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For the case of uniform magnetic field and a potential quadratic in its coordinates an elec-
tron state originally represented by a Gaussian wave packet remains Gaussian in its sub-
sequent evolution. Under these conditions the state is completely characterized by the first-
and second-order quantum means, that is, quantities such as (q~), (p~) and (q~p&), (p~p~),
respectively. A tensor-product relationship is shown to exist between the problem of the
determination of the second- and first-order means which facilitates the solution. Two prob-
lems are treated in detail: (i) an isotropic wave packet in an isotropic potential well and

(ii) the dynamics of a wave packet on a quadratic saddle point. In the former case, the wave
packet "spins" and its radius pulsates as its mean follows the classical trajectory. In the
second the magnetic field effect on tunneling through such barriers is studied and found to be
small at attainable field strengths unless the effective electronic mass is very small. A
method for the numerical solution for the time-dependent Schrddinger equation, termed the
particle method and based on the hydrodynamic analogy to that equation, is here extended to
include magnetic fields. It is applied to the two problems just described and found to agree
well with the analytica1 solutions.

I. INTRODUCTION

We are concerned in this paper with time-de-
pendent solutions for wave-packet states of an elec-
tron in a constant uniform magnetic field and sub-
ject as well to a potential which is quadratic in the
coordinates.

This problem was suggested by a theory of quan-
tum-rate processes in solids' in which a small
component (e. g. , an impurity atom) that is in a
trapped localized state and in thermal equilibrium
with the rest of the solid is represented by an ap-
propriate ensemble of Gaussian wave packets. The
rate with which such components leave this local-
ized state by either passing over a potential bar-
rier or by tunneling is determined in this theory
by computing the dynamical behavior of such wave
packets according to the time-dependent Schro-
dinger equation. In this way, thermal activation
and tunneling are both treated in a unified way.
Although the theory was originally developed to de-
scribe light-atom diffusion processes, it appears
that a similar viewpoint may be useful in the study
of electron-hopping conduction in amorphous sol-
ids. The present work is then a step towards the
incorporation of magnetic field effects in such a
study.

In this paper, however, we do not pursue the
rate-theory aspects of the process but focus on the
mathematical problem of the wave-packet dynamics
under the stated conditions. By considering a po-
tential quadratic in the coordinates we are able to
treat the wave-packet dynamics both when it is
trapped in a potential well and when it is moving on
a saddle point representing the barrier separating
two wells.

This class of problem has a long history with
the earliest treatment apparently that of Darwin
in his analysis of Landau diamagnetism. The
quadratic potential, taken as isotropic, was used
by him as a device to localize the electron, and
ultimately in the analysis the potential strength was
allowed to vanish. The work of Husimi similarly
employed an (vanishing) isotropic potential well.

This class of problems has been reexamined re-
cently by a number of authors using, in general,
quantum-mechanical techniques and concepts of
current interest. For example, the coherent-state
formalism has been utilized by Malkin and Man'ko,
Feldman and Kahn, and Tam. Papadopoulos' ob-
tains the propagator of the Schrodinger equation for
a harmonically bound particle in a magnetic field
by path-integral methods. The work of Langebein, '
who treats the case of electron-wave-packet dy-
namics when subject to a lattice potential should
also be noted.

In this paper we present still another approach
to the problem, one which represents an extension
to include magnetic field effects of a method pre-
viously presented for the case with magnetic field
absent. We confine attention to wave packets which
are initially Gaussian and remain so under the
stated conditions (uniform magnetic field and qua-
dratic potential). These are more general than
coherent-state wave packets since their shape need
not be time independent, and they include the latter
as a special case. These Gaussian states [defined
in Hqs. (2. 2) and (2. 4)] are, except for a phase
factor, completely characterized at any instant of
time by their associated first- and second-order
quantum means and therefore the solution of the
time-dependent Schrodinger equation may be re-
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placed by the solution of the system of ordinary
differential equations (derived in Sec, II) which
these means satisfy. ' In Sec. III a tensor-product
relationship is shown to exist between the eigen-
value problem for the second-order means and that
for the first-order means, a relationship which
simplifies the solution of the former problem.

