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The formation of space charge in the barrier region is discussed. This region extends to x ;=200 A +2A (A
is the mean free path of majority carriers). The conventional transport equation can be used only for x > x,,
and the carrier density at x, represents a boundary condition for the bulk. Its change as a function of
applied voltage, temperature, and light intensity in photoconducting CdS is discussed. The time dependence
of the space-charge formation in the region 0 < x < x, is analyzed. It is shown under which conditions the

individuality of the metal contact is observable.

I. INTRODUCTION

In the preceding paper! we have shown that at
higher current densities, a model using a simple
carrier transport and Poisson equation to explain
the behavior in the barrier near a “blocking” cath-
ode breaks down. This situation can be reached
with photoconducting CdS and with current densi-
ties greater than ~10™" A/cm?. It was suggested!
that tunneling through the barrier is the major ef-
fect to provide current continuity. This is in
agreement with the suggestions made earlier by
several authors (for a summary, see Ref. 2) and
by itself does not seem to necessitate a careful
new study. However, the recently developed meth-
od of high-field domains® made it possible to deter-
mine unambiguously the maximum field Fy; starting
at a distance x, from the electrode interface. The
distance x, is that distance from the interface be-
yond which the simple transport equation

. dn
j=eu(F)n(F) F- ude— , (1)
X
and Poisson equation
dF e
W ees (n, F) 2)

are valid. This maximum field Fy; is too low and
%o is too small to accommodate enough space charge
in a slab 0 <x <x, in lightly doped photoconductors
(Np< 10" em™) to reach critical fields necessary
for sufficient tunneling. We therefore had to as-
sume that additional donors of ~10' cm™ are al-
ways present in CdS at an energy not accessible to

conventional detection methods, since no other
known process but tunneling could account for the
observed current densities. We have investigated'
the stationary and kinetic behavior of the current
across a barrier caused by different metal-CdS
combinations, and in this paper will give a more
detailed analysis of the process taking place in the
thin (of the order of a few mean free paths of ma-
jority carriers) barrier layer (0<x <x,).

II. IMAGE FORCE REGION

The potential distribution in the barrier region
is determined by four factors: (i) the image
forces, (ii) the difference of work functions between
the metal and the photoconductor, (iii) the space-
charge distribution determined by the carrier ki-
netics, and (iv) the external field. The image
force of a carrier is attractive toward the metal
and its potential is given by

e
T 16 mege x|

Vix) @)
where €., is the optical dielectric constant and ¢, is
the permittivity of free space. This potential dis-
tribution is shown in Fig. 1 for electrons and
holes. It should be pointed out that close to the
photoconductor-metal interface there is no change
in the band gap, as it appears from Fig., 1, be-
cause an image force is experienced by either an
electron (both bands bend downward) or by a hole
(both bands bend upward) if they are located close
to the electrode. However, when an electron and
a hole are closer together than their separation
from the electrode, a dipole-dipole interaction re-
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FIG. 1. Potential distribution in a photoconductor un-
der illumination near a blocking contact (zero external
field). Ep, and Eg, are the quasi-Fermi levels for elec-
trons and holes, respectively. The solid curves are the
relevant bands for electrons and holes (in the image force
region).

places the monopole image potential |Eq. (1)] with
considerably less effect on the bands. In moving
parallel to the photoconductor-electrode interface,
a valence-band electron sees a potential which is
obviously highly perturbed, alternating between
small areas in which the band bends upward or
downward.

The region in which the image force has a
marked influence on the electrical properties is
very close to the photoconductor-electrode inter-
face and extends not beyond a distance x,; at which
the image force influence is of the order of 2T,
i.e., beyond

Xoo= €%/ 16Tege kT , (4)

which is about 30 A for CdS at room temperature,
This model is valid for carrier densities below
Xoo s 1. €., below 3x10' em™, At higher carrier
densities, carrier compensation is usually re-
quired* and the monopole image force region dis-
appears. In the case investigated here, the car-
rier density is far below this critical value.

The fact that the image force is always attractive
does not allow it to be helpful for storage of minor-
ity carriers necessary for lowering a barrier. To
the contrary, it enhances the extraction of minority
carriers from the entire barrier region.

On the other hand, the image force aids the ma-
jority-carrier transport across the barrier by re-
ducing its height in an external field F,, by an

amount
1/2
- (——e— F,,,) (5)

2Vr €p€w

Therefore, the height of the barrier is given by
Y=9,— eAV, where 3¥,, the work function between
the metal and photoconductor, can be determined by
a number of methods in the zero-current limit (for
a summary, see Ref, 5).

The experimental results given in Ref. 1 cannot
be explained by a reduction inbarrier height caused
by the image force®” since it would need a field F,,
far in excess of 10® V/cm. Long before this field
is reached, tunneling through the barrier would
take over,

A marked lowering of the critical field for tun-
neling can occur when Coulomb attractive centers
of sufficient density are available, as was recently
shown by Parker and Mead. ®® This seems to be
the case in CdS and we will therefore assume that
this mechanism is responsible for tunneling through
the barrier. (Conventional tunneling or thermally-
assisted tunneling would require higher fields at
the barrier, and therefore higher space-charge
density. ) In Fig. 2 a schematic comparison is
shown for tunneling through a “clean” barrier (sol-
id arrow) and through a barrier with a Coulomb-
attractive trap (dashed arrow) with about the same
total tunneling probability. For the typical current
densities observed in Ref, 1, the tunneling field is
of the order of 3x10° V/cm. This value will be
used for the following analysis.

