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When ultrasound propagates in a piezoelectric semiconductor, the acoustoelectric interac-
tion between the acoustic flux and the conduction electrons leads to parametric amplification
of acoustic waves of frequencies different from that of the initial ultrasonic wave. The acousto-
electric interaction between the electrons and the ultrasound can be modified by applying a
strong magnetic field transverse to the direction of propagation of the ultrasound. The ap-
plication of the magnetic field is shown to lead to the enhancement of the parametric-amplifi-
cation process for waves whose frequency lies in the vicinity or below the frequency of maxi-
mum linear gain (or loss) in high-mobility semiconductors such as InSb or GaAs. However„
the threshold strain necessary to have the parametric amplification exceed the linear loss al-
so increases with magnetic field owing to the large enhancement of the linear electronic losses
with magnetic field.

I. INTRODUCTION

In a recent paper Conwell and Ganguly' have
discussed mixing of acoustic waves in piezoelec-
tric semiconductors due to the acoustoelectric in-
teraction between the waves and the conduction
electrons. The frequency mixing occurs because
of the interactions between electrons which are
bunched by the piezoelectric fields that accom-
pany the acoustic flux. Therefore, any process
which enhances the bunching of the carriers by
the piezoelectric field will enhance the parametric
amplification of acoustic flux while any process
which decreases the bunching will also decrease
the nonlinear gain due to parametric amplifica-
tion. How well the electrons are bunched by the
piezoelectric field depends upon how fast they can
follow the field, i, e. , their mobility, and how

fast the density gradients resulting from the
bunching are smoothed out as a result of diffu-
sion.

If a strong magnetic field is applied transverse
to the direction of propagation of the ultrasound,
both the mobility and the diffusion coefficient of
the carriers are reduced. This reduction is par-
ticularly evident in high-mobility semiconductors
such as InSb and GaAs. Whether the application
of the magnetic field will enhance or decrease
bunching will depend upon whether the reduction
of the mobility, which prevents the carriers from
following the piezoelectric field and therefore
leads to debunching, is more important than the
reduction of diffusion which enhances the bunch-
ing. If it is more important, then the presence of
the field will decrease the parametric amplifica-
tion of acoustic waves, while, if the reduction of
diffusion is more important, the parametric pro-
cesses will be enhanced.

The effect of a transverse magnetic field on the

linear gain or loss due to the acoustoelectric in-
teraction has been predicted and observed. ' In
a previous paper, the author' calculated the effect
of the transverse magnetic field on second-har-
monic generation and found that the field modified
both the magnitude and the frequency dependence
of the harmonic generation. In this paper, we
present a more detailed theory of the mixing of
acoustic waves in a transverse magnetic field fol-
lowing essentially along the same lines as Ref. 1
and a previous paper. ' We then apply our results
to a discussion of subharmonic generation in high-
mobility piezoelectric semiconductors such as
InSb and GaAs.

II. THEORY

D; = eE, +4p'P, &AS&a,

2 &X( 8X j'
V 5= —4'(n -np),

(2)

(3)

(4)

The acoustoelectric interaction between ultra-
sound and the conduction electrons can be de-
scribed by the equation of motion of the lattice,
the piezoelectric equations of state, Mmnvell's
equations, and an equation for the electronic cur-
rent induced by the ultrasound. Since acoustic
waves which induce transverse piezoelectric fields
have a much weaker coupling to the electrons than
those which induce longitudinal piezoelectric
fields, we need only Poisson's equation and the
equation of continuity to determine the electric
displacement in terms of the electronic current
induced by the wave. The relevant set of equa-
tions is
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—e —+V' J=O.
Bt (6)

This set of equations needs to be supplemented by
an equation for the electronic current J. Under
conditions where (dg «1 and ql «1 or &g»1 and

qR «1, where &o is the cyclotron frequency, 7

the electron relaxation time, l the electron mean
free path, and R the Larmor radius, we can write
down the following phenomenological equation for
the current density:

J=neph+ (p/c) J xB eD—Zn. (7)