While the discussion until this point is valid for
the three-dimensional case, it is specialized in
Sec. IV to treat only the wave-packet motion in the
plane perpendicular to the magnetic field 8 with
8 in one of the principal directions of the quadratic
potential V(q). For the case in which V(q) repre-
sents an isotropic potential well and for an iso-
tropic Gaussian wave packet, the solution is ob-
tained in explicit form for arbitrary field strength
B. The wa.ve-packet mean follows the classical
motion while the wave-packet "radius" pulsates;
for suitable initial conditions the "radius" remains
constant and the solution reduces to the coherent-
state case treated by Feldman and Kahn. For the
general case with anisotropic quadratic potential
V(q) and anisotropic wave packet, the explicit form
of the solution becomes very cumbersome, and we
give here only the approximate form it assumes,
valid to first order in B.

In Sec. V we turn to the question of the numerical
solution of problems of this type using an approach,
termed the particle method, ' which is based on
the hydrodynamic analogy to the time-dependent
Schrodinger equation. This method is readily ex-
tended to include magnetic field effects and is ap-
plied in this section to the case of the isotropic po-
tential well and to the problem of a wave packet
moving on a quadratic saddle point; the numerical
results agree well with the analytical solution of
Sec. IV, and for the saddle point show the nature
of the magnetic field effect upon tunneling through
such a barrier. Some concluding remarks are
presented in Sec. VI.

II. PROBLEM FORMULATION

The problem we are concerned with is the dy-
namics of a Gaussian wave packet representing an
electron subject to a potential V(q) (not necessarily
solely electromagnetic in origin) which is quadratic
in the coordinates q, and to a constant uniform
magnetic field B. The treatment is nonrelativistic
with spin neglected so that the time-dependent
Schrodinger equation for the wave function g(q, t)
takes the form

(-'[- f&-A(q)l'+ V(q)] y(q, f)= f ' . (2. 1)
Bt

Here, and throughout the paper, atomic units,
h= e = nz = 1, are employed. A(q) is the magnetic
vector potential for which we use the symmetric
ga,uge;

$(q) =-,'(Bxq) . (2. 2)

The magnetic field is defined relative to the speed
of light c so that the cyclotron frequency is equal
to B.

Under the stated conditions it may be verified by
direct substitution into Eq. (2. 1) that an initially
Gaussian wave packet remains Gaussian" for all
subsequent time. That is, the wave function g(q, t)
may be written in the form

g(q, t) =A(q, t) e'

where

g=(2 )
~

~ ~

'~ e &xjy~loy'~4

1 A A AS= —,a;Jq, q&+b, q, +c .

(2. 3)

(2. 4)

X;;=&i;~,&=&a;e;& -&a&&4~&

A A

2 a; ~ x )a =
& qq p; p~ q+„&, (2. 5)

b;=&p;&

where p, are the momenta and p, = p, —(p, ). The
determination of these quantum means [or others,
Eqs. (2. 14) and (2. 15), which may be used to de-
fine them] is therefore sufficient to determine |)t

to within an arbitrary phase factor and this is the
approach which we adopt here.

The determination of the ordinary differential
equations which the quantum means satisfy rests
on the basic equation for an arbitrary operator A,

The notation introduced in Eq. (2.4) is as follows:
q; is the ith component of q with respect to a rec-
tangular Cartesian coordinate system; &q, &(t) is
its quantum mean; q, = q, —&q, &, I XI is the deter-
minant of the matrix X [the covariance matrix of
the Gaussian distribution —see the first line of Eq.
(2. 5)] with components y, &(t); ){,& are the compo-
nents of y ', and a&J, b;, and c are functions of
time. The summation convention i = 1, . . . , N is
employed; the general discussion of Secs. II and
III are applicable for %=3, while in the subsequent
particular calculations B is taken to lie in the q3
direction and attention is confined to the wave-
packet motion in the q, , q2 plane. In the latter
case, N= 2. A straightforward but tedious method
of finding the ordinary differential equations that
){,&, a„., and b& must satisfy is substitution of g as
defined in Eq. (2. 3) into the time-dependent Schro-
dinger equation, Eq. (2. 1), and equating to zero
the coefficients of the different powers of q& (0, 1,
and 2) which appear. [It is readily verified that
only these powers appear since V(q) is quadratic
and B is uniform. ] An alternate approach which re-
veals the structure of the problem more clearly is
to note first (as may be verified by direct computa-
tion) that the quantities X... a... and 5, are related.
to quantum means associated with g as follows:
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d(A) 1
(t I) (BA)

