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since (1/Ecp )p(t)/('Bp(t)/Bt) && 1/eptlp,
The field at the cathode increases as long as the total

space-charge density pox increases. This is assured even though
the voltage drop in the space-charge region [~p(hx)'] decreases

as long as p increases more than hx decreases (see Sec. VI 8).' To finally allow for tunneling.' The assumption of surface states for a "pinning of boundary
condition" in such materials seems to be misleading.
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Energy bands in a Ti,o, lattice are parametrized in terms of overlap matrix elements. The requirements of
"one-dimensional" energy bands as an explanation for recently observed specific-heat anomalies are
compared to this parametrization and shown to be in conflict by three orders of magnitude. Resistivity
measurements on oriented samples are also shown and also fail to support the "one-dimensional" hypothesis.

Sjostrand and Keesom' have recently observed
anomalous low-temperature specific heats in sam-
ples of Ti~03 doped with a few percent VSOs. They
tentatively ascribe the anomalous behavior to the
presence of holes introduced by the P ions into a
"one-dimensional" valence band of the host materi-
al with a single low mass direction parallel to the
axis. Briefly, the density of electronic states va-
ries in proportion to E' in a three-dimensional
structure but like E ~ in a one-dimensional ar-
ray, where E is the single-electron (or hole) en-
ergy as measured from the band edge, The singu-
larity in E near the band edge provides an en-
ormous density of states for dopant-introduced
carriers and so has been proposed to fit the anom-
alies as observed.

The purpose of this communication is to report
resistivity measurements whose interpretation ap-
pears to conflict with one dimensionality in the
electronic structure and to consider and emphasize
the unavoidable implications of one dimensiona1. ity,
which would suggest that the hypothesis should be
accepted only with reluctance.

In considering the implications of the one-di-
mensional hypothesis, we need to consider the
question of the direction of that one dimension,
that is, which of the three crystal dimensions is
the favored one. Ti~Q3, with and without vanadi-
um, crystallizes in the corundum structure of sym-
metry D3„. The structure thus includes a pre-
ferred direction, the c axis. Ta avoid breaking the
symmetry, therefore, the favored direction should
be the c axis, or there should be three degenerate
sets of electronic states with favored directions
symmetrically ar ranged. Both alternatives en-
counter difficulties when the actual lattice struc-
ture is considered, however, as will be seen.

The crystal binding in Ti~03 is strongly ionic in
character; three of the 22 electroris of a neutral Ti (2)

atom are transferred to oxygen sites, leaving a
single d electron on the Ti3' ion. In a rhombohe-
dral field, the five orbital atomic d states are split
into two pairs of doubly degenerate e, states and a
single nondegenerate a&~ state. That pure Tiz93 is
an insulator indicates that the a&, state lies low-
est, ' and it is the bands formed from this state
that we shall study for one dimensionality.

We shall work in the tight-binding approximation,
but since there are several Ti atoms in a unit cell,
the calculation is somewhat more complicated than
the usual textbook case.

When the atoms are brought together to form
molecules, the atomic wave functions overlap and
the atomic levels are split into molecular levels.
Bringing the molecules together to form a crystal
finely splits, or broadens, the molecular levels
into bands.

We can simplify somewhat by an approximation
in which we treat the individual Ti~o, molecules as
identical although in fact there are two sets of mol-
ecules related by a glide reflection. The long dis-
tance between inequivalent molecules of the same
unit cell in the actual structure makes this a slight
approximation and one which certainly does not
qualitatively change our conclusions.

Ti203 molecules are located on the vertices of a
rhombohedral lattice described by lattice vectors
as in Table I, which also relates them to the crys-
tal parameters c and a.

In zeroth order, each Ti site affords one a&~
atomic function g, (r —r, ). The one-electron Ham-
iltonian is

82
H= — v'+Qg (r —r, ), (i)2apl

where r; runs over all the Ti ions. We first con-
struct a molecular wave function,

X (r)=~iX. (r-k«)+~3X.(r+2«);
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TABLE I. Cation locations in TiO&.
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d is the separation between the two Ti atoms within
a molecule. In the representation in which y, 's
are basis functions, the Hamiltonian has the form

(3)

The eigenfunctions of this Hamiltonian are

X."'(r)= (I/~2) tX.(r --.zd) + X.(r+-. &d)]

with energies

S"'=E.+V ~ J0.