Following along the same lines as Ref. 1, we
write

4(((444'F 44m(&o+ e (8a)

g Q g ei(&4m r 44m-t&
O+ m m (Sb)

with similar equations for the carrier density,
magnetic field, and strain. Using (8) in E(ls.
(1)-(V) and neglecting the transverse electric
fields, we obtain the following relation which de-
termines J „:

rb+ & /&~

1 pE„=E„+E„, (10a)

4((P yb+i&a /&oD ) (10b)r
i p 4((P ~, ~~2yb+ i&a, /&uD'&~

(10c)

1E x=—

i p, 4((P ~&a yb i~ +/& 2DSj*S3e
y, , r, r, r,

(10d)

Here

2„, .= k„,„.v k ~ —k, b = 1+ ((4&o~)

r = 1 —~~/l'4,

oo is the dc conductivity, +~ is the diffusion fre-
quency, and V„ is the electron drift velocity. Equa-
tion (9) is valid for both the Hall and Corbine geo-
metries except that in the latter case we have the
extra condition' that vo7» 1 and of course the form
of V„differs for the two situations.

We now wish to limit ourselves to the case
where we have three waves present where the
highest frequency ~3= &1+ ~~. Since we are in-
terested in the case of weak interaction. .. we
assume that the relation between the fields and

the strains at a frequency ~ is the same as in
the absence of the interaction. We shall also re-
strict ourselves to treating the situation in which
the three waves are collinear. It has been shown

that in the presence of linear gain or loss, the
importance of phase matching decreases. Writing
the piezoelectric field as the first-order field
plus a correction due to the interaction between
waves, we have

dU1 ihx
dx

c 1U1 —~1U2 U3e (12a)

dUp ihx= —&AU~ —q2U1 U3e
dx

dU3 -inx
dx

= —&3U3+ g3U1 Ul e

where the absorption coefficient a; has been de-
rived previously' and

i &( cu, 4((P 2
P 2yb i~+,/ (dn

2p ~ ~
&4&& e

'L P, R~ 471' 2+5 + S 3
~3 1 22v, ~3 & C I', r, I"3

1 = yb+i(~ /~D+ (,/&u ), a=@3—k2 —k, ,

P is the relevant'component of the piezoelectric
tensor, and &u, = 4((oo/e is the dielectric relaxa-
tion frequency. Except for factors of 2 which
arise from a difference in the definition of our
expansion coefficients in (8), our results go over
to those previous obtained in the limit of zero
magnetic field (b = 1).

Following the same procedure as in Ref. 1, we
write the sound-wave amplitude in the form

fi (&)8 i(k(X-t4( 4&

Because of the smallness of the electromechanical
coupling constant, the amplitude will change very
little over the distance of a wavelength, and we
obtain the following set of first-order equations
for U1, U„and U3:

ip 4m4' u. yb ~ 4~,/td
)4r1 I"2 r3

(10e)

The expression for q2 is identical to that for q,
with the subscripts 1 and 2 interchanged. Using
the set of coupled e(luations in E(l. (13), we are
now in a position to discuss various parametric
processes.
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A. Down Conversion

When the amplitude of the acoustic wave at the
highest of the three frequencies ~3 is large while
the amplitude at both ~1 and ~2 is small, we can
decouple Eq. (12c) by neglecting the second term
on the right-hand side as being small compared to
the first term. This neglects the depletion of the
pump and is therefore only valid at small x. As
a result, the second terms on the right-hand side
of Eqs. (12a) and (12b) act as sources at the fre-
quencies co1 and ('2 thereby leading to nonlinear
gain at the lower frequencies. Making these ap-
proximations, the solution to Eq. (12c) is

Us(x)= Us(0) e 's",
while the solutions to Eq. (12a) and (12b) are

U&(x) = (1/2m) exp[- s((s&+ (ss)x]e' "'
((gq Us (0)Us(0)

+ [ —,'((ss —c(, —iL) ]U, (G)j sinhmx

+ 2m'(0) coshmx), (14a)

Uf (x) = (1/2m) exp [- s(Q&+ Qs) x]e ' "