where

(2. 6) d(t, fr, )= —2Aga & v) va& —Vga( ~; qa&

—2A„( v„v, ) —V„(q,8 &&. (2. 14)

a=-,'(p, -A, )(p;-A;)+-,' v„q, q,

1= p 7l'g 7T] + p Vgy q~ qg

is the Hamiltonian of the system. In the latter
form of the Hamiltonian we have introduced the ki-
netic momentum m with components

(2. 8)

where A, are the components of the vector poten-
tial A. For the uniform magnetic field considered
here we note from Eq. (2. 2) that X is linear in q,
that is,

The operators q; m& and w& q, appearing in the system
of Eqs. (2; 14) are not individually Hermitian, and
it is only the sum ( q, m&) + ( v& q; ) = ( q; m& + w& q, )
which is real. Similarly, w,. m& is not Hermitian and
only (n; ir, +i& n, & is real. Nevertheless, it is con-
venient for future purposes to write the system in
the form shown. We also note that

+;q ) =&q;p +p q &
—2A. &q;q &

so that the determination of the means appearing
in Eqs. (2. 14) supply as well the means needed in
Eqs. (2. 6).

1A. = 2 e n B qa = A.„qa (2. 9)
III. RELATION BETWEEN FIRST- AND SECOND-ORDER

MEANS

with A ~= -Al, .
The equations governing (q, ) and ( n;) (Ehren-

fest's theorem) are readily derived from Eq. (2. 6)
as

d(q) (dt

d(m, & =-(v,,&q, ) 2A..&;&).
(2. 10)

It follows from Eqs. (2. 10) that, under the stated
conditions of quadratic potential V and uniform
magnetic field, the quantum means follow the clas-
sical motion. We next consider two operators A
and B which do not depend explicitly on time and
define their deviators A, B as

A=A —(A), B=B—(B& . (2. 11)

We will, in the following, refer to quantum
means such as ( q, ) and ( m, ) as first order and to
means such as (q, q&&, (q, w&&, etc. as second or
der. We next derive a relation between the sys-
tems of equations for the second-order means [Eqs.
(2. 14)] and the system for the first-order means
[Eqs. (2. 10)); this relation facilitates the deter-
mination of the second-order means.

In order to make the derivation more compact,
we introduce the notation X for the six-dimensional
vector whose components X„k=1, . . . , 6 are the
operators q&, q~, q3, m„mz, m3. Then, since H is
quadratic in these quantities,

(I/g) [x„,a]= c„x, , (3. 1)

where the constants C» are the elements of the 6&6
matrix ~C

It is then readily verified that

(2. 12) =( v 2'. ) (3. 2)

A A

= —. ( [A B, a]& . (2. 13)

Here, V and A are the 3x 3 matrices with elements
V,&, A, &

and Is is the 3&& 3 identity matrix. In this
notation Eqs. (2. 10) for the first-order means may
be rewritten

In deriving Eq. (2. 13) from Eq. (2. 6), use is made
of the fact that the time-dependent portions of A
and B, namely, (A) and (B), also satisfy Eq.
(2. 6). By use of Eq. (2. 13) we may then derive the
following autonomous set of first-order ordinary
differential equations for the quantities ( q, q,.),
(q; mq&, ( ~; q)&, and ( w; m)&:

A

dt
' =&4&;& &&+~q;&,

&=c (x).kl l (3. 3)

= —. (P„[P„a]+[P„a]P,&,

We next turn to the second-order means. From
Eq. (2. 13), we find

A A

"X,X' =-'.
& y, x„H]&

d(q, w, & =( m, m, &
—2A, „(q~ n, &

—v.q, (q; q„),
A A

d(m; q;) A A A A

d',
' ' =

& ~& ~g &
—2Am & &a qg&

—v~a & qa q~&

or, from Eq. (3. 1),
A A

d(X~X, & = C, ~(xsx„&+Ca„(x„x&& . (3.4)

