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A new theory is given of surface scattering in semiconductors by surface point charges,
corresponding to trapping in chemisorption bonds or defects. Interference effects, bebveen
waves scattered from different scatterers, areevaluated interms of the statistical structure
factor of the surface-point-charge array. Dielectric image effects are included. The scat-
tering potential is taken from the recent statistical treament of the three-dimensional non-
planar semiconductor-surface space charge given by Greene, Bixler, and Lee. The need for
multiple scattering treatment of evanescent states is discussed. Comparison with previous
theory is made.

INTRODUCTION

In 1966 Greene and O'Donnell (GO) proposed'
that the apparent diffuseness of semiconductor sur-
faces in transport measurements was due to scat-
tering by surface charges, e. g., localized at
chemisorbed atoms, defects, etc. They gave a
simple calculation of this scattering, finding a
rather strong angular dependence. This angular
dependence seemed to explain the lack of a sur-
face-mobility cusp in the transport measurements
of Davis on InSb surfaces. Further confirmation
of the QO theory was provided by the measure-
ments of Kamins and MacDonald' on the Si-Si02 in-
terface. More recent work by Preuss, however,
does show evidence of the surface-mobility cusp,
suggesting that a closer look at surface scattering
is needed. Extensive studies of scattering at Si-
SiO3 interfaces have recently been reported (e. g. ,
by Sah et al. ) also. Motivation for this paper
from another quarter may be cited: Recently it has
been shown that there exists a general relation
between surface-scattering rates and the thermo-
dynamics of chemisorption, where the chemisorp-
tion bonds provide the trapped charge which causes
the scattering.

The GO theory is oversimplified in several re-
spects: (a) It neglects the interference terms in
the scattering from different surface charges; (b)
it uses an arbitrary form for the screened poten-
tial of the surface charges; and (c) it neglects the
dielectric image force. The present paper pro-
vides a new theory of surface scattering by dis-
crete surface charges which is free of these limi-
tations. We regard the entire screened array of
surface charges as a single scatterer. Interfer-
ence terms can then be treated exactly, in terms of
the statistical structure factor of the surface-
charge array. At the same time, we replace the

I. SURFACE-SCATTERING THEORY IN BORN
APPROXIMATION

We represent an ideal crystal surface by an in-
finite potential step at z = 0. The unscattered elec-
trons are then described by

g)o H = —@ v/2ypg (1.1a)

arbitrary GO scattering potential by the potential
calculated by Greene, Bixler, and Lee (GBL) of
the inhomogeneous-surface space-charge region.
We also take into account the GBL dielectric im-
age force which, in its screened form, strongly
decouples the scattering potential from electrons
with small normal momenta. The qualitative fea-
tures of the QO theory reappear, but with some-
what different angular dependence.

The calculation of scattering by a partially or-
dered array of scatterers becomes tractable only
with use of the statistical properties of the scatter-
ing potential. This is also supplied by the GBI
theory which treats the semiconductor -surface
space-charge potential as a partially correlated
stochastic function of position, determined by the
surface distribution of point charges.

The density of surface scatterers is often high
enough for scattering interference effects to be
very strong. The concept of the differential scat-
tering cross section of individual scatterers then
becomes inexact and should be replaced by the di-
mensionless differential scattering probability of
the surface as a whole.

We show that in the Born approximation all inter-
ference effects between the scattered and incident
waves disappear for a stochastic scattering poten-
tial, but the interferenees between different scat-
terers remain. The need for a multiple scattering
treatment is pointed out, particularly for the
evanescent or surface currents.
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y'= (sinks z) e'"'", z ) 0 (1.lb)

=0, x&0 (l. lc)

where E=k ko/2m and ko=K +k, . [We write two-
dimensional vectors as capitals, e. g., K= (K„,K»
0).j Next we introduce a scattering potential
—e(j)(R, z) which produces a scattered wave (j):

(H —E —s(t) ) ((j) + It)) = 0, z ) 0 (l. 2a)
(q2 ~ Q2)1/ 2 (1.Bb)

charges consists of a planar or band-bending term
()))~ which depends on z only, and an inhomogeneity
term (t)(R, z) which produces scattering and has the
fol m