&&([s'(ns - (s, —i a)Us (0) —7)sp'Usp'(0) U, (0)]sinhmx

—mUg(0) coshmx), (14b)
where

( [ 2(+s +( —s~)]'+n(nf
I
Us(0)

I

')'".
Equation (14) has been derived under the assump-
tion the n3x «1. When this assumption is relaxed,
the solution becomes

Ui(x) = exp[- -'(~i+ ~s+ os)x]

X, „s Us(0)
Q3(1/2) f1+(n2 n1)/Of ], ~1~2

3

+BI 1/2 3 % I n3x'
-1/2[1+( n 2-n1)/n3] O.3 j

(15)
where f„(x) is the imaginary Bessel function of or-
der n and argument x. In the degenerate case
where ~1= ~2 and we have subharmonic generation,
the latter result simplifies to

llllll l*l p (p(
P 3( ( p (p()Isl I IS (0) I

&& e -
I p ( I s s (0) I Jp ((() (18 )

where

E(x)=(e '"-1)lnsl and q=q, /ks .

The behavior of the above solutions has been
discussed in great detail in Ref, 1. It is found
that if the real part of m is larger than the imag-
inary part, then for large enough x, but with
~3x «1,

(~,/c)(4mp/e)' p
2V, (yb) + (&u/2(dz&+ 2(((,/(d)

4(yb) + (~/2&uD)
(yb)'+ (~/~~+ ~./~)' (19)

If the drift velocity V„ is large enough so that e,
& 0, then Eq. (18) yields both a linear and a nonlin-
ear gain for the subharmonic ~, = 2. On the
other hand, if n, &0, then there will only be a net
gain if Isl I ISs(0) I & n, . Thus for small strains at
the pump frequency &, there will be no net gain
while at larger strains there will be, depending
upon the value of tg I for the particular values of
the parameters involved.

In the absence of the magnetic field, it was
found that the rate of the nonlinear gain was great-
est at the subharmonic for a wide range of pump
frequencies ~. We expect this to also be the case
in the presence of magnetic fields since the subhar-
monic was favored to higher pump frequencies
when y &0 than is the case when y= 0. ' As can be
seen from Eqs. (12) and (19), the presence of the
magnetic field can be taken into account in the
expressions for g, by replacing y by yb. There-
fore, the effect of the magnetic field is formally
the same as having a larger value of y. Of course,
it would require much larger electric fields to get
a yb value which could be obtained by applying only
moderate magnetic fields in a high-mobility semi-
conductor.

Since the gain is expected to be greatest for sub-
harmonic generation, we will limit ourselves to a
discussion of the dependence of lgj on magnetic
field and pump frequency. In high-mobility semi-
conductors such as n-type InSb or GaAs, the di-
electric relaxation frequency &, is much greater
than the diffusion frequency &D. Under these con-
ditions lq l has a maximum as a function of mag-
netic field. This can be seen from Fig. 1 in which
the ratio I si(B) I/ Isl(0) I is plotted as a function of
magnetic field for various frequencies. The pa-
rameters used in Fig. 1 are characteristic of n-
type InSb at V7 'K. For frequencies in the vicinity
or below the frequency of maximum linear gain,

= (&, ~~)"', iq I is enhanced by factors of up to
several orders of magnitude by the application of
the magnetic field. In Fig. 2, lql is shown as a
function of pump frequency for various values of b.

U, (x) =C e

where the nonlinear gain coeff icient is
1

QN(, = —s(Qg+ o.'s)+ Rem

In particular, for the degenerate case &3= += 2~1
= 2&2

(18)