In the usual manner, we seek solutions to Eqs.
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(3.3) and (3.4) in the form

where the superscripts (1) and (2) emphasize that
the quantities refer to first- and second-order
means, respectively. Substitution of Eqs. (3. 5)
into (3. 3) a&ad (3.4) leads to the algebraic equations

with solutions
A A

C(1& Y(1& (X)0 ) C&8& (8& (XX)0 ~

Furthermore, from Eq. (3.9)

+(» +(&) +(&»

so that

(3. 12)

(3. 13)

C E"'=X"'S"'
kl l (s. 6) +(» —+(1) (1) ~ (3. 14)

(3. 7)

The vectors F"' are elements of the six-dimension-
al vector space R'. The vectors F' ' are compo-
nents of a 36-dimensional vector space that is con-
venient to regard here as the tensor product'
R 8 . The 6&&6 matrix C can then be extended to
act on R SR as either CSI8 or I8SC (with I, the
6x 6 identity matrix), and Eq. (3.7) can be rewrit-
ten in the form

[(CSI;) + ( I,SC)] F"' = A,
'" F '" . (s. 6)

I et A.
' ', n = 1, . . . , 6 be the eigenvalues of C with

F',"the corresponding (linearly independent) eigen-
vectors. Then, it can be verified by direct sub-
stitution that 36 linearly independent solutions of
Eq. (3.6) are

(s. 9)

with the corresponding eigenvalues

X'" = A."'+X"'
Og n + 8 &~ P=&~ (s. Io)

We note here that the eigenvectors F~a'= F~"'(3F' '

and F'
~ are different vectors although they are

eigenvectors corresponding to the same eigenvalue
X&8&= X,"&+X8&8&; this indicates that X&88& (0& x p) is an
eigenvalue of at least double degeneracy.

We consider next the choice of appropriate linear
combinations of solutions of the form of Eq. (3. 5)
to satisfy prescribed initial values (X„)0and

(X„X,)0. That is, we wish to determ1ne c ' and

~.(2,) so that

(Xk)0 ~ kn cn ) ( XkXl)0 ~ Fkl u8cu8 )

(s. 11')
I

(3. 11)
where I k 'are the components of F' ', etc. This
procedure is also facilitated by the tensor-product
relation Eq. (3. 9). I et 7 &» be the Gx 6 matrix
whose ~ column is F~ and P&&) be the 36x36 ma-
trix whose up column is F' 8. Then Eqs. (3. 11)can
be rewritten

A A

( X)0= 6'
(1& C(1& ) ( XX)0= 6'(8& C (8&

IV, TWO-DIMENSIONAL MOTION

For the purposes of this section it is convenient
to take the coordinate axes q„qa, q3 in the prin-
cipal directions of the quadratic form V(q). We
then specialize the general results developed thus
far to the case in which B is directed in the q3 di-
rection„confine attention to the two-dimensional
motion of the wave packet in the q&, qz plane, and
carry through the details of the calculation explic-
itly for this case. The matrix C [Eq. (3. 2)] then
takes the form

0 9

0 0 0
(4. 1)

l
-V, 0 0

0 —Va -B 0

where V(q) =-,'- (V1 q,'+ Vk&I,') and J3 is the magnitude
of B. The four eigenvalues A.

( ' of C are

A.
' ) =+A., —A. , + p, —

JL(, , (4. 2

where

I =[l(~ —f)]"', (4. 2')

with

~= -(v, + v, +a'), I =!a'-4 v, v,)"'. (4. 2")

The matrix 5(» of corresponding eigenvectors is

where the tensor-product notation for matrices in
Eqs. (3. 13) and (3. 14) indicates the Kronecker pro-
duct. It is only necessary, therefore, to deter-
mine the inverse of $(~, directly; the inverse of
7 &» can then be expressed explicitly in terms of

f &11& through Eq. (3. 14).
The final solutions for the first- and second-or-

der means then take the forms
6

(X„)(t)=Bc„"&F,&'&e'

(3. 15)
6

(XkXl) (f)= ~ c 8F l, 8e"
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Its inverse 7&» is

1
(»

—Xt»(V»+»»') (n+ B't), ')

—xg(V»+ t ') (n+B't»')

—BX'(n+ B' t»')

Bra(n+ B' t»')

B»J.'(n+ B' X')

—Bt» (n+B X )

—t»X(Va+A. )(n+B X )

—t»X(va+ Xa) (n+ B'Xa)

—
»», (V»+ p, )(n+B A).