(1.8a)

where

=0,
In the Born approximation,

x&0. (l. 2b)

and where q, is the effective inverse screening
length near the surface:

q, =(4' nz/E, kT)e' n~
" =—qoe'~&a . (1.8c)

d R
y(Q, z) = y(R, z) e-'~'", (l. 4a)

d R
(j)(Q, z) =)~ 2 )j(R, z) e '~'",

and to transform Eq. (1.3) to (Q, z) space,

92--2+I' -,z = ~ sink, z -K, s,
~ . '

(1.4b)

z) 0 (1.5a)

where

1"=(ko-Q) ' k'&Q' f'=f(k'-Q')'" k'&Q'
(1.5b)

The solution of Eq. (I..5a), subject to Eq. (1.2b),
can be written

((C, s)=, f ds G(s; s )((C-K, s')siss. s',

z ) 0 . (1.6a)

Here G(z, z') is the one-dimensional Green's func-
tion

G(z z') = (1/2iZ')(err(~-~) err(s.s ))

which has the properties

G(z, z ) =0 for z =0

(1.6b)

(1.Va)

(
2

„z+r',I G(z, z')=5(z-z')+5(z+z'), (l. Vb)

which ensure that both Eqs. (l. 2b) and (1.5a) are
satisfied. The choice of (+) exponents in G(z, z )
means that we are requiring that the scattered
propagating waves, Q & ko, all have the outgoing
form e"~' for z-~, as seems physically reason-
able. Moreover, were we to admit incoming scat-
tered waves, these would produce divergent expo-
nential solutions for Q & ko.

The GBL potential produced by surface point

(8 E)(j)-=e(jg, z) 0.
It is convenient to use the two-dimensional trans-
forms of (t) and (j)

Here nz is the bulk electron concentration and (t)~,

is the value of the band-bending potential at the
surface. It might be objected that the use of the
Fermi- Thomas approximation in GBL theory is
inconsistent with our scattering model, viz. , Eqs.
(l. lc) and (l. 2b), whereby carrier wave functions
are terminated at the surface. It has been shown
that the screening approximations are negligible
for surface fields below about 5x 10 V/cm in non-
degenerate semiconductors. If we use the simple
z dependence of Eq. (1.8a), then we can write the
scattered solution, Eq. (1.6a), in the explicit form

y(Q, z) = (me/2e') y(q -K, 0) [E,e"'+E,(z)],
(1.9a)

SKk,
(z'+ r'+ k,')' —4k,' r' (1.9b)

We now calculate the scattered flux density J,
and then afterwards introduce the statistical or
random properties of the scattering potential. The
probability flux density for a state (j)= (j) +(j), viz. ,

J= (N/2m) (q( v e* —c c ), . (2. 1)

has three distinct terms,

J= J (g; (j) ) +J ((j); (j)) +J (p; (j)), (2. 2)

corresponding to the unscattered wave, the scat-

j (Ogw)e

E,=F,*=2i 2 ~ z
—+c c. . 1 Oc

K —kg+ I —2ZKkg

Here,

(l. 9d)

and I' is given by Eq. (l. 5b). The E~ term is a
propagating wave for Q'& k', , but is evanescent for
Q & ko. The F, term is evanescent for all values
of Q. Electrons scattered into evanescent states
clearly interact strongly with the scattering poten-
tial (j) and will be multiply scattered. A treatment
of these states will be given elsewhere.

II. SCATTERED FLUX DENSITY FROM PARTIALLY
RANDOM SCATTERER
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tered wave, and the interference between the scat-
tered and unscattered waves, respectively. These
take on complicated forms when the scattering po-
tential has the complicated form of the inhomoge-
neous space-charge potential Q(R, z).

Simplifications occur, however, when we make
use of the statistical properties of the scattering
potential. For our purposes, (f)(R, z) may be
treated as a random function of R with two basic
ensemble-average properties:

(y(R, z))=0 (2. Sa)

4 (Q, ) e*(Q', .))=4"5(Q-Q') «(4, .),
(2. 5 }

where «(Q) is the spectral density of (f)(R, z):

«(Q ~)=» mL'le. (Q ~)l'

lp (R, z) p(R+ ~R, z)) = function of n,R and z,
but not of R . (2. Sb)

Equation (2. 3a) indicates that we have subtracted
out the mean value of the space-charge potential,
as mentioned above in connection with Eq. (1.8a).
Equation (2. Sb) means that the various probability
density functions for (3))(R) are uniform in R. Be-
cause of this statistical uniformity, we may equate
ensemble averages with spatial averages, e. g. ,

fg(R))=(f)=lim L f~ d A ((IR))) as L-~ .
(2 4)

