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A simple quasiharmonic model, employing a valence~force approach, is used to calculate
the Griineisen functions and thermal expansion of tellurium. The calculations illustrate the
use of a new thermodynamic formalism for treating internal strain and reveal explicitly the
effect that an internal degree of freedom has upon the macroscopic properties. The valence-
force picture of tellurium is critically discussed in the light of a comparison of the calculations
with experiment. Suggestions are made for further experimental work and for improvements

. in the theoretical model.

L. INTRODUCTION

The present paper is concerned with the appli-
cation of quasiharmonic theory to calculate the
Griineisen functions and thermal expansion for a
simple lattice-dynamical model of tellurium. The
structure of tellurium consists of parallel helical
chains of atoms, disposed in an hexagonal array,
and belongs to the space group D} or D§ (see Fig.
1), in the Schoenflies notation, equivalent to
P3,21 or P3;21 in the Hermann-Mauguin notation,
where the alternatives represent helices of op-
posite handedness. The neighboring element in
group VIb, selenium, also has this structure but
the present calculations are applied specifically
to tellurium since this has been far more widely
studied experimentally.

A considerable amount of experimental data are
available for comparison with “harmonic” lattice
models. The zone-center optic frequencies have
been measured by infrared!? and, more recently,
Raman studies. ®** Using coherent neutron scat-
tering, Powell and Martel® have measured phonon
dispersion curves along certain high-symmetry
directions and their measurements correlate well
with the optical measurements, and also with fre-
quency spectra obtained from earlier neutron work
of Kotov et al.® and Gissler and Axmann’ (although
the former’s value for the highest-frequency peak
appears to be a little high). Data also exist for the

elastic constants® between 100 and 300 °K and the
specific heat® !! down to 1 °K.

The thermal-expansion coefficients of a, and
a, of tellurium have been measured by a variety
of techniques'?™'7 at temperatures from 2 up to
500 °K, and the different measurements are in
reasonably close agreement with each other. The
data have been analyzed in terms of the Griineisen
functionsy, and y,, and, as for the thermal ex-
pansion, the behavior is strongly anisotropic.

The tellurium structure retains an internal degree
of freedom during thermal expansion so that an
internal expansion coefficient can also be mea-
sured. %

Before applying quasiharmonic theory to calcu-
late the thermal expansion it was necessary to
begin with a harmonic model which was reasonably
compatible with experiment but which allowed an-
harmonicity to be introduced in a straightforward
and meaningful way. For this reason a model
was chosen based on that of Hulin!® and using a
force field approach similar to the models put
forward by Geick and Schroder!® and Nakayama
et al.?® The shortcomings of these models are
pointed out but they are preferable to the more
successful model of Pine and Dresselhaus* which
involves too many adjustable parameters and is
too generalized for present purposes.

As mentioned above, when tellurium expands on
heating it maintains an internal degree of freedom.
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FIG. 1. (a) View of the tellurium structure looking
down the trigonal z axis (after Hulin, Ref. 18). Atoms
are distinguished according to their projections along this
axis: @, in plane; O, #c above plane; @, 2c above plane.
(b) Side view of a section of one helical chain (after Hulin,
Ref. 18).

For the purposes of calculation, this situation re-
quires a thermodynamic treatment in which both
external and internal strains are treated on the
same footing. The necessary thermodynamic for-
malism has been presented and specifically applied
to the tellurium structure in an earlier paper. 2!

In Sec. II the aspects of this formalism relevant

to the present work are summarized.

Sections Il and IV deal with a description of the
lattice model and outline the method of calcula-
tion. In Sec. V the behavior of the harmonic mod-
el employed as a basis for the quasiharmonic cal-
culations is compared with experimental measure-
ments of the phonon dispersion curves, the har-
monic-frequency spectrum, elastic constants, and
specific heat. In Sec. VI the calculated Griineisen
functions and thermal-expansion coefficients are
presented as functions of temperature for a very
simple anharmonic model and the results are com-
pared with experiment.

In Sec. VII the valence-force approach used in
the present work is critically discussed and sug-
gestions are made for improving the model and
for further experimental work.