»»(V»+ t» )(n+B X )

—Bxt»(n+B X )

—BX»»(n+B X )

Bxt»(n+B t» )

Bxt»(n+B t» )

—x( Va+ x')(n + B' t»')

X(Vg+ X )(a+8 g ) )
(4. 4)

where n=(V, +»» )(Va+X') and r = —2X»»(n+B X )
x(n+B p, ).

With this determination of 5(» the problem of the
first-order means is completed; the explicit solu-
tion for a given set of initial conditions may be
found by application of Eqs. (3. 12) and (3.15).
Since the behavior of the first-order means follows
the classical motion, we do not consider them
further here but turn to the second-order means.

In order to obtain the solutions for the second-
order means, it is necessary to form the Kroneck-
er product" of the matrix $ &» with itself yielding
$(2&, and then, for given initial conditions, "to
use the second line of Eqs. (3.12) and (3. 15).

For the special case in which Vi= V2= V& 0, i.e.,
an isotropic potential well with isotropic initial
conditions for the wave packet, namely,

& q» q&) o
= 5»» Xo &»»» ))» &o

= 6»» Qo (4. 5)

with real parts of & q» p&) =
& p& q» ) = 0, the resulting

solutions for

(q»q») (t}=(qaqa)(t)=x(t)

and for

( w, a, ) (t) = ( wa oa) (t) = Q(t)

+2(VX()+Qo)] (4V+B ), (4. 6)

Q(t) =([2Qo —(2 V+ B')Xo]Vcos(X'+ t»')t

+(VX()+Q()) (2V+B )] (4V+ B )

where

& = —i & = —i (—' [- (2 V+ B ) + B(4V+ Ba)' a]]'t a;

t»'= —it»= —i (a [-(2V+B') —B(4 V+B )a' ta]] .
(4.~)

The off-diagonal second-order means & q& qa) and

(»»»»)a), initially zero, remain so.
For the general case of anisotropic potential and

anisotropic intial conditions, determination of the
explicit form of the solution becomes very cumber-
some, and we have. not carried it through for ar-
bitrary B. Rather we have restricted attention to
the case in which B is small compared to Vi and
V2 and I Vi —V2l and have considered the first-or-
der corrections to the zero magnetic field case.
For definiteness, we take Vi & 0 and V2& 0, so that
we have the case of wave-packet motion on a saddle
point; the changes involved for the other cases will
be apparent.

The expansion starts by writing 7(» [Eq. (4. 3})
in the form

take particularly simple forms

X (t}= ( [(2V+ B ) Xo —2Qo) cos(A.
'

+ t»') t

(») = P(») +BF(»)+O(B ),0 1 2

where

(4'. 8)

V2 —Vi V2 —Vi

-(Va- V,)

o

( Va —V))
(4. 9)

0 0

0 0

—iV) (V~ —V~) iV) (V~ —Vs)

r
0 0

0 0

i 2 -Z 2
~ Vi/2 ~ Vi/2

0 0

(4. 10)
In obtaining this expansion of 5(», we have used
the expansions of the eigenvalues X and p, ,

A. =
~

V»~ +O(B ), t»=iVa +O(B ) . (4 11)

The remainder of the calculation utilizes this first-
order form of 5(» in the general procedure outlined
above. We present only the first-order results for
( q, q, )(t) = X„(t}, i,j = 1, 2, since these are suffi-
cient to describe the tunneling behavior of such
wave packets; solutions for ( w;Pr&) (t) = Q»&(t) may be
obtained in the same fashion:
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Sn(t)=t, tcosh St — sinh st+it s tt ' 't
) stnhhtcoshnt

v, v(v, —v)

+ Xlasinp, tcoshxt+ Qlacostl tsinhxt, (4. 12)
2IV, I'

