of Ref. 22 are in very good agreement with
their exact results as long as the binding energy

of the polaron is comparable to or less than the
longitudinal-optical -phonon ener gy. This suggests
that the results of the present calculation should
be quite good when the exciton binding energy is
comparable to or less than @&. In many materials
of interest the binding energy of a Wannier exciton
is less than h&. Clearly, it is not possible to esti-
mate the extent of inaccuracy introduced by these
two approximations. The fact that there is a good
agreement between our theoretical results and the
experimental data suggests that the two approxima-
tions are rather reasonable. Efforts to get rid of
the first approximation are currently in progress.

As we mentioned earlier, Bachrach and Brown'
have calculated variationally the values of the bind-
ing energy of an exciton in TlCl and TlBr using the
following potential due to Haken:

(/ /) (
/, //K ~-//)

(33)
Using a hydrogenic trial wave function with a single
variational parameter and experimentally deter-
mined values of m, and m&, they calculate 94 and
48 meV as values of E~ in TlCl and TlBr, respec-
tively. These are different from the experimental
values by orders of magnitude. Haken's potential,
which has been derived using the variational wave
functions of Lee, Low, and Pines" for small val-
ues of electron and hole wave vectors, is supposed
to be quite good for shallow excitons, i. e., for ex-
citons with a large electron-hole separation. In
both TlC1 and TlBr the excitons are indeed shallow.
It is therefore not clear to us why there is such an
enormous difference between the theoretical and
the experimental values in these materials. The
effective interaction between the electron and the
hole in a polar crystal as derived by Mahanti and
Varma' for the case when E~/k~ « I seems to have
an error, as pointed out recently by Sak. They
obtain a term of the form I/y, instead of a term
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containing a contact interaction, in their effective
interaction Hamiltonian. This, according to Sak,
is due to an error in their evaluation of the contri-
butions of two Feynman diagrams.

Finally, we would like to point out that the bind-
ing energy Fs as given by Eq. (S2) is rather sensi-
tive to small changes in m& and m2. Why this is
so is not quite clear to us at this moment.

CONCLUSIONS

We have derived an analytic expression for the
ground-state energy of a Wannier exciton interact-
ing with the longitudinal-optical-phonon field of the
crystal lattice, We have assumed that the coupling
between the components of the exciton, i. e., the
hole and the electron, and the optical-phonon field
is weak and have, therefore, used second-order
perturbation theory as formulated by Dalgarno and
I ewis. We have briefly discussed the nature of the
two approximations made during the course of our
calculations. And finally, we have compared our
theoretical results with the experimental data in
various ionic crystals and found a good agreement.
This suggests that the two approximations we have
made are rather reasonable.
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APPENDIX' EVALUATION OF M ] ~~ ~3 AND ~4
Case 1: Evaluation of dE& and M2

To calculate 4E„ for instance, we define a new

vector q, = (m, /M)q and express Eq. (26) in terms
of this vector, i. e. ,

2p, U'M ~ ~ (i Ik)(k ~i)
P'8'm, ; -„q,(q', —2q, k+2', (o/@)

(Al)
Proceeding in a similar fashion, Eq. (2'7) may also
be written as

2p. U M p p (i lk)(k(i)
Vh'm, ;, -„q,'(q,'-2q, k+2&, (u/5) '

16', A+a M

SmP m

x (1+%') i~~ 1+,
)

dK. (A5)
0

Here we have substituted for U from Eq. (2). The
above expression for ~E& is easily evaluated and

yields Eq. (SO).
From Eqs. (26) and (27) we notice that AE2 can

be obtained from ~E& by interchanging the roles
of m& and m2. Thus

a M 1+a/2P
2 F 2 ~ 2 (1 az/p2)112

(A6)

Case 2: Evaluation of ~3 and ~4
To calculate AE~, we substitute for (k ~i) and

(R+q li) from Eq. (A4) in Eq. (28) and obtain

where

V - - (b+0) [b (k )]
1

5, q +2k q —P,

yq ——128 U m~m/8 a, P~ = 2m, u.'/h

5) —— (2m)+ mg)/M .

where

P = 8/2p~ .

Substituting the following expression for the Fouri-
er transform of the ground-state wave function of
the hydrogenic system, i. e. ,

(i lk)= 8 (na /y)' (1+a 0 ) (A4)

into Eq. (AS), converting the summation over k
to an integral, replacing Pk by K, and integrating
the second term in Eq. (AS) by parts, we obtain

where

q, = (m, /M)q.