(8)

The a1~ functions X, are maximal along the (.. axis,
which connects the nearest-neighbor Ti pairs in the
molecule. Hence J0 shouId be the largest coupling
of all those we discuss.

We now form two bands from the x„'"(r):

(2"=~& Z 8' '"~x"'(r-R,) . (8)m

The R& are the lattice vectors of the molecules (see
Table I). In standard fashion, taking the bands one
at a time, we obtain

E((i& E(s& +Q g(J) (I R~
m j

R g&0

in which

v= 2 ~t X2' (r --,' 2d) v(r —r, ) X, (r ——,'2d)dr (4)
r&&ad)/ 8

RIll

J() = Z Xf (r+-'2zd) v(r —r, ) X,(r --2'zd) dr . (5)
r~&frd/ P

(f4& &
(-+& E(-) Q (f R)~( &

m

(11)
Each J& is composed of four parts because there

are four atomic wave functions involved. For
nearest-neighbor molecules,

(1& 2 (3) + (3)
1 yi + y1 y1

where

y()') =-, ~~X.*(r --'. «)& v(r -r, )

x Xa (r + 2 dz —R1)d r

yi'"= —
„' X.*(r —2d2)Z v(r —r()2g

(13)
xX, (r —2' -R,)dr,

y,"'=-
~ X,*(r+-2'dk)Z v(r —r, )1 2g

x X, (r ——,
' df' -R))d r .

y&" is an overI. ap between next-nearest-neighbor Ti
ions and is therefore much larger than the other
y's. Similar expressions may be obtained for Ja
and J3, the only other possibly important molecular
overlaps.

Figure 1 indicates the geometry of the couplings,
both for J, and J1" ', Note that

J', (R,,) = Z,
' (-R,), (14)

but that

Z,("-'(R,) = -Z,'"-& (-R,) . (15)
We now perform the sums indicated in E(l. (11)

over the R&, express the J& in terms of the y&, and
expand the resulting sines and cosines in powers
of k, the electron-state vector. We then diagonal-
ize the 2&&2 determinant for E„-, and near a band
edge obtain

where

J',"'=Z' I X*„"'(rg v(r —r, ) X") (r —R~) . (10)
r(

The prime on the summation indicates that the r&'s

do not include the ions of the molecule at R&= 0.
The Hamiltonian, however, connects X" and X' '

states on different molecules. Hence, to find a
proper band wave function g„we need to diagonalize

(+& g (R 0& + (+& g &R fl + (.-&

E&=&& +ii+sy' '*2(J +Sy' '+& ' '+ ' '&T * " i '&'i ~i ' iii)
u'+a'

2 J 3 (1) 3 (1) (1) + »

g (y
1 + 4y 1) + 3y(1))/4+ 3(y(1) + 2y 1) +y(1))2 y 2)

+3y(1)y3 (1)y (1) . 4 ~
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FIG. 1. Cross section
of cylindrical Brillouin
zone showing cross sec-
tions of ellipsoids of con-
stant energy. The three-
dimensional zone would
be rotationally symmetri-
cal about K,.

thus near the valence-band edge

E„. =E, +e —6y1 + —k a y1 +12k, C y1
(+) (1} 1 2 2 (1) 1 2 2 (1)

(17)
Naturally, in a three-dimensional crystal, bands

can only be one dimensional in some approximate
sense. This means the energy structure must be
approximately

E'" (u, ) =8'u,'/2~~ . (18)

In Ref. 1, good agreement with experimental data
was obtained with m* about two free-electron .

masses. We can also write this as

(1) 6 kg k„+k, (19)

where rn, » m„and the relative size of nz, is such
as to make an unimportant contribution to the en-
ergy. Our Eg. (1V) is of this form from which we

may obtain

m, /rn, = 6(a/c)'=- O. 85,
since c/a= 2. 65.

The simplest band model thus predicts a slightly
greater transverse mass than longitudinal mass.
It is also clear from the form of the expressions
that the only way to make a significantly larger
difference between the two masses is to make y3

'

» y1(1) and y(1)

The experiments' can be used to give a lower
bound on the mass anisotropy. The data are con-
sistent with the one-dimensionality hypothesis at
relative V to Ti concentrations from loat. % down
at least to 1.5 at.%. The initial slope of the C„-vs-
T curve yields a density of electron states accu-
rately proportional to n ' 2 in this range, where n
is the relative V concentration.

