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there is only one, rather than three, mutually per-
pendicular one-dimensional bands, the resistivity
should be highly anisotropic. Magnetoresistance
and Hall effect in oriented samples of V-doped
Ti&O, were measured by Honig and collaborators.
Data from these experiments established that con-
duction was by holes in the low-lying aq~ band we
have been discussing, but the huge anisotropy the
one-dimensional model predicts was not observed.
However, since only a very few of the data points in
in Ref. 5 bear on this question, we measured the
resistivity as a function of temperature for two
oriented samples taken from adjacent slices of the
boules used by Sjostrand and Keesom. The data

are plotted in Fig. 3. Measurements were madeby a
standard four-probe technique described in Ref. 5,

Some anisotropy is observed, as is virtually in-
evitable in this low-symmetry system, but only
about 50%, more important, note that the resis-
tivity is higher in the c-axis direction than in the
basal plane. The resistivity measurements are
totally inconsistent with the one-dimensional inter-
pretation of the specific-heat anomalies.
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We demonstrate that a velocity-dependent collision frequency can introduce significant non-
linearities in the theory of a homogeneous, unmagnetized plasma. By means of a practical
collision model which allows us to obtain useful information on nonlinear plasma phenomena
without involving the mathematical complexity usually associated with collision operators, we
investigate the problems of self-focusing, parametric excitation, and third-order frequency
mixing. Our results are compared with those of previous authors. It is shown that the colli-
sion-induced nonlinear excitations considered here may be more important than those due to
other rnechanis ms.

I. INTRODUCTION

Model collision operators with velocity-indepen-
dent collision frequencies are often used to con-
sider the effect of collisions on plasma waves.
Since, in reality, particles with high and low veloc-
ities have quite distinct collision characteristics,
the use of these models cannot generally be justi-
fied, except perhaps for a few cases in which the
exact form of the collision frequency happens to be
unimportant. It is therefore necessary to use
more realistic, but often mathematically compli-
cated, collision models, such as the full Boltzmann
or Fokker- Planck operators. In considering linear
problems, one may still occasionally obtain solu-

tions to these complicated kinetic equations by em-
ploying some sort of perturbation or numerical
techniques. However, it would be impractical, in
general, to use the latter equations in considering
nonlinear problems.

In this paper, we consider collisional wave ex-
citation in a spatially uniform plasma by using a
fairly realistic, yet simple, collision model. In
fact, we use the Lorentz collision operator' with
the velocity-dependent collision frequency repre-
sented by the so-called Harp model. This model,
which will be discussed in Sec. II, assumes that
electrons with energy less than a certain fixed
value experience no collisions, while those with
higher energy suffer an infinite number of colli-
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where q and m are, respectively, the charge and
effective mass' of the electron and E(t) is the
total electric field. No external magnetic fields
are present, and effects due to the energy depen-
dence of the mass are neglected.

The collision integral C(F) will here be repre-
sented by the Lorentz model in which electrons
collide elastically with "inf initely" heavy particles, '6
1.e. ,

C(F) = —vF+ (v/4m) f F dQ,

where v(v ) is the electron-neutral-particle colli-
sion frequency. The integration is over all solid
angles ~ in velocity space. It is assumed that the
collision frequency only depends on the magnitude
of the electron velocity. Electron-electron scat-
tering is neglected. We use the Harp model ' for
the velocity dependence of the collision frequency,
i. e. ,

v(v )=
0 v'& v'

0

v~) v2
0

sions. The model, therefore, emphasizes the
difference between the collisional characteristics
of high- and low-energy electrons. This property
makes it particularly suitable for our purpose here,
since it is precisely from the energy dependence
of the collision frequency that the nonlinear effects
considered in this paper originate. No such effects'
will appear if the collision frequency is indepen-
dent of energy. For similar reasons, previous
authors ' have employed this useful model to com-
pare theoretical predictions with experimental ob-
servations on nonlinear plasma phenomena, such
as echoes and stimulated emissions.

Using the model discussed above to describe
collisions between electrons and heavy scatterers,
we derive the current density and the nonlinear
dielectric constant for electrostatic long-wavelength
oscillations in a plasma. Application of our re-
sults to self-focusing and parametric excitation
problems in semiconductors is discussed and com-
pared with previous work on similar subjects.
It is demonstrated that some previous conclusions
should be reconsidered. We also investigate the
problem of third-order frequency mixing in a plas-
ma due to collisional effects.