For use in our scattering theory, it is convenient
to reexpress conditions (2. 3a) and (2. Sb) in Q
space. This is possible because each member of
the statistical ensemble of functions Q(H, z) can be
represented just as well by its Fourier transform
(f)(Q, z). Equations (2. 3a) and (2. Sb) then appear
as

(2. 5a)

(I))~-=0 for R & I, (2. 5c)

Equation (2. 5a) follows directly from ensemble-av-
eraging Eq. (1.4a) and using Eq. (2. 3a}. Equation
(2. 5b) can be obtained by writing

(y(Q) y*(Q')}= I,
x (y(R) y(R~)) (Q R-iQ' R~

and then imposing the statistical-uniformity con-
dition (2. Sb), giving

4 (Q) e*(Q') = 5(0-Q') J (d'~R/2 ) p. («) ~ *""
where

p (AR)=llmL J d Ry (R, z)y (R+bR, z)

as L- .

Equation (2. 5b) then follows by means of the Wien-
er -Khinchine relation. "

We can now use Eqs. (2. 5a) and (2. 5b), the sta-
tistical properties of the space-charge potential,
to simplify the probability flux density J, when the
latter is ensemble averaged. First, we note that
in the Born approximation () is a linear functional
of P, so that

(J(C', C))=0 (2. 8)

Particle flux conservation in surface scattering
requires that (J,(go+ g, go+ g)) vanish exactly, since
carriers are assumed neither to go through the
surface nor to be created there. Of course, Z, (go,
Po) = 0 because Pp 1s a standing wave. Furthermore,
the exact P contains only outgoing (k, & 0) waves for
z-~, so that(J, (g, P))&0. Therefore the exact in-
terference terms (Z, (g, (o))+ c.c. must be negative.
Equation (2. 6) then means that our apf&xoximate )I)

fails to conserve particle flux: this will be dis-
cussed elsewhere. Next, we point out the great
simplification produced by Eq. (2. 5b) in the scat-
tered flux density J(P, P) whereby

x([(F&g *yF~)p ]g[(F e ' +F )e ' '
] —c (2.7)

is reduced to an expression which, as we shall show below, has a simple semiclassical interpretation and
is capable of complete evaluation:

L J(g, Q)) =(me /8k )f d Qg+(Q —K, 0) ( [2Q+1,(I"+I'*)]F&e' ' '

+ 2 Q F~ + 2Q F~ F,(e' '+ c.c.) —1,F~ F,e "*), (2. 8a)

where

—F, = [()(:—ik, ) (e' ' —c. c.)+i(e' '-c.c.)]
xM8' c' —c.c. (2. 8b)
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M=2i [(z —ik, )'+1" ] ', 1,=(0, 0, 1) . (2. 8c)

The F~ term is propagating for qa& kp and is evan-
escent for q & kp. The F, and F, terms are evan-
escent for all values of Q. These evanescent
fluxes, corresponding to real surface currents,
are not. correctly given in the Born approximation,
because the rescattering of electrons in such states
cannot be neglected in any approximation. In this
paper we will therefore treat only the propagating
flux density

(J),= (me'/4h') f 2 pd'q

&&F,'g, (Q-K, o) (q„, q„r). (2. 9)

v= (e/m) (q„, q„ I') (2. 11b)

is the scattered velocity vector and

f(K, —k„p,, rl)= (me/2h ) tjkoFpge(~ —K, 0)
(2. 11c)

is the scattered distribution function, the number
of classical electrons per unit solid angle at (p, ,g).

Although it has a clear semiclassical interpreta-
tion, Eq. (2. lla) is somewhat more complicated
than the corresponding expression in the theory of
scattering from a finite-range potential. There,
only one propagation vector is seen at a distant
detector because the scatterer subtends only an
infinitesimal solid angle at the detector. The range
2v of scattering angles appear in Eq. (2. 11a) be-
cause the scattering surface subtends the solid
angle 2m at a detector, no matter how far from the
surface it may be.