II. PRELIMINARY THEORY

In a thermodynamic treatment of thermal ex-
pansion under isotropic (in this case, zero) pres-
sure, only strains which preserve the full crystal
symmetry need be considered. For the tellurium
structure, as for all axial crystals, there are
only two such external strains; a uniform exten-
sion in all directions perpendicular to the unique
axis, and an extension along this axis. Corre-
sponding strain coordinates are conveniently de-
fined for the purposes of calculation by

n,=(@—-a)/a’ mn,=(-c%/c°, (1)

where aand ¢ arethe hexagonal-unit-cell parameters
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and the zero superscript denotes evaluation at the
reference configuration. Retention of crystal sym-
metry in the tellurium structure also allows one
internal degree of freedom and hence one internal
strain coordinate is required. This is denoted by
€ as it is conveniently defined in terms of the
radius R of the helical chains,

€x=(R-RY/R°. (2)

The three symmetry-preserving strain coordi-
nates, %, 7, and €y form the basis for a “general
thermodynamic regime” in which all three coordi-
nates are treated as independent variables. All
thermodynamic quantities calculated from the the-
oretical model presented later belong to this re-
gime, and they must then be related to quantities
measured experimentally. The thermodynamic
relationships involved have been presented in de-
tail for the tellurium structure in an earlier paper
and will only be summarized here. The same
notation will be used, i.e., capital script letters
denote quantities in the general regime and capital
italic subscripts refer to the complete set of
external and internal coordinates. For example
8,4 (A=a,c,R) represents the strains 7,, 7., and
€r. 7, represents the corresponding conjugate
stresses, defined by considering the work done
through the symmetry-preserving coordinates

dW=VO‘fAdgA ) (3)

21

where V° is the volume in the reference configura-
tion and the Einstein summation convention is used.
The Helmholtz energy & and Gibbs energy G are
defined in a manner analogous to normal “macro-
scopic” thermodynamics

U-TS=F = G+V°7, 8, . (4)

The three thermal expansion coefficients @,
(A=a,c,R) comprise the two external expansion
coefficients, written more commonly as a, and q,
and an internal expansion coefficient ,

LA _(am =(8€R)
a.l."( BT)T ’ au—( 8T>1 , Qg oT)r (5)

These can be calculated theoretically by means of
the relation

Gr=CgsipTp/V°, (8)

where C4 is. the heat capacity at constant external
and internal strain, $ I is an isothermal elastic
compliance obtained as the inverse of the matrix
e7l,, comprising six independent elastic stiffnesses
exemplified by

1 ( 8%g >
T _ 2 =eT 7
eaR VO <9na8€R T Ra » ( )

and I'; represents the three Griineisen functions
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1 (as) 1 (as)
r =— I =—
‘4 (‘38 ana c,R,T, ¢ (‘35 anc a,R,T, (8)

1 (88 )
o= —|— .
R eé’ (3€R a,c, T

The more familiar Griineisen functions and elas-
tic constants in the “macroscopic regime” are ob-
tained through the relations

Cg ( FEGTE )

Ya 2Cn a e%n ’ 9)
e T .ct

Yu= . (rc— _%TEL) ’ (10)
c, RR

C Tegl'2

Sh-=1+ ) (11)

Cs e Zr

2(cTi+ch)=ch=ChH - (Ck)%/Ckr, (12)

2
¢hy=ch=eL~(Cxc)/ Chr (13)

Ay =ci=Cr-elely/chy. (14)

The second terms in the right-hand side of these
equations arise due to the “internal relaxation”
which occurs when the constraint of constant chain
radius is lifted. Notice that the macroscopic
Grineisen functions y, and vy, do not depend
purely on the anhavmonic parvt of the lattice poten-
tial as they do in cvystals with no intevnal degrees
of freedom. This is because the internal elastic
properties are involved in determining the degree
of internal relaxation. It is the I'j which are now
the purely “anharmonic” quantities.

For 7, 7, and € defined as in Egs. (1) and
(2) the left-hand-side equalities in Eqs. (12)-(14)
only hold if evaluated at the reference configura-
tion and for zero stress. This is the case for all
the calculations presented later. Results for the
theoretical model show that the ratio C,/e g used
in Egqs. (9) and (10) is within 0. 05% of unity even
at temperatures well above @,.