III. SPACE CHARGE IN THE BARRIER LAYER

A “blocking” contact on an n-type semiconductor
is characterized by a positive space-charge region
close to the cathode. The field increases toward
the cathode following the Poisson equation [Eq.

(2)]. This field must reach values of the tunneling
field strength (3 %x10° V/cm) in order to produce the
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FIG. 2. Tunneling of electrons through a clean barrier
(solid arrow) and through a barrier with a Coulomb
attractive trap (dashed arrow).
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observed current densities. This tunneling field is
considerably larger than the observed field in the
high-field domain, posing the problem of storing
positive space charge in the barrier region with a
layer density of pAx ~3x10'% cm™, Ax is the width
of the layer starting at the location x, of “emer-
gence” of tunneling electrons and ending at the
position x,, where the simple transport equation

(1) becomes valid (see Fig. 2).

The location x; can be estimated as the thickness
of the barrier at the Fermi level. For a barrier
height of 0.6 eV and a tunneling field of 3 x10°
V/cm, x, is 200 A.

The location x, was defined in Ref. 1 for a sim-
ple model. For x >x; the parameters of the trans-
port equation do not explicitly depend on the spacial
coordinate. We will discuss this here in more de-
tail for the two main parameters of the transport
equation—the carrier density and the mobility.

The mobility is a local property if the potential
changes by more than 27 within a mean free path
X and as long as the carrier momentum distribution
is tunneling influenced. The first condition deter-
mines a critical length x; given by

e[ Flx,—2\) - F(x)]x=EkT. (6)

The second condition is more difficult to estimate.
The momentum distribution of the carriers emerg-
ing after tunneling at the edge of the conduction
band is anisotropic, essentially pancake-like with
the large axis parallel to the electrode surface. %!
This anisotropy can amount to several T at higher
fields, necessitating a few scattering events for
“thermalization.”*? We will therefore assume that
such thermalization is reached at x,=x; + A with
£=~2,

The carrier density (more generally, the distri-
bution of trapped and free charges) is a local prop-
evty only as long as the energy distribution of free
carriers is a local property. Otherwise, it is un-
ambiguously determined by spacially independent
parameters and the field. This is the case for
X2 Xp.

Therefore, the simple transport and Poisson
equations [Egs. (1) and (2)] are valid for x >x,,
with x, being the larger one of the distances x; or
x,. If the tunneling field and the space charge in
Ax are known, the boundary condition at x, for
Egs. (1) and (2) can be determined,

The positive space charge in Ax must be stored
as holes trapped below, but near, the Fermi level,
since electron traps between the Fermi level and
the electron quasi-Fermi level, which could be de-
pleted by the field, are not numerous enough to
provide the necessary charge.!® Hole traps in the
lower part of the band gap must be rejected as pos-
sible storage centers, since it is known that al-

ready at somewhat lower fields (F;",), these centers

are depleted of holes by means of field-enhanced
ionization. *'!® Since in photoconductive CdS, the
Fermi level is essentially pinned!® near 0.8 eV be-
low the conduction band, it is reasonable to assume
that a level is located here with a density exceeding
the density of the other known levels. Since this
density exceeds the density of known impurities, it
is suggested that these levels are caused by native
defects. Single native defects which could be pres-
ent in such high density are V4, Vg, and Cd;. The
cadmium vacancy is usually associated with sensi-
tizing centers leaving either Cd; or Vg to cause the
proposed donor level at 0.8 eV, Since no trap lev-
el of comparable density is observed in the range
0.8<E,— E;<0.2 eV, one must assume that this
level is singly charged (the doubly ionized level
lies even deeper), and that major compensation by
Vg does not occur since the Fermi level is not ob-
served to drop markedly below the assumed posi-
tion of the donor level.

However, from the high-field analysis we know
that in the bulk of the crystal at fields larger than
Fy; (at the transition from Fyy to Fy;—as seen with
anode-adjacent high-field domains'?), instead of the
positive space-charge layer, a negative space
charge is formed. We therefore must assume that
the creation of the positive space chavge near the
cathode is intrinsically connected with its proximi-
ty to the bavvier. In the barrier layer for x <x;,,
the recombination kinetics are indeed characteris-
tically different from the bulk. The population of
the centers assumed to be responsible for the
space charge here is determined by the balance be-
tween capture and ionization. The ionization de-
pends only on the field; hence, it should be the
same near the electrode and in the bulk for an Fyy;
transition, However, capture by Coulomb-attrac-
tive centers depends markedly'® on the electron-
energy distribution (field-enhanced ionization'*)
and is considerably smaller near the electrode than
in the bulk—possibly because of the excess energy
(with % vectors parallel to the electrode surface)
that electrons retain after tunneling. This may
cause the population of the centers near the elec-
trode at ~0.8 eV to decrease, }* producing the posi-
tive space charge as required.'® This fact reinforces
our choice of levels near 0.8 eV for explanation of
the origin of the space charge, since a kinetic
equilibrium as required above can only be influenced
for levels with marked field-ionization probability.
This is the case for Coulomb-attractive centers not
too far below the Fermi level.*

An estimation of the space-charge distribution in
the steady state can be made by equating the cap-
ture and emission rates, i.e.,