III. DIFFERENTIAL SCATTERING PROBABILITY

The concept of differential scattering cross sec-
tion, appropriate for finite-range scatterers, is
generally not useful for surface scattering except
when the surface density of scatterers is low
enough to ignore interference effects and screen-
ing interactions. The generally appropriate con-
cept is that of the dimensionless differential sur-
face-scattering probability u)(K, —k„u, g), which
we define as

This takes on a clear semiclassical form in terms
of the angular coordinates of the scattered waves,

q„= kpsin8 cosy, q, = kp sin8 sinrt . (2. 10a)

Writing

d q=qdqdq= —kpt), dt), dq, u=cos8 (2. 10b)

one gets

(J)~=f dp, f dq f(K, —k„u, q)v, (2. 11a)

where

where Np(K —k ) is the number of electrons per
second incident on unit area of the surface with
momentum (K„, K, , —k, ), and N(tj. , g) du dq is the
number of particles per second scattered into solid
angle dt), dg from unit area of the surface.

Equation (2. lla) enables us to find N(u, ri) di-
rectly. Evidently,

N(t, n) = u vf (u, n) (3. 2)

On the other hand, the unperturbed wave function
of Eq. (1. lb) describes an incident flux density

of magnitude —,'v, so that

Np(K, —kg) = —,
' Psv, , (3. 3)

where

)L),g= -k, /k, & 0 .
We thus obtain

u)(K, —k„t),, g)= "f(p,, q)
WR

8,(Q) = (4v/e, )'(~+ yq) ', y= e /e, & 1 (3. 5b)

describes the response of the semiconductor-sur-
face space-charge region to an arbitrary surface-
charge distribution. Suppose, in particular, that
Q(R) consists of an array of point charges, e. g.,
associated with chemisorption bonds, occupying
some of the sites X of a regular surface lattice
(mesh). In that case g&„ is essentially the statisti-
cal structure factor S(Q) of that array:

g,„(Q)= (aQ /4m )S(Q), (3.6a)

S(Q)=Q -1 *"" Z f(Q-Q, )
gg 'Pl Q.go Q

(3.6b)

Here n(X) = 0, 1 is the occupation number of site X,
n is the mean of n(X):

n=(n)=an, (3. 6c)

(3.4)
where F~ is given by Eq. (l. Qb), and g~(g —K, 0)
is the spectral density of the scattering potential
for the surface momentum change (Q —K).

This spectral density go (Q, z) is expressed in
the GBL theory in terms of the spectral density

g,„(Q) of the surface-charge density Q, or rather
of 5Q = Q(R) —0 (by means of Poisson's equation,
the static electron response function, and the Max-
well boundary conditions):

g, (Q, s) =@(Q)'e 'g6o(Q), (3. 5a)

where

u)(K, —k„u, )l)=N(tj, , q)/Np(K, —k,), (3. 1)
where a is the unit mesh area. Also, p(b, X) is the
pair-correlation function
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(s. Bd)

and Q; are the reciprocal-mesh vectors

(3.Be)

(s.Bf)

SQ 4ru, 2tpse
—p.- (ir'+ k + r')' -4k,'r' k'e. ,

(s. vb)
is the corresponding result of the GO calculation.
The factors multiplying zg«express the effect of
properly taking into account the screening potential
and the interference of waves scattered from dif-
ferent scatterers.

The simplest interference situation to analyze is,
of course, that of no correlation at all in the occu-
pation numbers „ If

p(~X) =»

then

for all b X&0, (3.Ba.)

S'(Q) =S'(O) = (1-»)/» . (3.Bb)

If n. «1, then u is linear in n, and an effective sur-
face-scattering cross section might be introduced.
Next, consider the effect of a short-range correla-
tion: If

p(aX)=» for all Iri ~lk, &,'o,
then

s(g)=s(o)=Z(s + -s) .

(s. sa)

(3. Sb)

In both of these cases, the scattering is deter-
mined by S(0), which, as has been shown else-
where, is a thermodynamic property of the chemi-
sorbed charged adatoms if these have reached
equilibrium. If the distribution has not reached
equilibrium so that S(0) cannot be obtained from
statistical thermodynamic arguments, some guid-
ance in the choice of p(b, A) is available from the
sum rule

J„d'q S(Q) = {4~'/» a) (1 »), —(3. 10)

1n which the 1ntegral goes ovex' one BriHouin zone
of the reciprocal mesh, and which arises from Eq.
(3. Be).