III. LATTICE MODEL

The model employs potentials analogous to those
of the Hulin model, and these are written as ¢;(r;),
¢,(7,), and ¢y(cosh), were 7; is the “in-chain”
distance between nearest neighbors, 7, is the “be-
tween-chain” distance between next nearest neigh-
bors, and 6 is the angle between adjacent bonds
in a chain (see Fig. 1). “Tensions” ¢, “force
constants” 2, and dimensionless “anharmonicities”
A are defined from derivatives of these potentials:

ti= i)/ 7, ki=i (ry), Aj=7i0) " (r)/0i(ry),
(15)
tb=¢£(7’b)/7’b: ko= 0% (1s), Ap=7s05" )/ ¢35 (ry)
! (16)
te=¢§(cos 0)/7'%’ ko= ¢0” (COSG)/’}’%,

Ay= b/ (cosB)/p’’(cosh) . (17)

The primes denote successive orders of differen-
tiation with respect to the arguments and all deriv-
atives are evaluated at the equilibrium values of
73, ¥y and 6.

These three interactions provide a lattice which
is stable against macroscopic deformations. How-
ever, to be stable against all small deformations,
all the normal-mode frequencies must be real and
positive. For simple models which represent the
between-chain interactions by a single central-
force pair potential of the type ¢,(7,) above, 1820
some normal-mode frequencies are zero at the
Brillouin-zone boundary. Following the suggestion
of Geick and Schroder!? this instability is removed
by including a central-force interaction ¢,(a) be-
tween fourth nearest neighbors which occupy ad-
jacent chains and lie in a plane perpendicular to the
the z axis, at a distance apart given by the lattice
parameter a. Potential parameters are defined
as before,

ta=qbf,(a)/a, ka: ;,(a)! Aa:“@:”(a)/(b;'(a) (18)

In all the calculations to be presented, the stress
is assumed to be zero in the reference configura-
tion, and hence {;=%,=¢,=0. The normal-mode
frequencies in the harmonic approximation are
then determined by the force constants k&, &y, kg,
and k,. However, in order to improve the fit to
the “harmonic” properties it has proved necessary
to introduce second-order harmonic interactions
into the valence-force field within the helical
chains, hence making them more “molecular” in
nature. Two interaction constants are employed:
k;; aforce constant describing an interaction be-
tween adjacent bonds in a chain, and &4, describing
an interaction between an in-chain bond and the
angle which it forms with an adjacent in-chain
bond.

The total strain-energy density of the static lat-
tice, to third order in the potential arguments,
and for zero initial stress, then becomes

(& = 3°)/V=(1/20)[ 3k;(67;)% + 6k, (575)% + 373 ky(6 cosb)?
+ 9k, (6a)% + 6k, (67;)%+ 127 k407 ;6c080
+ (By /7 )A(67,) + 2(ky/7) Ay (67,)°
+ 72 koA y(6c0s0)®+ 3(k,/a)A (6a)], (19)

where & is the total static lattice potential and v
is the volume of the hexagonal unit cell

v==%+v3a% . (20)

Equation (19) serves to define k;; and k;,. Double
differentiation of this expression with respect to
the strains 7,, 7,, and € yields the elastic stiff-
nesses @ 45 defined by Eq. (7) (no superscript T
is necessary since in the strict harmonic approxi-
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mation the only contribution is from the static lat-
tice potential).

The parameters A;, A,, A, and A, provide con-
tributions purely to the anharmonic part of the
total lattice potential (i.e., terms higher than
second order in the atomic displacements). They
do not therefore enter into calculations of the nor-
mal-mode frequencies using the harmonic approxi-
mation. (Even when these parameters are zero,
the lattice potential is not “harmonic” since the
third-order and higher derivatives of the total lat-
tice potential still contain contributions from the
first and second derivatives of the individual va-
lence-force potentials. 2 In the harmonic approxi-
mation, therefore, such higher-order terms are
ignored, but not necessarily zero.)