(7./e) q\F) (Np —np)=a(F) np , (7)
where g(F) and a(F) are the field-dependent cap-
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ture cross section and ionization probability, re-
spectively, with Np the total density of donors at
~0.8 eV, and np the density of electrons in these

donors. Using Poisson equation with p=Np —-np,
one obtains
AF__e ) @
dx €€g P\ T ealF)+jqF)) ’

yielding a sufficient positive space charge for Np
310" em™ and ¢(F) <¢(F,;), where

C](Fj)=3(1(Fj)/j" . : (9)

Since ¢ (F) decreases and o (F) increases with F,
one expects the donor levels to be filled for F <F);
and to be essentially empty for the fields above F;.
In the bulk, one obtains'® for j ~1072 A/cm? (as ob-
served in the high-field-domain range) a critical
field F,~1.6%10° V/cm which is close to the ob-
served Fy;; (see Fig. 6 in Ref. 1). Therefore,
these deep donor levels (Np) should be inactive in
the bulk until field values of this order are
reached. Indeed, below these values, negative
space charge is experimentally observed (here
compensating acceptors are depleted via field
quenching, which by the same mechanism is al-
ready active at somewhat lower fields).

If ¢(F) is decreased by a factor of 10 in the con-
tact region because of the anisotropy of the elec-
tron energy distribution of the recombining elec-
trons, the critical field for depletion of these do-
nors is reduced to 70 kV/em. Hence, a positive
space charge is produced for F >70 kV/cm as long
as electrons with excessive energy from tunneling
are available. With increasing x, however, ther-
malization of tunneling electrons increases, thus in-
creasing F; and causing the positive space-charge
region to terminate rather abruptly. !

Since the field must decrease from F(x;) to Fy;
when thermalization is reached (at ~x;+2)), one
estimates the density of donors as

F(x,) - Fy=~F(x;)=2(e/€€p)p 1 . (10)

Wwith® F(x,) 23X10° V/cm and A ~200 A we obtain
p=Np24X 10" cm™, Since Ny >10"" em™, it fol-
lows® that Eq. (8) is not satisfied until the donors
become markedly filled, hence, x; ~x;=x,=600 A.

IV. BOUNDARY CONDITION FOR CRYSTAL BULK

For x 2xy, the Poisson and the simple transport
equation determine the field and carrier distribu-
tion so that the field of direction! can advantageous-
ly be used used for an analysis. The solution curve
is unambiguously selected by #n(xy) and F(xy). In
the high-field domain regime, this boundary condi-
tion represents a point in the close proximity of the
singular point II for the case discussed above (see
Fig. 3 of Ref. 1). This singular point can easily
be obtained when the tunneling field F(x,) and the
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space charge in the region x; <x <x, is known. The
field decreases in xy — x; by

. e *o eNplxg—x,)
AF = - = Ll et 1
F=F(x,) - Flxq) €€of plx)dx ceq
Xt

The current as a function of the tunneling field 1)
F(x,) as calculated from the tunnel equation and as
a function of F(x,) is given in Fig. 3. j[F(x)] in-
tersects the j-F characteristic calculated for a
homogeneous field, i

jh=el-‘-(F) nl(f)F, (12)

at the singular point II. Since j[F(x,)] is shifted
from j|F(x,)] by an amount dependent on Np [see
Eq. (7)], the boundary point II depends on Ny as
well as on j|F(x,)], i.e., on the barrier height.
The solution (solid arrow) extends between the vi-
cinity of singular points II and I and has domain
character.

Since j[F(x,)] shifts toward higher fields with in-
creasing barrier height, j{F(x,)] must also shift
toward higher fields for the same CdS crystal
(same Np). Hence, the current must decrease and
Fy; must increase, as experimentally observed
(Figs. 8 and 9 in Ref. 1).

On the other hand, for photoconductors with
lower donor concentration, the j{F(xy)] curve [Fig.
3(a)] is closer to j[F(x,)] and may intersect j, at
fields above the field at its minimum. The solution
will then squeeze below the minimum of j, through
the quasisingular point II* as indicated by the
dashed arrow in Fig. 3.

The other extreme of a very high density of do-
nors may be acheived without changing the bulk

Log j

Log F

FIG. 3. Current density j, calculated for homogeneous
fields F; current density j[F(x,] caused by tunneling as-
sisted by Coulomb attractive centers; and current density
jlF(x()] as a function of the field at the position x, as de-
fined in Sec. III. Curves (a) and (b) represent current
densities j[F(xy)] for a crystal with lower and higher
donor density, respectively.
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properties by highly disordering a near-surface
region (e.g., via a gas discharge2°) before applying
the electrode. Here j[F(x,)] is further separated
from j[F(x;)] and, in Fig. 3, is represented by the
dashed curve (b) indicating injecting behavior. In
the domain regime the solution squeezes through
the quasisingular point 1* and reaches close to the
singular point III (dash-dotted arrow), repre-
senting an anode-adjacent high-field domain in
agreement with the experimental observation, r

V. DEPENDENCE ON OPTICAL EXCITATION
AND TEMPERATURE

With increasing optical excitation rate (a), the
currents j[F(x,)] and j[F(x,)] [curve pair (a) in Fig.
4] are not affected. However, j,(F)=eun,(@)F is
shifted upward with increasing optical excitation as
shown in Fig. 4 for a family of curves j,(F). The
intersect of j[F(x,)] and j,(F) moves toward higher
F with increasing a and one expects, therefore, an
increase of F; and of the current density in the do-
main -regime with excitation density, as experi-
mentally observed (Fig. 7 in Ref. 1).