These reciprocal-mesh vectors determine the fea-
tures of the evanescent states, but do not directly
appear in the propagating flux f X}~, and so can be
omitted in this paper. We thus obtain the explicit
form of the differential surface-scattering proba-
bility

2K 2

~(q, q) = ~„(q,n) -- - »S(Q —K),~+ylQ —Rl
(3.Va)

where

B=4 for IQ-K (3. 12)

Thus, the Fourier coefficients of the Yukawa po-
tential mentioned above are exactly half the cor-
rect ones, for Q-0. At the other extreme, one
can consider large-angle scattering for q, /ko«1,
in which ease

8 = 4(1+y) for IQ —Kl » cps . (3. 13)

This simply means that large-angle scattering
events are determined by the unscreened Coulomb
singularity itself, which has the form (e/e. x) [2/
(1+y)]

IV. DIELECTRIC IMAGE EFFECTS

The polarization energy of an electron changes
as the electron is brought nearer the interface be-
tween two dielectrics. This can be expressed in
terms of a dielectric image force, and has already
entered the scattering potential p directly, as is
shown by the factor y= e /c, in the spectral density

g, in Eq. (3. Bb).
But there is also a direct dielectric image re-

pulsion of each electron from the surface when
y& 1. In GBL it was shown that for semiconductors
the work done on an electron in bringing it and its
screening cloud closer to a surface can be ex-
pressed in terms of a screened image potential Pr
given by

—ePr = (be /4c, z) e "', (4. 1)

where b is a constant between unity and (y —1)/
(y+1). Being independent of R, this is not a scat-
tering potential. Nevertheless, the scattering is
weakened because gr decreases the amplitude of the
unscattered wave functions g near the surface.

This direct dielectric ixnage repulsion can be in-
troduced into the foregoing scattering theory very
simply, albeit crudely, by terminating go at the
classical turning point zr instead of at the surface
x=0, zi being given by

ey, (z,)=n'-k,'/2m (~, o) . (4. 2)

Electrons incident at grazing angles have small 0„
and hence have large values of g, and are strongiy
decoupled from the scattering potential, We thus
replace Eq. (1.1) by

y'= sink, (z —zr) e* ', z & zr (4. Sa)

(4. sb)8 ~ 81 ~

Finally, we consider the space-charge form
factor

(s. is)

appearing in Eg. (3.Va), which corrects for the
arbitrary potential used in the GO treatment, viz. ,
(e/z, r) e o" for z ~ 0. For small-angle scattering
events, one can see that
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4=0, z-zr . (4. 4)

The Born-approximation equation (1.5a) is then
replaced by

For the Born-approximation treatment of Sec. I to
remain valid, we must correspondingly replace Eq.
(1.2b) by

8 ~'I'"g' strongly decreases the scattering rate for
electrons at grazing incidence because zl increases
as k, decreases. Inasmuch as &r= [qz+(Q —K) ] r,
it is clear that this suppression of scattering oc-
curs mostly for large-angle scattering. This is
indeed plausible, since the spatial shift of the un-
scattered wave primarily cuts down the overlap of
(0 with the more singular part of the scattering po-
tential.

—2188
sink, (z —z, )y(g —K z) z~ z, .

(4. 5)
The scattered-wave equation (1.6a) is now replaced
by

((Q, z)=(-2me/h ) f dz Gr&(z, z )
I

x r&I&(Q -K, z') sink, (z' -z,), (4. 6)

where now the displaced Green's function

,z, .
) (,/„.,) (,'r& «-gr&-« -~r&l, 'rl «-~r&+« -~r&&)

Zp g
(4. 7a)

V. FUCHS REFLECTIVITY; CONCLUSIONS

xw, (tr, &I
~
tr. , &l,), (5. 1a)

0 21r

p

-1 0 P+

We use the general-boundary-condition form-
alism' to get the Fuchs ref lectivity P and kinetic
specularity 5'0 from the differential scattering
probability of Eq. (4. 10): For an isotropic surface,

Wo(p, ,)=1 —
f& dtr f dt& rl( Ir /p-,),

has the properties

G, (z, z') =0 for z =z, (4. 7b)

2 1/2
x 1 —cosr»7

1 z, (5. 1b)

[which ensures that Eq. (4. 4) is satisfied] and

~ ~ ~

~

82 +I', =5 — +5 + —2
(4. 7c)