Q t

V~ —Vg Vl Va —Vl J

X12(t) X12 cosp, t coshxt + (—Vl Va) 012 sinp, t sinhxt

[(V, + Va) X11 —2022]sin((1'tcoshxt+ 2 I Vll
' [(Vl+ Va)xaa —2n11]costi'tsinhxt

0 0

+ st~i (xtt — sinhl, tcoshit —v)t stt — sino, tcosn't (vt —it, )
t

(4 (h)
Vg Vp

Xaa(t) = Xaacos p, 't+ (Qaa/Va) sin p, 't 'Bf V a'-[(Vl+ Va) X12 2flla]»ntl'«ostl't

+2I V,
l

Xlacosp, tsinhxt+2va Qlasintl tcoshxt] (Va —V, ) . (4. 14)

In the derivation of these solutions, the initial con-
ditions were chosen to correspond to the case in
which the initia. l value of a;,. [Eq. (2.4)] was taken
as zero.

As outlined in Weiner and Partom, the probabil-
ity P(t) of finding the particle within the region
q&& 0, i. e., beyond the crest of the saddle point, is
given by

&(t) = 2 er«[- & ql)(t)/(2X«)"'] (4. 15)

A procedure, termed the particle method, for
the solution of the time-dependent Schrodinger
equation has been described ' for the case of zero
magnetic field. This method is based on the hy-
drodynamic analogy to the Schrodinger equation.
The original form of this analogy' is readily ex-
tended to include magnetic fields, "and it is cor-
respondingly straightforward to extend the particle
method as well to this case. In this section we
briefly describe this extension, give two examples
of computations utilizing this method, and compare
the results with the analytical solutions of Sec. IV.
In both of the numerical examples we have chosen
the values of the parameters arbitrarily, simply
in order to demonstrate the qualitative behavior of
the solutions„. we have not attempted to select val-
ues characteristic of a given physical situation.

To derive the hydrodynamic analogy in the pres-
ence of a magnetic field we substitute the wave
function g expressed in terms of its amplitude R

For the present case the mean motion (q, )(t) is
found to be

& ql) {t)= & ql) o coshxt+
I

Vl
I

"'& pl) o sinhxt

+ 8( Va —Vl) (( 7fa) p coshxt —Ua Ul
' ( qa) p sinhxt

+ V at ( qa) p sing, 't —( pa)o cos p, t) . (4. 16)

V. PARTICLE-METHOD CALCULATIONS

and S [Eq. (2. 2)] into the Schr'odinger equation [Eq.
(2. 1)] and equate real and imaginary parts with the
results

—+-,' (vs —X) + v —— = o,9$, 2 1 v' g
Bt 2 R

9A

Bt
+ V ~ [R (VS —A)]=0 .

(5. 1)

(5. 2)

We take the gradient of Eq. (5. 1) and introduce the
following notation:

v(q, t) = vS —A,

V«(qt t)= ——,
' V R/R,

p(q, t) = R' .
Then Eqs. (5. 1) and (5. 2) become

(5. 2)

GV

dt
= —VV+vxB —VV,„, (5.4)

Bp—+V ~ (pv)=O
Bt 7

where

(5. 5)

dv Bv

dt Bt
—= —+v V'v . (5. 6)

From these equations the hydrodynamic analogy in
the presence of a magnetic field follows. They
indicate that the time evolution of the wave function
P(q, t) is equivalent to the flow of a fluid of density
p(q, t) whose particles, moving with velocity v(q, t),
ara subject to a force derived from the prescribed
potential V(q), a Lorentz force' vx 8, plus an ad-
ditional force derived from the "quantum potential"
V,„(q, t) which depends upon the fluid density as in
Eq. (5. 2). Equation (5.4) will be recognized as the
equation of motion and Eq. (5. 5) as the equation of
continuity for such a continuum, while Eq. (5. 6) is
the equation for the particle acceleration when
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& ~,&, = --', &q, &, [a+(4V+a')"']

so as to give rise to a closed circular orbit:

&q q &o=&q q &o=l, &q q &o=&S P &o=o

A A A A A A A A 1
(qgpg&o &py q )0 0 &p1p1&o &papa&o

B=+2 .