For metal-CdS contacts with a low work function,
the tunneling field is considerably lower, i.e.,
jlF(x,)] and j[F(x,)] [curve pair (b) in Fig. 4] are
shifted toward lower fields. However, the critical
field given by Eq. (9) and shown as j,(F) in Fig. 4
at which the production of positive space charge in
the barrier region ceases, may be reached at x =x3
with x5 <xy. Since the field cannot be reduced
markedly below F(x;), the boundary field at x, is
essentially F(x;). Since j,(F) is steeper than

a1<a2<a3<a4

Log j

Log F

FIG. 4. j,(F) for different optical excitation densities
a, and j[F(x,)], j[F(xy)] for larger [curve pair (a)] and
smaller [(curve pair (b)] barrier heights for the same
photoconductor. j, is the limiting current density due to
space-charge saturation via field-enhanced ionization
[Eq. @)].

1447

j[F(xy)], one expects a smaller dependence of Fy;
on the optical excitation for less blocking contacts.
This is also observed experimentally (Fig, 7 in
Ref. 1).

The change of Fy and j with increasing tempera-
ture is less transparent since a number of effects
compete here: (i) The current density j, changes
because of #(7) and u(T). (ii) The mean free path,
hence x,, decreases with increasing T, (iii) The
critical field given by Eq. (9) decreases with in-
creasing 7.

Since X and F, given by Eq. (9) increases with
decreasing T, one expects Eq. (9) to control the
boundary condition for higher barriers at lower
temperatures. In this case, the field Fy; should
increase with decreasing temperatures (see Fig.

5) as j, shifts toward higher fields. A slight de-
crease in saturation current with decreasing tem-
perature is expected (Fig. 5) in spite of an increase
of j, (caused byanincreasein i andn at lower tem-
peratures because of reduction in scattering and of
thermal quenching). This behavior agrees qualita-
tively with the experimental results [Figs. 7 and
8(c) of Ref. 1]. At temperatures below 200 °K
however, the model used for field-enhanced ioniza-
tion!? must be refined, and a simple evaluation as
given above is not sufficient.

VI. TIME-DEPENDENT BEHAVIOR

The transient behavior of the current after the
applied voltage is switched [Figs. 9(a) and 9(b),
Ref. 1] can be explained by an analysis of the field-
aided redistribution of trapped and free carriers
near the cathode. We will show this by discussing
the particle current of the photoconductor near the
cathode.

Before an external voltage is applied, the distri-
bution of carriers is homogeneous in the bulk, and
for a given optical excitation is sufficiently de-
scribed by the two quasi-Fermi levels EF" and EFp'
This homogeneous region extends to a distance of
a few Debye screening lengths xp from the cathode,
where

Ao = (Bre€pkT/eN*)/2 | (13)

This length is of the order of 107 c¢m for an as-
sumed density of positively charged defects N* of
about 10'® cm™ (zero external field).

When an external voltage V, is applied, initially
a homogeneous external field F,=V,/L is superim-
posed to the local field at each point of the crystal
and a current starts to flow. However, since the
density of electrons in the barrier region is
smaller than in the bulk, the current in this region
cannot be carried completely by drift in the exter-
nal field. As a consequence, the field there must
increase, yielding a displacement-current contri-
bution €€,(3F/d¢) in the barrier region. This
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Log j

Log F

FIG. 5. j,(F) and j,(F) for two temperatures. j[F(x;)]
and j[F(xy)] are also given and do not markedly depend on
temperatures.

causes the field in the bulk and therefore the cur-
rent through the crystal, to decrease, since the
current in the bulk is exclusively given by drift.
As a result of this, the barrier will be further
depleted and widened. An increased positive space
charge is produced there to create and sustain the
increased fieid (Fig. 6, curves 2 and 3). With
the depletion of conductive electrons, a depletion
of trapped electrons in this region must follow,
with a time constant 7 characteristic for ionization
of filled traps of

7=(1/a*) e FcFrn /*T (14)

where a* is the frequency factor (typically 10
sec™) of the traps at the quasi-Fermi level Ep .
This trap depletion causes the positive space "
charge and the field in the barrier region to in-
crease further. The current through the crystal,
therefore, must continue to decrease.

If the barrier height is not much larger than the
distance of the quasi-Fermi level for electrons
from the conduction band, the before-mentioned
process may stop before the field in the barrier
region reaches values in the field ionization range.
The stationary current is then reached being sus-
tained even at the density minimum in the barrier
region by “drift.” However, such a situation can
only be achieved for very small applied voltages
and very low barriers, 21 as evident from the con-
tinuity equation

F(xm)=Fm;/nm (15)

(the index i refers to the crystal bulk).

In most occasions this is not the case, and the
field in the barrier region will increase further,
and field-enhanced ionization'* may help to empty

|3

deeper traps more rapidly. The current through
the crystal continues to decrease. This process
must stop when all traps are ionized, i.e., when
the maximum achievable positive space charge is
reached.® If the maximum field in the barrier
region is below the critical field for marked tun-
neling through the barrier, the barrier region must
continue to widen, with most of the applied voltage
drop across this region. Hence, the field in the
remaining bulk approaches zero and the current
through the crystal decreases to such a value as
can be sustained via carrier leakage through the
barrier (small amount of tunneling or thermal
emission over the barrier).