Finally, we introduce a simple generalization of
the Harp collision frequency so that the real situa-
tion can be better represented when necessary.

II. KINETIC EQUATION

The distribution function F(v, t) of the electrons
in a spatially uniform plasma is described by the
kin~ cic equation

where v0 is chosen to be in a region where the
actual collision frequency increases rapidly with
velocity. This model was originally proposed for
gases showing a strong Hamsauer effect, such as
argon, which exhibits a sharp increase of the elec-
tron-neutral-particle collision frequency within a
certain electron velocity range. For other plas-
mas, v0 cannot be uniquely defined, since the
range in which the collision frequency increases
may be large. The Harp model then only gives
a rough estimate of the effects of the velocity de-
pendence of the collision frequency. Such quanti-
tative results will, hopefully, stimulate further
investigations using more realistic models.

It is clear that when the Harp frequency is used
in the Lorentz model electrons with speeds less
than v0 behave as a collisionless gas, while those
with higher speeds behave as a collision-dominated
gas. It follows that high-energy electrons will al-
ways be isotropic, since they are randomly scat-
tered rapidly in velocity space. These electrons
therefore do not participate in the dynamic be-
havior of the plasma. In this respect, the model
may also be applicable to a collisionless plasma
in which high-energy electrons are lost in some
manner, such as recombination, leaving the elec-
tron distribution function with a rather sharp cutoff
at some velocity v0.

III. CURRENT DENSITY AND DIELECTRIC CONSTANT

The solution of the kinetic equation (1) is given
by

jEO[v- (q/m) J Edf], v & vo
E(v, f)=

J G(v, t), va& v~~

where

G(v, —~)=Eo(v) .
The function Eo(v) = G(v, —~) is the distribution
of the electrons in the absence of the electric field,
say at t = —, and is, therefore, taken to be iso-
tropic in velocity space. When the field changes,
the number of particles in each region may vary;
hence, the distribution function of the high-energy
electrons is also time dependent.

The current density is given by

j =q f vE0[v —(q/m) J'F.dt]dv,

where the velocity-space integration is to include
only electrons with speeds less than v0. Electrons
with higher speeds do not contribute to the current,
since they remain isotropic in velocity space due
to the strong scattering.

Assuming that the electric field is sufficiently
small so that the perturbed velocity is much less
than th~ .hermal velocity, the integrand in Eq.
(5) can be expanded as a Taylor series. Thus
we have
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j = 2~q pv Fo- —
~

~

Eat 0 + —
I

—Edt ~0 ——
~

— Edt 30 dvdp, ,m I„ &v„2 &m„ &v„6 I nzq &v„
a]

where p, =v„/v and the x coordinate is taken to be
in the direction of the electric field E =Ex and the
current density ~

= jx.
The terms proportional to even powers of the

electric field vanish in the integration over p, , so
that after some straightforward manipulation one
obtains

j = (N, q'/m) f Edt —(8''/15m')v, 'F," ( J Edt)',

(7)
where

Fp V

0

and

4 0 3 8+0
N =- —m v' 0 dv0

0

We note that if vp= ~, then Np reduces to the
electron number density and the nonlinear terms
vanish. Thus, besides introducing nonlinear ef-
fects, collisions also modify the linear response
of the plasma. This small linear effect is, how-
ever, of little interest here.

The current density and the electric field are
related to the displacement vector Ep&E by the
equation

3 Q' (d y
2 2

(12)

where

c~ = (E~/2m)'~',

linear mechanism is, however, originated from the
nonparabolicity of the electron energy-momentum
relation due to band-structure effects. We also
consider the theory of third-order frequency
mixing.