(A2)

In Eq, (A1) we convert the summation over q, to an
integral and take the principal value around the
singularity. We get

2@U2M Iklal /I
I &

'
I» I' -„'(&p)

2'tt ff m p

00 2

+ ~ I&ilk&l' 2'„(As)
I k I =1 /8 FIG. 1. Definition of the angles & and g.
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Transforming the summations over q and R into
integrations in the usual manner and going over to
the spherical coordinates for the k variable, we
may write AE3 as follows:

y, dq
" k'dk

(2g)6 J ~

J (b~ + k2)2

X g 2 g sin8d8dg, (A8)
bg q + 2qk cos8—

where the angles 8 and g are defined in Fig. 1. The
integration over the angle variables is tedious but
presents no special problems. Vfe obtain, after
carrying out this integration,

p 21T 1

(b + k + 2qk cos8+q )0 Jo ~3= DIVAN'~ + DM2+ AM3, (A9)

(2m) (b + k ) q[(b& —1)q —ka —(P2+b )] q +k2 —2qk+b2

y,
" kdk 1

(27[)' J (k'+ b')' q[(b' —1)q' —k' —(P'+ b')]'
0 ~ 00

kdk 1 ]/ p
3

(2 )4 (k2 b2)2J q [(b2 1) 2 k2 (p2 b2)]]] n( 1q pl+ 2q ) q

(A10)

(A11)

(A12)

where we have interchanged the order of integra-
tion over q and k variables. The contributions of

, , and ~, to &E, are evaluated analyt-
ically using the theory of complex variables. Such
an evaluation, which is rather cumbersome, leads
to Eq. (31).

If we compare the expressions of ~E3 and DE4

as given by Eq. (23) and Eq. (24), respectively,
we find that AE4 can be obtained from AE3 by
interchanging the roles of mq and m2. Thus the
final expression for 4E4 is the same as that for
AE3 except for the fact that rn& and m2 are inter-
changed. For the sake of completeness we write
down explicitly for AE4

E= 1 b-E2 E, +X,"2
/ g(2//)// (/// 2) 8/s(//// 2//» b2) 2///(g/// ymb» /2]R+» //(» / » 1/2

/ / ) [(» / » //2)2 /2]2)

-b+ y' '" (y' "'+E +X "') (b —E +X "') '"
(2]]) 82 b b pp 2b pal'2 (2]]) pp 2b (b+E~ +Xp ) (1'p' —Eg+Xp )

1 1 ~'E, 1 1
+g84 2/, +» //

(/ /» ///] 28/ » ///[(» // «» //)// »/j+/[(b~» ///)/ »//])

~'(b -E,)
2(2 —b2)pg X2 —(b —E2) X~ —(y'2'~ —Ea) 2(2 —62)b[32[x~ —(b —Ep) ]

where

v'(E, +X,"')
2(p ///)» ///[// (» /» //2)/]/[» (» /» ///)//]I ] )

3 2~~ ]/ 2 2+~~ 82+b b E b(b2 . 1). 0 x y ba 2+2 5 82 ~2 ~2 2 0 2 2 ~ 2 2 ~2 2 ~ + ~2 ~2-6. ' 2-6.
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Quantum Dielectric Theory of Electronegativity in Covalent Systems. III. Pressure-
Temperature Phase Diagrams, Heats of Mixing, and Distribution Coefficients
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Electronegativity difference was redefined in Paper I of this series as a scaling parameter
which combines the concepts of valence and size differences. A procedure has been developed
for its evaluation in terms of a two-band model. In Paper II of this series it was shown that
this model describes and predicts the ionization potentials and electronic interband gape of
binary A B ""compounds and their alloys. Here the energy of this model semiconducting-in-
sulating solid is evaluated relative to a free-electron gas, i.e. , an idealized metal, as a func-
tion of composition, pressure, and temperature. Using this highly simplified scaling approach,
we obtain suprisingly accurate predictions for the heat of fusion, melting point, and pres-
sure-temperature phase diagrams of these materials. A revised method of calculating the ex-
cess heat of mixing of a substitutional alloy is presented. This calculation is extended to the
case of an arbitrary dilute impurity in an arbitrary semiconducting host; the distribution coef-
ficient at the melting point of the host is obtained.

I. INTRODUCTION

In the first two papers of this series, ' here-
after referred to as I and II, the concept of elec-
tronegativity difference was defined as a scaling
parameter which generalizes the concepts of va-
lence and size differences in the manner proposed
by Phillips. 3 The theory was formulated in terms
of the low-frequency electronic dielectric constant
of a semiconductor c(0) = n, where n is the index of
refraction below the band gap.

The treatment was restricted to diatomic crys-
tals of formula A"Be "which form in the diamond,
zinc-Mende, wurtzite, and rocksalt structures.
Thus only the zp3 hybridized, or tetrahedral co-
valent bond, and, by extension, the predominately
ionic p3 octahedral bonding in the rocksalt struc-

ture was described. However, other authors4
have discussed the extension of this formulation to
several other classes of semiconductors-primari-
ly in connection with nonlinear optical susceptibil-
ities. Amorphous tetrahedral semiconductors
have a].so been discussed. ~

Unlike the electronegativity scales developed by
Pauling and by Mulliken, the Phillips formula-
tion defines the electronegativity difference C be-
tween ions to be dependent upon their crystalline
environment~ rather than simply the difference of
elemental electronegativities. (C is in fact the
dielectrically screened potential difference' be-
tween the fields produced by the ion cores of the
two atoms participating in a given bond measured
at the point of contact of their covalent radii. We
refer to that point as the "bond site.")