However, if the density of defects in the band gap
is sufficient to permit a positive space-charge lay-
er of about 10'® cm™, the field in the barrier region
can grow until it is large enough to allow for ex-
tensive tunneling. The current can stabilize at
rather high densities and the voltage drop in the
barrier region may amount to only a small fraction
of the applied voltage V (for V >1 V).

A. Space-Charge Creation Near the Cathode
(Thermal Depletion of Traps)

The behavior discussed above can be described
quantitatively in a somewhat simplified model by

ENERGY
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FIG. 6. Potential energy and carrier distribution vs
distance from the interface: 1, without applied field; 2,
immediately after an external field is applied; and 3,
sometime thereafter.
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analyzing the space-charge creation caused by
electron redistribution in traps. This mechanism
is probably the one observed in the kinetic analysis
of Ref. 1. Assuming a trap distribution N,(E), of
which n,(E) arefilled, one approximates the space
charge development as

8plx,t) [Fe oamy(E,x,2) JE
o8 g at

v

(neglecting changes in the distribution of free car-
riers). From Kkinetic arguments one obtains

(16)

ple,0)= [ dt’ [ {a(E) mi(B,x,8) - BE) nix, )
X[N{(E) = n,(E,x,t)] }dE , (17a)

with a(E) the ionization probability and B(E)=1v.g(E)
the capture coefficient of traps (being a product of
the velocity of electrons and the capture cross sec-
tion). From detailed balance,

pla,0)= [fat"| [ BIE) N(E)
xe EEF) IR [0 pnix, t)]dE
+j',f; B(E) Ny(E) [ng - nlx, )] |dE , (17b)

with ng=N, exp[~ (E, - Ep _)/T] and traps below the
quasi-Fermi level assumed to be filled before volt-
age was applied.

The change in field distribution in the barrier
region-is given by

F(x,t)=F(0,1) - (e/€€) [, plx’,t)ax’ . (18a)
Using the fact that [y F(x,f)dx=V, and that the ap-
plied voltage is time independent, and introducing
x¢(#), where for x >x, all parameters are space in-
dependent and p=0, one obtains

V X
F(0,%)= plx’t)dx’ dx.

JATN

(18b)

Since in the space-charge region #(x) is much
smaller than n,;, one may approximate the integral
in Eq. (18b) by p() x4(#) (1 =x4/2L), and using Eq.
(18a), one obtains

e [x ()
P plt) =57

12
Filx,, t)=f" (19)
This is the field in the crystal bulk which gives the
time-dependent current

jt)=euny Flxg,t) . (20a)

The time-dependence of the space-charge region
can be obtained from current continuity by compar-
ing the current generated in the space-charge re-
gion with that in the bulk:

p(t)

o (20b)

x(¢)=epny Flxg,t) ,

yielding [from Eq. (19)]

Fix,, t)+K(t) [Flxs, t)-V/L]=0 , (21a)
with
2€eyL (a,;(t))
K(t =i o) . 21b)
® = en“ng plt) (
The distance x,(f) can be obtained from Eq. (20a),
yielding
2 K(t) w2l [ap(t) xg(t) V] 0
xs(t)*lap(t /at]2 o ng L ’ (21c)

For very short times after the voltage is applied,
K(¢) is very large (> V/L) and one obtains from Eq.
(21a)

Flxs, t)~V/L , (22a)
and from Eq. (21c)
xglt) = ing V/ 2olt) (22b)

e., the field in the bulk, and therefore the cur-
rent, remain essentially constant and the depleted
region x,(¢) grows [as 8p(¢)/d¢ decreases®®], in or-
der to provide the current [see Eq. (20b)]. As the
time increases, the growth of p(¢) and the decrease
of 8p(t)/ 8t force the decrease of K(f). When K(¢)
has decreased far below V/L, which seemes to be
fulfilled experimentally?* for the cases discussed
in Ref. 1, one obtains from Eq. (21a)

Flxg, t)=[K@)V/L)? | (22¢)

Hence [using Eqs. (20a), (20b), (21b), and (22c)]
one sees that the current

o 9plt) (2eeqV\I/2
JB) e 5 ( eplt) ) (@3)
then decreases,? and the external field at the
boundary
v 1/2
Fo,0)~) + (; olt) V) (24)

increases monotonically in time, since p(¢) in-
creases and 9p/8t decreases in time®® as it be-
comes more difficult to ionize deeper and deeper
traps with progressing depletion. It should be
noted that with continuing depletion of deeper traps,
the space-charge region contracts (see Fig. 7),
since under these conditions

xs(t) =[2e€ V/e pt)t'? . (25)

This is because as more space charge is created in
the barrier region with the field there increasing,
the field in the bulk must decrease as the applied
voltage is kept constant (Fig. 8). Although the
thickness of the space-charge layer decreases, the
space-charge density increases more rapidly caus-
ing the product p(¢) x4(¢), and thus the field at the
boundary, to increase [see Eq. (24) and Fig. 8.
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FIG. 7. Space charge p(t), change of space charge
dp/dt, current density j, space-charge region thickness
x5, and external field at the metal-photoconductor boundary
F(0), as a function of elapsed time after switching on the
applied voltage.