A. Self-Focusing

Two basic parameters of interest in self-focusing
problems are the focal length 8 and the critical
incident power I'„. The nonlinear dielectric
constant &2 plays an important role in determining
these quantities. Shorter focal lengths and smaller
incident power may be realized if &2 can be made
large. In fact, one may demonstrate that for
large ratios of incident to critical power P/P„

(p/p )-i/ 2 &-1/2

It is, therefore, of interest to compare the value
of &2 obtained in this paper with that of TG. ' The
nonlinear dielectric constant ez given by these
authors is

l+ eo st
= eo st (&E) & (8)

with E~ being the gap energy.
Using expressions (10) and (12), we have

where & is the plasma dielectric constant.
We define the nonlinear dielectric constant &2

by the relation

e= e, + e,E2, ,

where e, = 1 —to~/(u is the well-known dielectric
constant when nonlinear effects are absent and
(u~= (Noq~/tom)' is the plasma frequency. The
amplitude of the electric field E is here denoted
by E, . Combining Eqs. (t)-(9), one obtains

4
4m@

2 15~3~ ~4 0 0
0

(10)

where & is the wave frequency. We have considered
here waves with slowly varying amplitudes.

IV. APPLICATIONS IN SEMICONDUCTOR-PLASMA THEORY

In this section we first apply our calculations
to two problems of recent interest in laser-semi-
conductor interaction theory, namely, self-focusing
and parametric amplification. Our results are
compared with those of Tzoar and Gersten (TG)
who investigated similar problems. Their non-

if the distribution function Fo- exp(- v'/v~~) is
assumed to be Maxwellian, This is a reasonable
assumption, since we expect vp to be larger than
the thermal velocity v, .

Substituting the data given in TQ, we find that
the nonlinear mechanism considered here would be
stronger than that of TG (i. e. , e~& eq ) if

5 2 2
e 0 "t &0.02,

v&

which can be realized if, for example, vp=3vg.
The nonlinear mechanism considered in this paper
is, however, most effective when v0=1. 6vt, since
the left-hand side of the above inequality then
attains a maximum value of 0. 8.

Heating due to external constant or oscillating
electric fields may locally raise the thermal
speed of the conduction electrons and flatten the
distribution function Fo (although some experiments
do not seem to support this idea). It is thenpossi-
ble that even if our nonlinear mechanism is not



COL LISION- INDUC ED NON LINE AR EXC IT AT IONS 1461

1 —(d&/&d + e2E& 0 .
The frequency is then given by

1+ ~~ (1—q &~E&), (16)

Since &z is real here, it is clear that there is no
damping or growth to this order of approximation.
The frequency shift p, & is

significant at the start, it becomes important as
the interaction process continues.

B. Parametric Excitation

In their paper on the parametric excitation of
waves in semiconductor plasmas, Gersten and
Tzoar (GT) used the same nonlinear mechanism
as that in their work' on self-focusing. They con-
sidered two processes of excitation, namely, the
direct conversion of two identical photons into two
plasmons and the stimulated downconversion of.
a photon to a lower frequency with the emission of
two plasmons. The conclusion of GT that these
processes should cause i.nstability to occur in the
plasma appears doubtful to us, however. A brief
examination of their work indicates that their
growth rates should in fact be merely frequency
shifts. That is, the values of p given by Eq. (13)
in QT should be imaginary, but with the magni-
tudes unchanged. ' However, it is still meaningful
to compare our results with those of GT if the
above correction is made.

We first consider the direct-conversion process.
Assuming E(t) =X,(t) costa, t, where &o, = &a, one

may easily obtain the dispersion relation

dependence of the ratio p~/p3 is similar to that
of c2/c z in Sec. IVA; hence, the conclusions ob-
tained there are also valid for this case.

It is interesting to note that our collision model
may also be used to approximate the nonlinear
mechanism of TG. The latter mechanism arises
because the conduction-electron Hamiltonian in
the effective-mass approximation near the bottom
of the conduction band is not parabolic in momentum
and resembles a relativistic Hamiltonian. The
same effect can be approximately achieved if we
assume that the effective mass is constant below
a certain speed vo and becomes infinite for higher
velocities. This assumption is, of course, equiva-
lent to considering that electrons with speeds higher
than vo are stationary and do not participate in the
interaction.