where
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FIG. 1. Ratio )0(B)i/)0(0)l is
shown as a function of magnetic field
for various frequencies and with Iy)
=1. The values of a~=2. 5&& 10
rad/sec and uc =2. 5&& 10 rad/sec
characteristic of n-type InSb at
77'K with a mobility of 105 cm2/V
sec and a carrier density of 2. 5
&& 10 cm have been used in making
the calculation.
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FIG. 2. Normalized nonlinear
gain I pl f. (p/2p~, )G3, (47rP/~)'P] ' is
shown as a function of frequency for
various values of b and with )yl =1.
For n-type InSb, the normalization
coefficient is 8 && 10 .
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In the absence of the magnetic field, lg I has a
maximum at a pump frequency about a little over
twice the frequency of maximum linear gain. As
the magnetic field initially increases, the curves
are shifted upwards with the increase being greater
on the low-frequency side of the peak than on the
high-frequency side. This is due to the increased
bunching which occurs as the field reduces the dif-
fusion of the electrons out of the minima in the pi-
ezoelectric potential. Finally, at higher magnetic
fields, the curve is shifted downwards and the peak
is flattened out as the electrons are no longer able
to follow the piezoelectric fields due to the reduc-
tion of their mobility.

For n-type InSb with a mobility at 7'7 'K of 10'
cm'/V sec, b = 10' corresponds to a magnetic field
of 10 kG, while for n-type GaAs with a lower mo-
bility of 8000 cm /Vsec, b=10 corresponds to a,

magnetic field of 125 kG. With even lower-mobility
semiconductors such as CdS with a mobility of 300
cm /V sec, any significant enhancement of subhar-
monic generation would only occur at magnetic
fields in the megagauss region. Since over a wide
range of frequencies, the maximum enhancement
of the subharmonic generation occurs from 5 = 10
to 10', one would only expect significant effects in
high-mobility semiconductors where the peak in
the subharmonic generation with field would occur
at reasonable field strengths.

Finally, in Fig. 3 we show the magnitude of the
threshold strain at the pump frequency, which is
needed to have the nonlinear gain at the subharmon-
ic exceed the linear electronic losses for y= 1

(V, = 0) as a function of b. Although the nonlinear
gain increases with magnetic field, the linear
electronic losses increase even more rapidly with
magnetic field as shown in Fig. 4. As a result,
the threshold strain for net amplification increases
with magnetic field.

Uq(x)= Uq(0) e '", U2(x)= U2(0) e

Using this solution in Eq. (12c), we find that

(20)

&~Ui(0) U~(0)U3x =
Qg —et' —Qg —2 6

xg exp[- (n, + n, +i&)xj —e '3"j . (21)

When &', = ~„Eq. (21) reduces to the result we ob-
tained for the case of second harmonic generation. '
Since this case has been discussed previously, we
will not discuss it further in this paper.

B. Up conversion

If initially there are waves present at frequen-
cies && and &2, then a third wave will be generated
at the frequency ~3. At small enough x where the
amplitude of the wave of frequency ~3 is still
small, we can neglect the terms containing U3 in

(12a) and (12b) to solve for U, and Uz,
.

FIG. 3. Threshold strain for the net
amplification of the subharmonic vs Lf)

for y= 1 and the parameters character-
istic of g-type Insb is shown for vari-
ous pump frequencies.
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FIG. 4. Ratio o. (B)/z(0) at the
subharmonic is shown as a function
of magnetic field for various pump
frequencies and for y= 1.
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III. DISCUSSION

In Sec. II, we have shown that the application
of a dc magnetic field will lead to an enhancement
of the nonlinear gain at the subharmonic frequency.
From the general form of Eqs. (13) and (14), we
expect a similar enhancement of all parametric
processes with magnetic field. However, as can
readily be seen by comparing Figs. 1 and 4, the
enhancement of the linear electronic losses by
the magnetic field is much greater than the en-
hancement of the nonlinear gain. Therefore, one
expects that the effect of subharmonic generation
to become important at lower pump strains in the
absence of the field than in its presence. How-

ever, the enhancement of parametric effects with
magnetic field would still occur when the frequency
being parametrically amplified was not initially
present such as in the case of second-harmonic
generation.