B. Space-Charge Creation Near the Cathode
(Field-Enhanced Depletion of Traps)

When the field at the boundary [Eq. (24)] exceeds
the critical field for field-enhanced ionization, a
very rapid ionization of deep traps sets in, causing
the space charge and the field to increase in this
region, and resulting in further acceleration of the
trap ionization. It therefore seems justified to ap-
proximate this process by a step-mechanism, as-
suming that below a threshold field (¥ <F,) no field
ionization takes place, and that above F,, ioniza-
tion of the Coulomb-attractive deep trap level oc-
curs. If x, is the position at which F(x,,#)=F, and
p1(?) is the (“saturation”) space-charge density in
the region 0 <x <x;, one obtains by proper replace-
ments in Eq. (18a) and integrations:

V=[F,— (e/e€qy) pt) x1(t)] L + (e/ el p0)3[xL(t)
+p(t) xs'(t) %, (8) + P1(t)%lx1(t)]a} ’ (26)

where now x/(¢) is the width of the low-field (F <F,)
space-charge region. For the field in the bulk
[hence for the current—see Eq. (20a)] one conse-
quently obtains

F(xg, t)=F, - (e/€€q) p(t) x5(t) . (27)
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On the other hand, the current is determined in
the transient region by the sum of the two particle
currents stemming from the regions 0<x <x; and
Xq <X <Xy +Xg

ot
i) =41, ) +e gt()

x5(t) (28)

with j,(xy, ) = e(8p,(¢)/3) x,(t). Hence replacing
x4(f) in Eq. (27) from Eqgs. (20a) and (28), one ob-
tains

jt)=epng Flxg, t)
Fo+(1/€€q) plt) j by, ) Bp(2)/ 08]

= 29
I T (e/eey) bnopD) [optey T 20
and, for the distance x;(¢), it follows that
Fo_i
=it Jabxs, D)/ ety (29D)

ap(t)/ 8t/ uny+ (e/e€y) p(t) *

This implies that at this time, F(x},¢) has de-
creased to a value which is small compared to V/L
(the current has decreased considerably from its
initial value); hence [from Egs. (27) and (26)] one
obtains—instead of Eq. (26)—

V~(e/e€) {p@)slx )P + p(t) xi(t) %, ()
+p1 )3l (P}, (262)

which implies that as x¢(f) decreases, x,(f), and

therefore j,(x1,?) [see Eq. (29b)], must increase.
The increase of j,(xy, ) and of p(¢) [8p(#)/0¢]™ with

t, forces p(t) x4(¢) to decrease, and hence, F(x%,t)
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FIG. 8. (a) Simplified potential distribution and (b)
space-charge distribution at different times #;...t5 after
switching on the applied voltage (at ¢).
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and therefore j(¢) to increase, during this time
interval.?” The increase in j(¢) will be maintained
as long as x,(¢) increases, i.e., as long as Eq.
(262a) holds.

This process will terminate when total depletion
of the field ionized centers is achieved. Then a
new region of constant charge density p; ,, is cre-
ated and will spread from the cathode. Now x,(#),
the width of the region from which the current is
generated, hence the current, will start to de-
crease again, The kinetic of these processes is
pictured in Fig. 9. The field reaches its critical
value “at” the cathode at #, and increases®® while
the width x}(¢) decreases as x,(¢) increases (¢, to
t,). Finally, a totally depleted region is created
and x,(¢) also decreases (/;). The field “at” the
cathode continues to increase monotonically while
the current (see field in the bulk in Fig. 9) has de-
creased through a minimum (43, ¢3), increased (¢4),
and decreased again (f5).

C. Onset of Tunneling Through the Barrier

As the monotonically increasing field at the cath-
ode reaches another critical value, 89 tunneling
through the barrier starts, and an equation similar
to Eq. (28) with jy,, instead of j,(x,, ¢) determines
the current through the crystal. The current there-
fore increases again as long as 9p/8¢ #0, until final
stationarity is reached while the region where the

METAL PHOTOCONDUCTOR METAL

t t, —~ty —t
121 '[H[Q'/—alfa
) 4

METAL PHOTOCONDUCTOR METAL
DISTANCE, x
FIG. 9. (a) Potential and (b) field distribution at suc-

cessive times #;...#; after the critical field F, for field-
enhanced ionization is reached. See text.
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current was previously generated vanishes due to
partial trapping of electrons provided by the con-
tact. (For this discussion the hole current is ne-
glected since the measured gain factor is much
larger than 1.)

Small fluctuations from this equilibrium of such
current will be counteracted by either enhanced
tunneling and recombination or by enhanced space-
charge generation (as tunneling and recombination
decrease).

In summary, it is expected that after applying a
sufficiently large29 voltage, the current should first
decrease from an initially very high value repre-
senting drift in an essentially homogeneous external
field F,=V/L. This decrease is determined by
thermal ionization of traps in the space-charge
region of the blocking contact. If there is no other
process generating current (except minority car-
rier currents which are neglected in this paper
since they may predominate only at gainfactors less
than 1), the current should monotonically decrease
to the low limit of diffusion over the barrier (per-
fectly blocking contact). Only if a current-genera-
ting mechanism is unveiled as the field close to the
cathode increases, can a minimum occur in the
transient. In the present case it is suggested that,
as the field near the cathode starts to exceed val-
ues at which field ionization of defects becomes
marked, e.g., via field-enhanced ionization of
electrons from Coulomb attractive traps, an in-
crease of the current may occur until these traps
are depleted. As the high-field region close to the
cathode widens, the current should decrease again
until tunneling through the barrier starts, Then
the current must again increase, as self-stabiliza-
tion occurs via recombination of some of the tun-
neling electrons with empty traps in the space-
charge region (see Sec. III). Such nonmonotonic
behavior is indeed observed.®