[which ensures that Eq. (4. 5) is satisfied]. Here
the fact that

g(Q —K, z ) = P(Q —K, 0) e = P(Q —K, hz) e "'r,
(4. 8)

where hz = z —zr, allows Eq. (4. 6) to be written
as

g(Q, z) = (e "'r) (2me/h ') f" diaz G(hz, &z')
0

x sin(k, 4z') &p(Q —K, r&z'), (4. 9)

where now G(bz, bz ) has exactly the same func-
tional form as the Green's function used in Eq.
(1.6a) for the scattered wave without this dielec-
tric image effect. Thus, the entire effect of shift-
ing the unscattered wave (0 a distance z, (k, ) is
merely to shift all the scattered waves by the same
amount and to change their amplitudes by e

Because this factor is independent of R and g,
the scattered current density is unchanged except
for the appearance of a multiplicative factor e +'I.
Thus, for electrons, the differential surface-scat-
tering probability of Eq. (3.7a) becomes

, =w&w&Bee "(1-n), (5. 2b)

in which case 1 —W0 and 1 - p are linear in n for

The scatterers are charged so that an uncorre-
lated distribution is not really to be expected ex-
cept when n is close to zero. Correlation effects
can depress S(Q) and u&, very significantly, as we
now show for the case of depressed nearest-neigh-
bor occupation p(1) & n of a simple square mesh.
From Eq. (3.6b)

where cos p,, is the angle between the scattered k

vector and the inward normal to the surface, and

bg = g —g, is the angle between surface components
of scattered and incident k vectors.

These integrations, which could be carried out
analytically in the simpler GO theory, unfortunate-
ly had to be carried out numerically for w, given
by Eq. (4. 10). We carried out the integrations for
the completely uncorrelated ("pure random" ) dis-
tribution of surface charges, for which the struc-
ture factor (leaving out the Bragg terms outside
the Brillouin zone) is

S (Q)=S (0) = (1-n)/n for (pb, A)=n (r& A40),
(5. 2a)

in which case Eq. (4. 10) reduces to the simpler
form

w(tr, n)=woo(Ir, n)& e ' nS(4 —K), (4. 10)
1 -n —2[n —p(1)] (cosQ„Ao+ cosQ, Ao)

where the space-charge form factor B is given by
Eq. (3.11). Here cos 'p, and &l are the angles of the
emerging electron in spherical coordinates.

As noted above, the dielectric image factor

(5. 3)
In the absence of a statistical thermodynamic cal-
culation of p(1), we might guess a form [which
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plicable to semiconductors like InSb, whose elec-
tron effective mass 0.013mo and dielectric constant
«, = 17 were used. Numerical results for p and 8'o
versus the emergence angle cosine p, , are plotted in
Figs. 1-4 for three different forms of differential
scattering probability u, . Curves labeled GME
correspond to the use of Eg. (4. 10). Curves labeled
GM correspond to the use of Eq. (4. 10) with the di-
electric image factor e ~'I omitted, i. e., to Eq.
(3.7a). Curves labeled GO correspond to the GO
theory, i. e., to the use of oooo of Eq. (3.7b). In

Fig. 5 we show the specific effect of the dielectric
image factor, expressed as

e "'I —= (1 —PoMs)/(1 -P oM),

plotted as a function of the cosine of the emergence
angle. The dielectric image factor is more effec-
tive for slower particles and nearer grazing emer-
gence because, in both cases, k, is smaller.

The qualitative features of the simpler GO the-
ory are retained: (a) p - 1 for grazing emergence
and (b) the Fuchs diffusivity (1 —p) is much smaller
than the total scattering probability 1 —Wa. But
the use of a realistic treatment of the screening of

the surface-scattering potential has increased its
Fourier transform and, hence, 1-p by about a
factor of 4. This is partially compensated by the
dielectric image effect, which decreases the Fuchs
diffusivity 1 —p, particularly at grazing angles.
For such angles, k, is small, gz is large, and

"'I becomes much less than unity.
Compared with the GO theory, as Figs. 1-4

show, the present theory gives a weakened angular
dependence of y at grazing angles. This makes
cuspid behavior in the surface mobility somewhat
more understandable.

One unwelcome feature of the GO theory which is
retained in the present theory is the breakdown for
larger values of n, where p can become negative.
We can now see, however, that this breakdown is
not due to the neglect of interference effects, but
has to be ascribed to the use of the Born approxi-
mation with its neglect of multiple scattering. This
is particularly serious for evanescent states, a
treatment of which will be given elsewhere.