Let us then consider a Brillouin zone shaped like
a right circular cylinder for convenience. The c/a

In this expression we have assumed Jp» p and dis-
carded all y's referring to couplings between sixth-
nearest-neighbor Ti atoms and higher. If we fur-
ther assume, consistently with this picture, that

(1)» (1) (1) (2)71 g2 p 73 & Y1

or
(~, /I, )"'= O. OO6 (a/c)

mp= angl. 95& 10

(2o)

(21)

or Alp approximately 5 && 10 free -electron

masses�.

We emphasize that this relative mass disparity is
not a consequence of the model or the approxima-
tions of tight-binding theory. Within factors of
order unity, it is unavoidably demanded by the ex-
periments and the one-dimensional interpretation.

Thus, we need to determine whether the overlap
integrals y1

' and y3"' could conceivably differ by
the necessary five orders of magnitude, and thus
we require a consideration of the appropriate crys-
tal field d wave functions. There are five such
functions 80 „(8,p), where the polar direction is
taken along the q axis. Each Ti ion sits in a site of
only C3 symmetry. Hence, the crystal field can be
represented by

V(8 p) PO 80,0+ Vl 81,0+ Ps 80 0

+ 's 80,0+ ~s(8s, s+ 8s, -s)

+ v484, 0+ U4(84 s+ 84 .,) + ~ ~ ~ . (22)

Higher-order terms in V(8, y) do not mix d states.
Thus the one-electron Hamiltonian at. the Ti ion
must be of the form

N(E)

FIG. 2. Density of
electron states as a func-
tion of electron energy
for the structure shown in
Fig. 1. The cusp occurs
when the isoenergetic el-
lipsoid just touches the
walls of the zone. E"1
is shown for comparison,
normalized at large E.

ratio of Ti203 determines the relative dimensions.
Using E41. (19) for E(k), several isoenergetic sur-
faces are shown in cross section in Fig. 2(a). As
long as the energy surfaces remain ellipsoidal, the
density of states is proportional to E 2. When the
ellipsoid reaches the zone edge, however, the den-
sity-of-states curve changes, and, for energies a
few times this initial contact energy, accurately
follows an E ' dependence. The exact curve of
iV(E) for this model is shown in Fig. 2(b); E s~s is
also plotted for comparison. To be consistent with
the experiments, X(E) must not depart substantially
from E for any of the observed carrier concen-
trations. Since it was observed that each V ion
contributes 0. 4 carriers, this means that the E
law must be obeyed for the band 0. 6% filled. From
these considerations and a little geometry we ob-
tain
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(23}

~80—
The eigenfunctions are therefore

+1 ~2,2+ ~1 82, -1

&1 82, -2+ &1 ~2, 1

E

C .75-

C1 82, „1—b1 82,2

+1 ~2, 1 ~1 82, -2 y72

.55—820 ~

the brackets indicate degeneracy.
Since Ti2O3 is an insulator, the lowest-lying state

must be
~50—2 2

82,0=3@ -r (25)
I I I I I I I I I I I I I I I

50 IOO I50This attains a maximum value of 2 along the z direc-
tion, which favors y,'" compared to y1". Along the
direction of second-nearest-neighbor Ti, however,
its value is about —0.8 which is still of the same
order of magnitude. Thus tight-binding theory is
unable by five orders of magnitude to yield the
necessary mass anisotropy to make the one-di-
mensional hypothesis convincing.

Our discussion has neglected the hybridization
between Ti d orbitals and O 2p orbitals and the re-
sulting superexchange enhancement of the coupling.
However, examination of the lattice shows that ox-
ygen ions are favorably placed for the enhancement

TK

FIG, 4. Resistivity as a function of temperature for
Tip SgVp p403 for current parallel and perpendicular to the
c axis.

of y1, y1, and y2 ', but not for y1 '. Thus the
inclusion of superexchange in our considerations
would not help.