When stationarity is approached, the positive
space-charge region must terminate rather abrupt-
ly near x,, since with increasing distance from the
cathode the tunneling electrons become increasing-
ly thermalized, that is, the reaction kinetics de-
termining the space charge behaves increasingly
bulklike, However, as mentioned in Sec. III, the
space charge tends to turn negative for fields ex-
ceeding the field of the cathode-adjacent high-field
domain (as, e.g., in the Fy;— Fy; transition), ex-
erting a strong compensating tendency on the posi-
tive space charge closer to the electrode (see Fig. 10).

Two current minima can be well distinguished at
low optical excitation (Figs. 9 of Ref. 1). From
the intermediate current maximum, one can esti-
mate the density of electrons released from deep
traps by field ionization:

ny = (1/ebwx;) [pexidt | (30)
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FIG. 10, Space-charge distribution near a blocking
cathode. The dash-dotted curve indicates the negative
space-charge fraction created near x; which aids to re-
duce the total space charge rapidly at x=x.

with b the thickness and w the width of the crystal.
From Fig. 9(a) in Ref. 1, one obtains for the addi-
tional particle current [ idf=~5x10"" Asec.

Hence, with a cross section of the crystal of ~3
X107 cm?, additionally released electrons cause a
space-charge layer density of ~10'® cm™ which is
sufficient to create a field of ~10® V/cm and initiate
tunneling.

With increased optical excitation, the quasi-
Fermi level is shifted closer to the conduction band
and thermal depletion of traps is increased. Thus,
a space-charge layer sufficient to create a field F,
can be formed more quickly, making the interme-
diate maximum occur at a shorter time in agree-
ment with the experimental observation.®

With further increased optical excitation, the
first current minimum is not resolved, and may
actually disappear as thermal release competes
more favorably with field ionization. However,
the second minimum can be followed over a wide
range of excitation densities and shifts nearly lin-
early towards shorter times with increasing exci-
tation. Such behavior can be expected since the
stabilizing recombination of tunneling electrons
will occur sooner when more shallow traps are
available for carrier redistribution at higher opti-
cal excitation. The time constant for this redistri-
bution is expected to be of the order of typical re-
distribution times of electrons near the Fermi
level (traps above Er remain depleted), also in
agreement with observation.

However, the kinetics are too complex to encour-
age a detailed quantitative analysis at this time. It
may suffice in the realm of this paper to show
qualitative agreement with the experiment to indi-

DUSSEL, BbER, AND STIRN Ki

cate that the proposed model may explain the elec-
tronic behavior of the space charge region near a
blocking contact on photoconducting CdS.

VII. SUMMARY

In photoconductive CdS the current through the
crystal is markedly influenced by blocking contacts
and is dependent on the type of contact metal. At
higher current densities this behavior is indepen-
dent of typical interlayers of absorbed gases. At
sufficient applied voltages, the observed current
densities are many orders of magnitude higher than
the thermal-emission saturation current over the
barrier. (The barrier height can be easily deter-
mined in the zero-current limit. )

It seems plausible, therefore, to assume that
tunneling through the barrier is the process re-
sponsible for current continuity at high current
densities. (Since the gain factor is larger than
one, a hole current cannot be responsible.) On the
other hand, the observed fields in the bulk of the
CdS (using a high-field domain analysis) are far
below the critical field for tunneling. This field
cannot increase when approaching the cathode (as
evidenced by the field of directions) as long as the
Poisson and simple transport equations are valid.
This leaves only a slab of a width of a few mean
free paths (~6x10"® cm) to build up a positive space
charge sufficient to increase the field to at least a
value necessary for tunneling of 3x10° V/cm.

This requires a level density of about 10*® cm™ for
storage of the space charge, which is at least one
order of magnitude larger than the level density
observed in the energy range accessible to conven-
tional experimental observation. Since storage

of a sufficient density of positive space charge can
only be envisaged in levels in the band gap (Sec.
II), this leaves only one possibility to explain the
observed behavior within the frame of known ef-
fects: namely, to assume that close to the (dark)
Fermi level in CdS, there exist donor levels pro-
duced by intrinsic defects of at least 10'® cm™ density.
(Cadmium interstitials or sulfur vacancies are sug-
gested as the native defect responsible for the lev-
el near 0.8 eV below the conduction band.) This
may account for the fact that CdS is not observed
to be p type under equilibrium doping conditions.

The presence of these high-density deep levels
with field-dependent kinetic coefficients is further
substantiated by the transient behavior of the cur-
rent. The formation of this space-charge layer is
caused by carrier depletion in an external field,
but can be maintained only by the specific recombi-
nation kinetics in the barrier region probably
caused by the highly anisotropic momentum distri-
bution'®'!! of tunneling electrons. This is evidenced
by the fact that in the crystal bulk, a negative
(rather than a positive) space charge is formed
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when the field increases into the 10° V/em range
(as observed in the transition range of anode-adja-
cent high-field domains'?).