IV. METHOD OF CALCULATION

In the harmonic approximation the normal-mode
frequencies w(d, s) for any allowed wave vector §
are calculated by solving the secular equation

D@)2&(@, s) =w*@, s)8(q, s) , (21)

where the dynamical matrix _12(5) is a 9X9 Hermi-
tian matrix (there are three atoms per unit cell
and no centers of inversion) and &(g s) is the com-
plex eigenvector corresponding to the sth eigen-
value w%{, s), where s=1...9. D(J) was con-
structed, using standard Born-von Karmé4n theory,
from the harmonic force constants defined in Sec.
'III (for more detail of the calculation see Gibbons #).
The secular equation was solved for points form-
ing a regular mesh over reciprocal space. The
“root-sampling” method was then used to obtain
the harmonic-frequency spectrum, G(w), and in-
tegrals over G(w) such as the heat capacity Cg:
eg =21 C(qs) . (22)
qyS
The summation is over all normal modes ¢g,s, and
C(q, s) is the heat-capacity contribution from each
mode:

)= HIiw G, )/ RT]en /"

Clg, s (@ oTFT Z 12 . (23)

In the quasiharmonic approximation the normal-
mode frequencies are allowed to be strain depen-
dent. Individual normal-mode Griineisen param-
eters are defined to express this strain depen-
dence:

81n S
nGe-- (He8s)) uogen. @
) SA 8!
These were calculated for each point in the in-
tegration mesh over reciprocal space, using the
first-order perturbation-theory result

T,@ ) =-€2®Es)DY@[E7G )Y/ 2w ™),
(25)

where (0) specifies zero-order solutions to the
secular equation (21) (if the strain lifts a degen-
eracy, eigenvectors must be taken which are valid
in the strained state), and D‘4’(q) is the first-or-
der coefficient matrix obtained when D({) is ex-
panded to first order in each of the sy—mmetry—
preserving strains 7,, 7, and € ;. The phase-
dependent quantities exp[:(d- ¥;)] in D(d) are inde-
pendent of strain to first order so that each D*(q)
matrix is completely determined by the first-or-
der strain coefficients of the Born-von Kirman -
force-constant matrices ®(,,). These are func-
tions of geometry (a, c,R), tensions (t;,%,, e, t,),
and force constants (&, &, by, 2,), and all these
quantities change with strain. Note that although
the “tensions” ¢;, ¢,, tg and ¢, are zero in the initial
configuration they must be included in the expres-
sions for the elements of ®(},) since they may be-
come nonzero on straining, to an extent deter-
mined by the nature of the strain and the force
constant. (This serves to illustrate the point made
at the end of Sec. III, i.e., even whenA,;, A,, A,
and A4, are zero, the D’(§), and hence T, are
nonzero due to contributions from the change in
geometry and tensions with strain. )

The thermodynamic I', defined in Eqs. (8) were
then obtained as a weighted average over reciprocal
space:

Pu=DTAE $ICG s)fe - (26)

This equation is analogous to that for the more
familiar y, in the macroscopic regime.2* The
thermal-expansion coefficients a,, a,, and Qg, de-
fined in Eqs. (5), were then obtained using Eq.

(6), andy, andy, were calculated by means of
Egs. (9)-(11).

The strain dependence of different regions of the
frequency spectrum was also studied in the form
of the quantities T',(w), analogous to the , of
Blackman, % which were obtained as a function of
frequency by taking the arithmetic mean of the
I',(@, s) of all modes calculated within a small
finite frequency interval: Thus if there are P
modes in the interval at w,

Ta(w)=22T,@q S)/P . (27)

V. HARMONIC PROPERTIES

Apart from the instability which is removed by
an additional fourth-neighbor potential ¢,(a), the
basic Hulin model has the disadvantage that it can-
not be fit simultaneously to both the elastic and
optical data. There are two main discrepancies.

(i) For any reasonable fit of the upper optical
branches to experiment, the in-chain force con-
stants k; and k, have to be set to values which
make the stiffness of the chains (and hence the
elastic constant c33) too low.
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(ii) The force constant %, can be fit exactly to
the experimental measurement of the A, zone-cen-
ter frequency since this is a “chain twist” mode
whose frequency depends completely upon between-
chain forces. However &, cannot be fit to the A,
frequency without making the chains too tightly
bound so that (c,;+c,,) is too large relative to cg4
for any reasonable fit of the other parameters.

In consequence, the best fit of the Hulin model
to the phonon frequencies leads to the reverse
elastic anisotropy [(cy; +¢5) > c35] to that obtained
experimentally. This situation is largely over-
come and disadvantage (i) is removed by intro-
ducing the harmonic interaction parameters %z;;
and k;,. These are found to strongly affect the
frequencies of the three upper optical branches
while leaving the rest of the phonon spectrum es-
sentially unchanged. Relatively large negative
values of &;, do, however, result in an instability
manifested by a zero acoustic frequency. A posi-
tive k;; and negative k;, both help to “stiffen” the
helical chains while lowering the frequency of the
upper optical branches. Thus a good fit to these
branches can be maintained while higher values
of #; and k, are employed to give a reasonable ;.
A negative %;4 also gives rise to a more realistic
€43/ (€1, +€yp) ratio which is too low in the Hulin
model (and which has great influence on the ther-
mal expansion as shown later).