The growth of acoustic flux in a magnetic field
has recently been observed via Brillouin scatter-
ing in GaAs at room temperatures. In the weak-
flux regime, the measurements were in excellent
agreement with the predictions of the small signal
theory. However, at higher-flux level, it was
found that the enhancement of the growth rate with
field decreased below that predicted by the small
signal theory and finally in the strong-flux re-

gime, the flux was found to saturate at intensities
which were essentially independent of magnetic
field. The theory presented here might account
for some of the features in the intermediate-flux
regime. Because of the large linear gain in the
magnetic field, the flux will grow more rapidly
than in the absence of the field. At flux levels
where the nonlinear gain became more important
than the linear electronic gain, the growth rate
would not be as strongly dependent on the f ield as
in the weak-flux regime since Ig I has a weaker
magnetic field dependence than n, especially in
the vicinity of the frequency ~ . Finally, when
the strong-flux regime is attained one would not
expect the present theory to be valid since it as-
sumes the linear growth rate is unaffected by the
nonlinear interactions. Alternatively, since the
linear growth rate is so enhanced by the field, the
flux may grow into the strong-flux regime before
pump strains at which the parametric-amplifica-
tion effects become important are attained.

Note added in Proof. In a private communication,
Professor Bray has pointed out that in the experi-
ments reported in Ref. 7, the value of yb in the
presence of the magnetic field was chosen to be
equal to the value of y in the absence of the field.
Since in our theory, the magnetic field comes in
only through the parameter b, the enhancement of
the growth rate should have been the same both
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with an without the magnetic field. The fact that
the rates differed in the experiment indicates that

in the strong flux regime, the theory presented
here must be modified.
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We present a new calculation of the absorption due to transitions of holes between neutral
acceptors and the various valence-band sublevels in GaAs and GaP. The acceptor wave func-
tion was approximated by a previously suggested expression for ground-state wave functions
appropriate to complicated band extrema. Numerical calculations of the absorption from inter-
valence-band transitions of free holes and neutral acceptors have been performed. Good
agreement with experimental results is obtained.

I. INTRODUCTION

Optical transitions of free holes between pairs
of the three sublevels of the valence band inGaAs
and GaP give rise to a characteristic infrared
absorption. In GaAs at room temperature, the
absorption has qualitatively the same shape as
the absorption due to the same transitions among
the valence-band levels of Ge. ' 7 Balslev cal-
culated the room- temperature absorption in P-
type GaAs and obtained good agreement with ex-
perimental results. No interpretation of the ab-
sorption at 77 'K ~ has been published. Recently,
Wiley and DiDomenico (WD) measured the infra-
red absorption of P-type GaP. In contrast to
GaAs, the absorption spectrum of GaP has no
significant structure. WD made a calculation of
the room-temperature absorption, based on the
model of Kahn for inter-valence-band transitions.
To get agreement with experimental results it
was necessary to use two adjustable parameters
plus a contribution from intraband free-carrier
absorption. At SO 'K, WD identified the absorp-
tion as being due to neutral acceptors. No calcu-
lation of this absorption was made.

In this work, we present a model for absorption
from neutral acceptors with applications to GaAs
and GaP. The basic absorption mechanism is
that of transitions of holes from the acceptor state
to the sublevels of the valence band. In Sec. II
we develop the necessary theory for absorption

due to such transitions. Analytical calculations
based on a simple band structure are performed
and a comparison is made with the absorption
from inter-valence-band transitions of free holes.
In order to perform numerical calculations on
GaAs and GaP we make approximations for the
acceptor wave function. Here, we use a previous-
ly analyzed form for the ground-state wave func-
tion. In Sec. III we give a description of the
computation of the absorption in a model '7 which
takes into account the detailed structure of the
valence band and the optical matrix elements. In
Sec. IV we present experimental results for the
absorption of P-type GaAs together with the experi-
mental results of WD for P-type GaP. The experi-
mental data are compared with computed spectra
for inter-valence-band absorption and for absorp-
tion from neutral acceptors.

H. ABSORPTION FR,OM NEUTRAL ACCEPTORS

A. Theory

At a sufficiently low temperature, the free holes
in a semiconductor return to the acceptor ions and
then neutralize these negatively charged states.
The hole is in other words bound to the negative
acceptor center. Let the valence-band Bloch
functions with wave vector k be given by p, r(r)
=&~r(r)e"', where i = 1, 2, ands denotetheheavy-
hole band, light-hole band, and spin-orbit split-
off band, respectively. u, ,p(r) are periodic func-