FIG. 1. Isotropic Gaussianwave packet representing
electron in isotropic potential well with magnetic field
vector pointing into paper. Figure shows a representa-
tive set of "particles" {from the viewpoint of the hydro-
dynamic analogy) at successive times along the wave-
packet trajectory. Note that the wave packet "spins" and
its radius pulsates as its mean follows the classical tra-
jectory. The magnetic field is 8 =+2 {pointing into paper).
Wave-packet dimensions are shown in one-half scale for
figure clarity.

Eulerian coordinates are employed to designate
particle position.

In the particle method for the solution of the
time-dependent Schrodinger equation, the fluid is
approximated by a finite collection of representa-
tive particles and their trajectories are calculated
by the numerical solution of Eqs. (5.4) and (5. 5).
Details for the zero magnetic field case may be
found in the paper by Weiner and Askar'; as seen
from Eq. (5.4) the only modification needed here is
the addition of the Lorentz force in computing the
trajectory of each representative particle of the
continuum.

We consider first the results of a numerical
computation using the parti. cle method for the prob-
lem of an isotropic potential well with isotropic in-
itial conditions for which a compact expression of
the exact solution, Eq. (4. 6), is available. The
following dimensionless parameters were selected
arbitrarily:

Vg= V2=1;

&q,&o=S.0, &qa&o=O,

& vs)o=0 l & a'a&o= —l9 314

The value of ( oa&o was chosen according to the
formula

v;(q, t)=& a, &(t)+a, ,(t.) q, -A, , q, . (5. V)

That is, superimposed on the mean motion ( o, &(t)
which obeys the classical equations is a stretching
motion due to the symmetric matrix a;;(t) and a
spin due to the antisymmetric A;, . A computer-
plotted (Calcomp system) result of the particle-
method computations is shown in Fig. 1; in it may
be seen both the "spin" of the wave packet and its
expansion and contraction.

We present next the results of a sample problem
chosen to illustrate the effects of a magnetic field
on the dynamics of a Gaussian wave packet on a
quadratic saddle point with particular emphasis on
the magnetic field effect upon the tunneling through
such a barrier. The dimensionless parameters of
the sample problem were chosen arbitrarily as fol-
lows:

V~= —1, Vp=+1

so that the equation of the saddle-point surface is

l'(qi qa)=a(-qi+qa);

&qi)o=-3 o &qa)o-+3 o

( ai&o= 2. 0, (ma&o= —l5 0 .

In classical terms, therefore, the potential-energy
barrier which the wave packet must overcome has
a magnitude of 4. 5 a.u. , and the kinetic energy of
its motion in the q, direction is 2 a.u. :

A A A A A A

&qiqi&o=0 5 &qaqa)o=0 3 &qiqa&o=0 l5
A A A A

& q;P;&o=&P, q;&o= o
A A

g
A A

&P;P;)o= -. & q; q;&o

Here the notation (q; q;)o refers to the matrix in-
verse. It rqay be verified for a Gaussian wave
packet, Eqs, (2. 3) and (2.4), that this choice for

I

The large magnitude of B was used so that the qual-
itative features of the solution are readily apparent.

Although the wave packet is isotropic, a square
array of 9&& 9 representative particles was chosen
for the computation with the density of the initial
array chosen to correspond to R (q, 0). The use
of a square array is computationally convenient and
also makes the results of the computation easier
to visualize. The particle "velocity" v [Eq. (5. 3)]
for a Gaussian wave packet [Eqs. (2. 3) and (2. 4)] in
a uniform magnetic field takes the following simple
form:
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A comparison of the results of the particle-
method calculation and the analytical solution of
Sec. IV correct to first order in B reveals good
agreement. As an example, the tunneling prob-
ability at time t, P(t), is shown in Fig. 3 as de-
termined by both methods. Some of the discrepan-
cy between the analytical and particle method re-
sults from the fact that in the latter the tunneling
probability can only change by discrete jumps (—,', )
whenever a representative particle crosses the
crest.

FIG. 3. Comparison of time-dependent-tunneling
probability P(t) as given by the analytical solution and by
the numerical solution using the particle method. Units
in which m =@=1are employed.

(p, p,.)o corresponds to the case of g, , (0), Eq. (2. 4),
equal to zero.