However, apart from improvements to the phonon
spectrum and a more realistic elastic anisotropy
using the harmonic interactions &;; and %&,;4, dis-
advantage (ii) of the Hulin model still remains.
The between-chain interactions are too simply
represented. Further improvements require inter-
actions of a more complex nature (see Sec. VII).
For the present model therefore, a compromise
is attempted in the choice of a value for k,. The
choice of values was also affected to some extent
by consideration of the results for the Griineisen
functions and thermal expansion as we shall see
later. Table I shows the values chosen for the
harmonic force constants and the resulting values
of (cy;+€ya), €13 and cgy (Which are all that are
needed for calculating the thermal expansion) com-
pared with experiment. Figure 2 shows the re-
sulting phonon dispersion curves in certain high-
symmetry directions together with neutron and
optical data. The notation is that of Kittel. 2

The harmonic-frequency spectrum is shown in
Fig. 3 with the spectrum obtained by Kotov et al. ®
superimposed on it. A noticeable defect of the
model appears to be the lack of a decisive band
gap at ~1.1x10'® rad/sec which is also indicated
by the results of Powell and Martel.® This is a
defect of the Pine and Dresselhaus model® as well
as all simpler harmonic models put forward so
far. The dependence of different regions of the

T. G. GIBBONS n

TABLE 1. Values chosen for the harmonic force con-
stants and the resulting values of (ci1+cy9), c13, and cs3
compared with experiment.

Harmonic force constants (in units of 10* dyn cem-l)
k; ky ko ky ki ki

6.251 1.250 1.000 0.188 0.313 —0.563

Elastic constants for symmetry-preserving strains
(in units of 10!! dyn em™?)
C33 c13 (c11+c19)

Calculated 7.27 2,04 5.26
Experimental 7.22 2.50 4.14

frequency spectrum upon the force constants was
roughly determined by slightly changing each con-
stant in turn. Regions A-FE were distinguished.
The highest peak A was strongly dependent upon
k; and hence mainly consists of in-chain bond
stretching modes. Regions B and C were more
dependent upon k, and hence involve a large pro-
portion of angle bending modes. Region D con-
tains acoustic and lower optic “chain torsion”
modes dependent mainly upon nearest-neighbor
between-chain forces, whereas the lowest peak

E is more strongly affected by the fourth-neighbor
central force k,.

The calculated specific heat was found to agree
with experiment to within 6% over the whole range
of temperature for which experimental values are
available.

VI. GRUNEISEN FUNCTIONS AND THERMAL EXPANSION

The simple harmonic model described in Sec. V
was extended to include the four anharmonic pa-
rameters A;, A,, A, and A, defined in Sec. II.
An investigation was then carried out of how well
this simple anharmonic model could reproduce ex-
perimental data of the Griineisen functions and
thermal expansion of tellurium. An exact fit could
not be obtained but the range of parameters pro-
ducing reasonable agreement was sufficiently lim-
ited for the basic inadequacies of the model to be
pinpointed. For the results presented and dis-
cussed here, the following values were given to the
anharmonic parameters:

A;=0, A,=-14, A,=-19, A,=+3.

Therefore, for this particular model the be-
tween-chain central interactions are taken to be
the most anharmonic (a value of — 21 corresponds
to a 6-12 potential). Such potentials give positive
contributions to the T',(g, s) [defined in Eq. (24)]
for strains which cause an increase in bond length
since the lowered force constant lowers frequen-
cies dependent upon it. For example, frequencies
strongly dependent upon the between-chain force con-
stant %, would have a large positive I',(q, s) and a

b4
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negative I'5(d, s) (the internal strain €  decreases
the 7, distance). The changes in geometry and in
the first derivatives of the potentials (tensions)

on straining also give rise to contributions to the
T ,(d, s); usually negative contributions since these
changes tend to raise frequencies.?"? These are
the only contributions for Hooke’s law potentials
(see end of Sec. III) such as the in-chain pair po-
tentials ¢,;, for which A, is taken to be zero.