The boundary conditions for the solution of the
Poisson and the transport equations are uniquely
determined at the bulk boundary of the above men-
tioned slab (i.e., at xy) by the interplay between
tunneling and carrier thermalization and recombi-
nation in this slab. Since the thickness of the slab
is nearly independent of doping (as long as the mean
free path is), the carrier density and the field at xg
are determined by the barrier height and the ability
to store space charge in the region x <x,. One con-
cludes that F(x,) will be smaller and n(x,) larger,
the higher the density of donors in the slab and the
lower the barrier height (work function between
metal and CdS). For a sufficiently high donor den-
sity within the slab, the individuality of the metal
will disappear with respect to the electrical prop-
erties of the entire crystal as is observed for high-
ly disordered CdS.?® The contact in the latter case
will have injecting characteristics, It is further
suggested that in materials where the individuality
of the metal does not show, such high density of
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deep native donors is always present30 (e.g.,

CdSe). On the other hand, it is expected that ma-
terials which have a much lower density of levels
useful for storage of the proper space charge
should show a thermionic-saturation current behav-
ior for majority carriers.

The proposed model is in qualitative agreement
with all observed experimental facts.! However, it
is too early for a quantitative analysis of the reac-
tion kinetic behavior in the space-charge region,
since the critical parameters, as e.g., anisotropy
of the momentum distribution of tunneling electrons,
the energy-dependent capture cross sections, the
energy and density of donor levels, and the scatter-
ing parameters in the space-charge region are
presently not sufficiently known.
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since (1/e€y)p()/(3p(t)/0t) > 1/eun, .

28The field at the cathode increases as long as the total
space-charge density pAx increases. This is assured even though
the voltage drop in the space-charge region [~ p(Ax)?] decreases
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as long as p increases more than Ax decreases (see Sec. VI B).
To finally allow for tunneling.
3The assumption of surface states for a “pinning of boundary
condition” in such materials seems to be misleading.
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Resistivity and “One Dimensionality” in TiZOf
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Energy bands in a Ti,O; lattice are parametrized in terms of overlap matrix elements. The requirements of
“one-dimensional” energy bands as an explanation for recently observed specific-heat anomalies are
compared to this parametrization and shown to be in conflict by three orders of magnitude. Resistivity
measurements on oriented samples are also shown and also fail to support the “one-dimensional” hypothesis.

Sjostrand and Keesom® have recently observed
anomalous low-temperature specific heats in sam-
ples of Ti;O; doped with a few percent V,0,. They
tentatively ascribe the anomalous behavior to the
presence of holes introduced by the V ions into a
“one-dimensional” valence band of the host materi-
al with a single low mass direction parallel to the
axis. Briefly, the density of electronic states va-
ries in proportion to £!/2 in a three-dimensional
structure but like £/2 in a one-dimensional ar-
ray, where E is the single-electron (or hole) en-
ergy as measured from the band edge. The singu-
larity in E"Y2 near the band edge provides an en-
ormous density of states for dopant-introduced
carriers and so has been proposed to fit the anom-
alies as observed.

The purpose of this communication is to report
resistivity measurements whose interpretation ap-
pears to conflict with one dimensionality in the
electronic structure and to consider and emphasize
the unavoidable implications of one dimensionality,
which would suggest that the hypothesis should be
accepted only with reluctance,

In considering the implications of the one-di-
mensional hypothesis, we need to consider the
question of the direction of that one dimension,
that is, which of the three crystal dimensions is
the favored one. Tiy,O;, with and without vanadi-
um, crystallizes in the corundum structure of sym-
metry D,;. The structure thus includes a pre-
ferred direction, the ¢ axis., To avoid breaking the
symmetry, therefore, the favored direction should
be the ¢ axis, or there should be three degenerate
sets of electronic states with favored directions
symmetrically arranged. Both alternatives en-
counter difficulties when the actual lattice struc-
ture is considered, however, as will be seen.

The crystal binding in Ti,Oy is strongly ionic in
character; three of the 22 electrons of a neutral Ti

atom are transferred to oxygen sites, leaving a
single d electron on the Ti** ion. In a rhombohe-
dral field, the five orbital atomic d states are split
into two pairs of doubly degenerate ¢, states and a
single nondegenerate g, state. That pure Ti,O; is
an insulator indicates that the g, state lies low-
est, 3% and it is the bands formed from this state
that we shall study for one dimensionality.

We shall work in the tight-binding approximation,
but since there are several Ti atoms in a unit cell,
the calculation is somewhat more complicated than
the usual textbook case.

When the atoms are brought together to form
molecules, the atomic wave functions overlap and
the atomic levels are split into molecular levels.
Bringing the molecules together to form a crystal
finely splits, or broadens, the molecular levels
into bands.

We can simplify somewhat by an approximation
in which we treat the individual Ti,0; molecules as
identical although in fact there are two sets of mol-
ecules related by a glide reflection. The long dis-
tance between inequivalent molecules of the same
unit cell in the actual structure makes this a slight
approximation and one which certainly does not
qualitatively change our conclusions.

TijO3 molecules are located on the vertices of a
rhombohedral lattice described by lattice vectors
as in Table I, which also relates them to the crys-
tal parameters ¢ and a.

In zeroth order, each Ti site affords one a,,
atomic function x,(r - r;). The one-electron Ham-
iltonian is

AT - -
H==5—V +§)v(r—-ri), (1)

where r; runs over all the Ti ions. We first con-
struct a molecular wave function,

Xm(T) = a1 X, (F—%dé)+a2xa(;+§d2) ; (2)