A Boltzmann transport calculation of surface
mobility using the calculated values of the Fuchs P

now becomes possible and is being carried out.
That will then permit the scattering model of the
present calculation to be tested against surface-
mobility measurements, e. g., those of Preuss6 on
InSb, those of Sah on the Si-Si02 interface, etc.
It should also be possible to test the present sur-
face-scattering theory, or rather the surface-
charge structure factor deduced from a fit to trans-
port data, against structure-factor information
from chemisorption isotherm data, using the new
surface-scattering-chemisorption relation of one of
us. Such experiments, involving chemisorption
and electrical transport studies in thin single-crys-
tal films of IV-VI semiconductors with exposure to
oxygen, hydrogen, etc. , are being carried out at the
Naval Ordnance Laboratory. Further scattering
calculations are also being pursued which replace
the Born approximation by a one-particle Green's-
function method which conserves particle flux ex-
actly, and which includes ellipsoidal energy surface
effects.
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Heat-pulse propagation has been studied in p-type silicon and p-type germanium as a function of uniaxial

stress (up to 10' dyn cm ') and of pulse temperature. The coupling between thermal phonons and the
stress-split ground state of acceptors has been calculated using the effective-mass approximation for the
relevant acceptor-hole wave functions. In addition to the s-like parts of the expansion for the envelopes

usually considered, d-like parts of the expansion have been included here. The important phonon scattering
rates due to stress-split acceptor states were derived. The rates were obtained for resonance absorption (for
phonons with energies close to the splitting energy), and for several second-order processes. In addition,

Rayleigh scattering of phonons by isotopic impurities has been evaluated. A black-body model for phonon
emission from the heat-pulse generator was assumed. The total calculated scattering rate agrees with the
observed stress dependence of the heat-pulse amplitudes when the effects of internal strains, and, in the case
of high acceptor contents, of phonon multiple scattering are taken into account. A fit of the experimental
results to the calculated results yields two distinct sets of values for the "static" (a*q(&1) and. "dynamic"
(a*q & 1) deformation-potential constants (a * is the effective Bohr radius of the impurity and q is the wave

number of the relevant wave component). This observation resolves the apparent conflict in previously

reported values of these constants, obtained from separate studies in the static (e.g. , piezoreflectance) and

dynamic (thermal-conductivity) regimes. The present theory does not yield such distinctions for the two
regimes. It is concluded, therefore, that the effective-mass approximation is not adequate for describing the
full range of frequency-dependent stress effects. It should be emphasized that the heat-pulse study is

particularly well suited for investigating these differences because the constants for the two regimes are
derived within the framework of the same experiment.

I. INTRODUCTION

Neutral shallow impurities in semiconductors
are very effective scatterers of thermal phonons
at low temperatures. This has been observed as
a strong increase in the thermal resistivity of Ge
and Si by light doping with z-type' and p-type
impurities. Similar effects have also been seen
by propagation of heat pulses in such materials.

The coupling of lattice waves to these impurities
can be related to the crystal symmetry at the im-
purity site. For p-type Si and Ge, the ground
state of the acceptor holes has the I'8 symmetry
of the valence-band edge (at the center of the
Brillouin zone) and is thus fourfold degenerate.
These degenerate levels have been shown to con-
tribute strongly to the thermal resistivity in P-
type Si and Ge, because of elastic scattering of
phonons. ' Any strain of lower symmetry acting
on the impurity site will split the quartet into two
Kramers doublets, thus giving additional scattering
of phonons. The thermal conductivity is, there-
fore, predicted to be considerably modified by

such splitting. "
We previously reported' the results of a pre-

liminary study in which this coupling between ac-
ceptor holes and phonons was investigated by
means of heat-pulse propagation in uniaxially
stressed p Ge. This approach is especially well
suited for systematic studies of phonon scattering
by shallow impurities in semiconductors. In
particular, the phonon scattering processes can
be much better understood and compared more
directly with theoretical predictions through heat-
pulse investigations than through studies of ther-
mal resistivity.

In this paper we present the results of heat-
pulse transmission studies in uniaxially stressed
boron-doped Si and gallium-doped Ge. Expres-
sions for the relevant phonon scattering rates have
been derived, from which the heat-pulse trans-
mission was computed. The calculated and ex-
perimental results are compared and several fea-
tures of the scattering processes are thereby de-
rived.

In Sec. II a theoretical treatment is presented