The value of + 3 for A4 corresponds to a slight
decrease in the angle force constant k, as 8 is in-
creased (and hence cosé is decreased). Thus,

A, gives rise to positive contributions to the

T'.(d, s) and negative contributions to the I'g(d, s),
particularly for optic frequencies in the middle
region of the spectrum since these depend strong-
ly on the angle force constant.

The above arguments, taken in conjunction with
the dependence of different regions ofthe frequency
spectrum upon the harmonic force constants (see
Sec. V), explain most of the features of the strain
dependence of the frequency spectrum, presented
in the form of the T (w) in Fig. 4. The pro-
nounced dip in T,(w) and T z(w) at low frequencies
is, however, due to induced tensions. This was
deduced because the dip remained when one set
A;=A,=A,=A,=0. Evidently, strains 7, and €5
markedly increase the acoustic frequencies in
this region of the dip. The modes concerned are
probably transverse acoustic propagating along
the chains. An increase in 7;, caused by either
strain 7, or €5, would induce strong tensions ¢;
which would raise these frequencies considerably.

Figure 5 shows a log,,T plot of the thermody-
namic T', corresponding to the T',(w) in Fig. 4 and
evaluated by means of Eq. (26). Though defined

as strain derivatives of the entropy [Egs. (8)], it
is thermodynamically equivalent to regard the ',
as a measure of the “thermal stress” developed
on increasing the temperature at constant external
and internal strain, This can be seen from the
Maxwell relation

Ferde (), - )

On the microscopic level this thermal stress is
developed due to the increasing amplitude of the

£ v = A
S
> A
2
;:'
)
B8
3 D ¢
by —r—
E
| 2 3

FREQUENCY w (10' rad/sec)

FIG., 3. Calculated harmonic-frequency spectrum ob-
tained by root-sampling method. Triangles show the
main peaks observed by Kotov et al. (Ref. 6). Different
regions of the spectrum A~E are distinguished according
to the dependence of the modes within them upon the har-
monic force constants.
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in different regions of the frequency spectrum, expressed
in the form of the quantities T(w). @: T,(w); a: T (w);
O: f‘R(OJ).

vibrations on excitation. To illustrate this point
consider a linear chain of atoms with 6-12 nearest-
neighbor pair potentials between neighbors. T'(J, s)
would be positive for a longitudinal mode since
stretching the chain lowers the second derivatives
of the potentials and hence the frequency. Con-
sidering now the chain held at constant length, as
the longitudinal mode increases in amplitude the
anharmonicity in the pair potentials creates a
tendency for the mean interparticle distance to
increase. This creates a thermal stress leading
to an extension of the chain once the restriction
of constant chain length is lifted.

When the solid is held at constant external and
internal stress, the thermal stress developed
on heating leads to a continual change in external
and internal strain to an extent determined through

T. G. GIBBONS
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FIG. 5. Calculated Griineisen functions I'y in the
general regime plotted against logyT'. ®max=h‘wmax/k is
indicated, where wp, is the maximum calculated phonon
frequency.

the elastic compliances $iz. We thus arrive at
Eq. (6) for the thermal expansion.

The Griineisen functionsy, andy, in the macro-
scopic regime were calculated from Egs. (9) and
(10) and are shown as functions of temperature
in Fig. 6. Under normal experimental conditions
the internal stress is always zero so thaty, and
v, describe the thermal pressure developed per-
pendicular and parallel to the uniqué axis after
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FIG. 6. Calculated Griineisen functions vy, and v, (solid

lines) in the macroscopic regime plotted against logy 7.
Graph also shows the values obtained experimentally by
Ibach and Ruin (Ref, 14): &@: 7vi; a: 7Yie
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allowing for relaxation of the internal thermal
stress. Thus, the tendency of the chains to con-
tract radially (T is negative over the whole range
of temperature) to some extent “quenches” the
thermal pressure perpendicular to the unique axis,
so thaty, <T, at all temperatures. However, in-
teraction of the radius contraction through the
cross stiffness eX; leads to an expansive contribu-
tion to the thermal pressure along the chains,

and hence y,>T',. (At low temperatures T, is
negative and so the chains want to contract along
their length when held at constant radius. Internal
relaxation of the chain radii thus opposes this
contraction. )

The results fory, andy, derived from experi-
ment by Ibach and Ruin!! are also shown in Fig. 6
and one can see that the model reproduces the
data quite well. The maximum iny, at ~30 °K
and the fluctuations below 10 °K, particularly the
minimum iny,, are all reproduced by the model
calculations (however, considerable uncertainty
exists in the experimental points below 10 °K).