C. Third-Order Frequency Mixing

The use of third-order frequency mixing for
diagnostic purposes has recently been treated by
many authors. ' '" It has been demonstrated that
nonlinear mixing of two monochromatic waves at
frequencies , and ~z may be possible in a plasma
due to the velocity dependence of the electron colli-
sion frequency. Furthermore, it has been shown"
that the enhanced generation, while weak in general,
may be comparatively strong if the mixing frequen-
cy, say, 2&, —&z, is close to the plasma frequency

In Sec. IV C we reconsider this problem using
the present collision model.

The current density and the electric fields are
related by the Maxwell equation

2''vo'Z,"
~1 15 3 3 1 ~

E040 P
~E ~Ee~3+&0 = ~o (19)

We note that if p. , is the frequency shift obtained
from GT, then

where

= E e'"&t + E e'"z' + c.c.

Thus, our discussion concerning the relative
strength of the nonlinear mechanisms in Sec. IVA
also applies here.

The second process to be considered here is due
to the simultaneous interaction of two beams in the
plasma. A photon at frequency ~, is downconverted.
to frequency &z=&& —2& with the emission of two
plasmons. A beam at frequency (dz stimulates this
process. The nonlinear dielectric constant for the
present case can be derived easily in a similar
manner to that of Eq. (10). Comparing the corre-
sponding frequency shift pz with that (P~T) obtained
from Eq. (13b) of GT, we find that the functional

z 2BE z- e E.„, 8p q
Btz +&pE = z + 3 voEo

Bf l5 ~ ~0

t 3

Edt (20)

By assuming that the nonlinear term is small, Eq.
(20) may be solved easily by iteration. The result-
ing electric field E3 with frequency 2&, —&z is

is the external electric field.
The current density may be eliminated by com-

bining Eqs. (7) and (19). One thus obtains an equa-
tion for the electric field, 6

(21)
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where we have assumed a Maxwellian distribution.
It is clear that E3 is large if Lp& —~2 is close to
QPp ~

Comparing the enhanced field E3 with that Nss)
obtained by Stenflo,"who used a model in which the
collision frequency p varies as some power of the
velocity, we obtain for hard-sphere collisions

5Eg „Vo 2(d
&
—(O2 -v2/ 2

Vy

where v, = v(v', ). Thus, again assuming vo& v„
the present model predicts a greater third-order
frequency generation if the mixing frequency is
sufficiently larger than the col1.ision frequency.

Although Stenflo's paper is concerned explicitly
with the ionospheric plasma, the results are also
applicable to semiconductor plasmas. In fact, the
similarity between different types of plasmas has
recently promoted the possible application of
knowledge developed in one plasma to the other,
for example, the possibility of using parametric
excitation to determine ionospheric conditions. '2

V. CONCLUSION

We have, in an unconventional manner, con-
sidered nonlinear effects originating from the veloc-
ity dependence of the electron collision frequency.
Our results are applied to problems in semicon-
ductor-plasma physics and compared with previous
works on the same subjects. It is shown that the
nonlinear mechanism proposed here may be of im-
portance in some of these problems. To describe
the effects of collisions, we used a very simple,
yet somewhat realistic model, such that the mathe-

matical complexity usually associated with collision
operators is decisively avoided. It is thus possible
to obtain useful qualitative information even with
only an extremely small number of calculations.

The Harp model, which we have used here, can
also be refined to better approximate the actual
velocity dependence of the collision frequency. For
example, in the case of a good Hamsauer gas one
may write

2v)& v & vo and v2 &v
v' v', and v,'v' v,'

where vo, & 2 correspond to speeds at which the
frequency changes rapidly. The basic difficulty is,
of course, the possible uncertainty in the deter-
mination of vo, vq, etc. It is also possible, al-
though mathematically much more complicated, to
replace the infinity in Eq. {3)by a finite constant
collision frequency. The results are not signifi-
cantly changed, however, if that collision frequency
is larger than the other frequencies involved in the
problem. In a similar manner one can extend the
Harp model to include other plasmas.

In this paper we have neglected effects such as
plasma inhomogeneity and velocity- space anisotropy,
which can be important in experiments. It should
also be pointed out that nonlinear excitations owing
to collisional effects are not dominant in general,
as other mechanisms, such as nonlinearities owing
to nonparabolic energy-momentum relations, ' may
be more important in some plasmas. However, we
believe that the basic physical picture obtained
from our results should be useful in many further
experimental and theoretical investigations.
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