Sjostrand and Keesom' have called attention to
the theory of Labbb and Friedel, which similarly
employs a one-dimensional band structure to ex-
plain properties of V3Si and related compounds of
the P-tungsten structure. It is interesting to con-
trast these two compounds to see why the one-di-
mensional hypothesis does not encounter similar
difficulties in V3Si.

The large overlap favoring one dimensionality is
between nearest-neighbor V ions in V3Si and com-
petes with overlaps between second nearest neigh-
bors about 15% further removed. By contrast, in
Ti~O~ the principal overlap must be between fifth
nearest neighbors and competes with a second-
nearest neighbor about 30% closer. Second, the
specific-heat anomalies in V,Si are substantially
smaller than those observed in Ti203. The neces-
sary mass anisotropy for satisfactory one dimen-
sionality is correspondingly greatly reduced. Fi-
nally, the specific-heat anomaly in V3Si arises
from contributions from three degenerate bands,
whereas in Ti2O3, the entire anomaly must be due,
for symmetry reasons, to a single band.

Since VSSi is a cubic crystal, the resistivity is
necessarily isotropic. In Ti2O3, however, the re-
sistivity should not be isotropic. Indeed, since

y(2)
I

J +
I

y ( I )+y (2)+ y (2)+y('5)
I I I I

y(2) ~~ RI

+

y(2)
I

y(I) Z

y(s)
y(2) ~

y(I)+y(2) y(2) y(3)

FIG. 3. Description of interionic overlaps used in cal-
culating energy-band parameters 4 + and —signs near
a metal ion indicate the relative signs of X, centered on
that ion used in forming Xm Dotted lines link sites of
overlapping X~'s entering the integral for the respective
y's.
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there is only one, rather than three, mutually per-
pendicular one-dimensional bands, the resistivity
should be highly anisotropic. Magnetoresistance
and Hall effect in oriented samples of V-doped
Ti&O, were measured by Honig and collaborators.
Data from these experiments established that con-
duction was by holes in the low-lying aq~ band we
have been discussing, but the huge anisotropy the
one-dimensional model predicts was not observed.
However, since only a very few of the data points in
in Ref. 5 bear on this question, we measured the
resistivity as a function of temperature for two
oriented samples taken from adjacent slices of the
boules used by Sjostrand and Keesom. The data

are plotted in Fig. 3. Measurements were madeby a
standard four-probe technique described in Ref. 5,

Some anisotropy is observed, as is virtually in-
evitable in this low-symmetry system, but only
about 50%, more important, note that the resis-
tivity is higher in the c-axis direction than in the
basal plane. The resistivity measurements are
totally inconsistent with the one-dimensional inter-
pretation of the specific-heat anomalies.
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We demonstrate that a velocity-dependent collision frequency can introduce significant non-
linearities in the theory of a homogeneous, unmagnetized plasma. By means of a practical
collision model which allows us to obtain useful information on nonlinear plasma phenomena
without involving the mathematical complexity usually associated with collision operators, we
investigate the problems of self-focusing, parametric excitation, and third-order frequency
mixing. Our results are compared with those of previous authors. It is shown that the colli-
sion-induced nonlinear excitations considered here may be more important than those due to
other rnechanis ms.

I. INTRODUCTION

Model collision operators with velocity-indepen-
dent collision frequencies are often used to con-
sider the effect of collisions on plasma waves.
Since, in reality, particles with high and low veloc-
ities have quite distinct collision characteristics,
the use of these models cannot generally be justi-
fied, except perhaps for a few cases in which the
exact form of the collision frequency happens to be
unimportant. It is therefore necessary to use
more realistic, but often mathematically compli-
cated, collision models, such as the full Boltzmann
or Fokker- Planck operators. In considering linear
problems, one may still occasionally obtain solu-

tions to these complicated kinetic equations by em-
ploying some sort of perturbation or numerical
techniques. However, it would be impractical, in
general, to use the latter equations in considering
nonlinear problems.

In this paper, we consider collisional wave ex-
citation in a spatially uniform plasma by using a
fairly realistic, yet simple, collision model. In
fact, we use the Lorentz collision operator' with
the velocity-dependent collision frequency repre-
sented by the so-called Harp model. This model,
which will be discussed in Sec. II, assumes that
electrons with energy less than a certain fixed
value experience no collisions, while those with
higher energy suffer an infinite number of colli-