A measurement of the third-order elastic constants
would be very useful in providing a “fix” on the
low-temperature behavior ofy, andy, as T -0 °K.

The calculated thermal expansion coefficients
a,, a,, and @5 are plotted as functions of T in
Fig. 7 together with the experimental data of Ibach
and Ruin for ¢, and a,. The graph also shows the
value of @y determined by Arnold and Grosse'®
who used x rays to study the change in unit cell
geometry between 300 and 500 °K. The expansion
perpendicular to the unique axis and the internal
radial contraction of the chains are both fairly
close to their experimental values. However, g,
for the model becomes positive at ~ 30 °K and is
never less than — 2x10-% °K-! below this tempera-
ture, whereas experimentally q, is found to have
a sharp minimum of ~ - 10X 10~¢ °K-! at low tem-
peratures and to remain negative as the tempera-
ture is raised. This discrepancy clearly indicates
an inadequacy in the elastic properties of the mod-
el since y, andy, for the model are in quite close
agreement with experiment. It is easily shown®
that a, only becomes positive if y,/y.> 2c%/(cF+c ),
This ratio is ~1. 2 for tellurium whereas for the
present model it is ~0.8 and hence @, becomes
positive even before y, andy, cross over.

Values for the force constants can be chosen
to improve this ratio but they result in a worse
fit to y, and y, such that g, still becomes positive
at high temperatures. This indicates that the in-
ternal elastic properties measured by €.z, C.p,
and ezp are then being incorrectly represented,
particularly the former two since €gp is directly
related to the A, chain dilation frequency which is
still quite well reproduced. This inadequacy arises
because k;; and k;, can only increase c,3 through
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the ratio €,pC.z/C rz [See Eq. (14)] which then af-
fects y, andy,, whereas they make no contribution
to ¢, since this stiffness arises from forces which
depend to some extent on between-chain coordinates.
The inadequacy with which such forces are repre-
sented is thus a conclusion which arises from com-
parison with both harmonic and anharmonic prop-
erties.

VII. SUMMARY AND DISCUSSION

The picture of the thermal expansion of telluri-
um suggested by this simple model is as follows:
On heating, a thermal pressure is developed
mainly between the helical chains, giving rise to
a large positive expansion perpendicular to the
unique axis. The elastic response to this expan-
sion is to contract the crystal along the unique
axis and at high temperatures this dominates any
opposing axial thermal pressure to expand the
chains. The thermal pressure developed in the
nearest-neighbor between-chain “bonds” also
serves to “push in” the chains so that their radii
decrease and hence Gy is negative (this occurs
since the internal degree of freedom allows the
system to relax internally until the internal stress
Tg is zero). A further smaller contribution to the
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negative Gy arises from the tendency of the in-
chain angles to increase on heating.

As far as the model is concerned, it would seem
that the most important contributions to the an-
harmonic terms in the lattice potential have been
included and the model does not seem to suffer
too much from the extremely simple way in which
they are introduced. However, compavison with
both harmonic and anhavmonic properties does
indicate that the between-chain forvces ave too
simply represented. In addition to ¢, and ¢,, be-
tween-chain interactions must be included which
improve the ¢,3/(c,,+¢y,) ratio and reproduce the
A, zone-center optic frequency without making
(c11+cyp) too large. Angle forces between in-
chain and between-chain bonds may be the answer.
The central interaction ¢, would then appear as a
component of such forces, and they are certainly
compatible with some degree of d%sp® character
in the bonding. The latter appears likely when
one compares tellurium with the trends in struc-
ture and bonding observed for its neighbors in
group VIb. Thus in the one extreme the various
ring and chain structures of sulphur are compat-
ible with a description of an sp® hybridized sulphur
atom with two singly occupied orbitals, each form-
ing a strong covalent bond with another sulphur
atom and giving a bond angle close to the tetrahe-
dral value of 109.5°. The bonding between the
chains is very weak. In the series S—Se—~ Te -~ Po
the bonding between the chains becomes progres-
sively stronger relative to the within-chain bind-
ing; the in-chain bond angles decrease and the
solids become more metallic, the last in the se-
ries, polonium, being a metal with the simple
cubic structure.?® The latter is not a normal
structure for a metal and from a simple viewpoint
might be derived from ds??3 hybridized polonium
atoms with six singly occupied orbitals, bonding
to give octahedral coordination. While not com-
patible with the metallic nature of polonium this
picture does explain the rather uncharacteristic
structure for a metal and suggests that direction-
al bonding would still be important. Coming just
before polonium in group VIb therefore one would
expect the bonding in tellurium to have some
d® sp® character. The availability of d orbitals
for bonding certainly increases down the series.
Indeed, the between-chain binding in tellurium is
greater than expected for purely van der Waals
interactions, which also suggests a weak overlap
of bonding wave functions.