The magnetic field was taken as in Sec. IV, in the

qs direction; three values of the component B in
this direction were considered, namely,

B=O, ~0. 05 .

A rectangular array of 9x 9 particles was again
employed in the particle-method computation. This
initial array is shown in Fig. 2(a) which also shows
the velocities of the particles corresponding to the
initial conditions listed above. The other figures
show the subsequent wave-packet dynamics. In
general it may be noted that in the wave-packet mo-
tion, the wave-packet width in the q2 direction (the
direction of positive curvature of the saddle point)
remains fairly constant, and the wave packet oscil-
lates back and forth in this direction with a rever-
sal in this sequence of figures taking place between
t=1 and t=2. On the other hand, the wave-packet
width in the q, direction (the direction of negative
curvature of the saddle point) grows exponentially
and gives rise to the tunneling across the barrier
as evidenced by the crossing of the saddle-point
(the vertical line in each figure) by some of the
representative particles of the packet; the tunnel-
ing probability at any time is given by the fraction
of the total number of particles employed which
have crossed the crest. The influence of the mag-
netic field upon the tunneling may be seen in the
final time step of these figures, t= 2, 75. The val-
ue of B=0.05 was chosen to be sufficiently large
to make this influence marked. If the mass of the
electron is employed, this value of B corresponds
to a field strength of 1.2x 108 G; clearly this effect
could only become important at attainable field
strengths for processes in which a greatly reduced
effective electronic mass was appropriate. '

VI. CONCLUDING REMARKS

This paper has presented the treatment of Gaus-
sian wave-packet dynamics in a uniform magnetic
and quadratic potential field, based on the ordinary
differential equations satisfied by the first- and
second-order quantum means. Our principal re-
sult is the development of a tensor-product rela-
tionship of the second- to first-order problem
which greatly simplifies the calculations.

Two particular problems have been treated in
detail. In the first the quadratic potential repre-
sents an isotropic potential well. With the addi-
tional restriction to the case of an isotropic wave
packet, the solution may be obtained in compact
closed form. The second problem treats the case
of a, wave packet on a saddle point. Here the prin-
cipal interest is the effect of a magnetic field upon
the tunneling through such a barrier, and the ex-
plicit solution is obtained only to first order in the
field strength. This problem was suggested by a
theory of rate processes in solids' in which a
system in a trapped localized state in thermal
equilibrium is represented by a suitable ensemble
of Gaussian wave packets. The present calculation
indicates that magnetic field effects on the escape
of trapped localized electrons should be very small
at presently attainable field strengths unless the
effective electronic mass is greatly reduced.

The two problems just described have also been
treated here numerically by a technique referred to
as the particle method ' " which is based on the hy-
drodynamic analogy to the time-dependent Schro-
dinger equation. The numerical results agree well
with the analytical solutions and suggest that this
method may be useful for examining wave-packet
dynamics for cases in which analytical solutions
are not possible. However, it should be empha-
sized that Gaussian-wave-packet dynamics under
the conditions considered here present a case which
is particularly simple from the viewpoint of the hy-
drodynamic analogy because the velocity field is
linear [Eq. (5.7)]. Current work here on more
complex flows have revealed serious difficulties
which must be overcome before the particle method
can be applied to them.
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The lattice dynamics of the body-centered tetragonal crystal has been investigated. The
interatomic forces considered include, in addition to the central forces and angular forces of
the type employed by Clark, Gazis, and Wallis, those forces arising from certain energies
owing to the compressibility of the conduction electrons and their interaction with ions. The
approach has been utilized to study the metal indium, and results are presented for the dis-
persion curves and the Debye temperature.

INTRODUCTION

The Debye temperature and dispersion curves
have been studied for the body-centered tetrago-
nal indium. The interatomic forces used consist
of central, angular, and volume forces. The an-
gular forces have been incorporated in a manner

suggested by Clark, Gazis, and Wallis. ' The vol-
ume forces, owing their origin to free conduction
electrons, have been considered in a semiphenom-
enological way, viz. , by averaging the effect of
the presence of electrons on lattice vibrations over
the actual shape of the Wigner-Seitz polyhedron.

The chief aim of the investigation is to give a