However, because electromagnetic interactions
are not explicitly treated it is uncertain how much
improvement in the model would be achieved by
using a more sophisticated valence-force field as
suggested above. Tellurium belongs to the sim-
plest class of elemental crystals possessing a first-
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order electric moment and as a result it exhibits
one-phonon infrared absorption by the mechanism
of displacement-induced charge redistribution.
The effect of “dynamic charge” upon the lattice
vibrations requires consideration of the polariza-
bility of the atoms and this is clearly neglected in
any valence-force approach. The work of Chen
and Zallen®® indicates that the A, frequency is
particularly sensitive to this aspect of the inter-
actions and as we have seen (Fig. 2), it is par-
ticularly hard to reproduce this frequency with
the present model while still obtaining reasonable
elastic constants.

Although the agreement with experimental mea-
surements of the thermal expansion is remark-
ably good considering the simplicity of the model,
improvements along the lines discussed above are
clearly required and should be included in any
more sophisticated treatment. It is felt that the
present approach is justified as a first attempt
because of the conceptually simple and straight-
forward way in which it deals with the anharmonic
contributions to the lattice potential, and for the
insight it gives into the physical mechanisms in-
volved in the thermal expansion of tellurium.

On a more general note, one can see how the
general thermodynamic formalism used in this
paper enables one to get a feeling for the “inter-
nal” properties of a crystal, since it deals with
them explicitly. Thus internal experimental mea-
surements, such as those of @z, 1 can be directly
compared with model calculations.

It would be useful to obtain the I', from mea-
surements of a,, a,, and @, since it is the I',,
and not y, and y,, which are the quantities purely
dependent on the anharmonic part of the lattice
potential (see Sec. II). However, to derive the
T', one also needs to derive the e,/C, ratio and
e%p from experiment. The former can be taken
to be unity with negligible error under most con-
ditions but the latter requires knowledge of €%,
and the cross compliances 87T and 87 as well as
the normal c, (see Ref. 21). €7, can be obtained
fairly accurately from measurements of the A,
zone-center optic frequency. However, it is more
difficult to determine §7; and 87, which are a
measure of how the internal strain € varies with
anisotropic stress applied perpendicular and par-
allel to the unique axis, and such measurements
have not yet been carried out. They can be done
in principle by uniaxial loading and the use of x rays
(recently, changes in internal strain with isotropic
pressure have been measured for selenium®!). It
would also be useful to measure G, at temperatures
lower than 300 °K.

Finally, from the results for the tellurium mod-
el one can make some general remarks about the
Grineisen functions and thermal expansion of com-
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plex crystals. By comparing the results for the
T', with those for y, andy, one can see that one
effect of having an internal degree of freedom has
been to reduce the magnitude and anisotropy of
the thermal pressure developed through the ex-
ternal strain coordinates. This is because much
of the therymal pressure developed is dissipated by
internal vearvangement. Such internal relaxation
effects therefore account for the relatively small
anisotropy of y, and y, in tellurium despite the
large elastic anisotropy. This apparent anomaly
was pointed out by Munn® in considering elastic
effects in negative thermal expansion, but he
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considered only the macroscopicy, andy,, which
as we have seen are not the fundamental theoret-
ical quantities in crystals with internal degrees
of freedom. The same effects may explain the
anomalous case of arsenic raised by Munn, and
also the low values of y’s found for many complex
crystals and glasses.
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