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( g V + V)@s ~s= (E+ bE)ks ~s, (AQ)

Now cross multiply by B~ ls Plums and R/s g+hgI looms

and proceed as in the atomic problem. This gives
~rc

2 d &R)s/sr g 32«iz = & ~zRrsr d~
Rl8 r rc lo

(Ai.O)

for every l. Thus in order that the charge density
of the solid be properly represented between cores
it is necessary to fit the ground and excited states
of all symmetries.

It should be noted that this theorem is only valid
if V is independent of the energy E, for then [d/dE,
V]= 0 and the potential terms in (A3) cancel.
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Changes in the Fermi surface with disordex can be defined for only two cases: (a) when

ordinary perturbation theory is applicable and (b) when the forward-scattering approximation
is applicable. In the forward-scattering approximation (FSA) the perturbation is large in the

vicinity of the forward direction or diagonal elements, but the average off-diagonal element
is small, in contrast to the ordinary perturbation approximation where all perturbing matrix
elements are small. The multiple scattering problem is solved for the FSA, and its close re-
lation to ordinary perturbation theory is discussed. All the results of ordinary perturbation
theory can be carried over to the FSA if proper account is taken of the self-energies of the

states and interband mixing. The self-consistent condition on the potential imposed by shield-

ing is given. The fact that the FSA can satisfy this self-consistency makes it a physically
realistic approximation. All systems with a large concentration of disorder whose properties
still can be appxoximated by the concepts of ordered systems, such as a Fermi surface, must
be describable by either the FSA or ordinary perturbation theoxy.

I. INTRODUCTION

In the development of our understanding of a
given subject, it is helpful to have models which
are simple yet good approximations to physical
reality. The field of disordered systems is such
a developing subject, but its progress is being
hampered by a scarcity of such simple models.
One simple approximation that has proven to be
successful is perturbation theory. ' Both disordered
alloys~ and liquid metalsa have examples which
have been successfully described by perturbation

theory. However, especially for disordered alloys,
the most interesting and most numerous cases can-
not be described in terms of perturbation theory.

Much effort has been expended on developing
other approximations which can supplement per-
turbation theory. Perhaps the best known and
most widely pursued one has been the coherent-
potential approximation (CPA). 4 6 The CPA has
the advantage that it is relatively simple if applied
to the highly localized perturbation model where
the random perturbations are localized to a single
site and enter into only the diagonal elements of a
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Wannier-function representation. This highly lo-
calized perturbation model has been used extensive-
ly, not only in the CPA, but also in studying other
approachesv which attempt to include the correla-
tion effects between neighboring scatterers which
are neglected in the CPA. However, recently it
has been shown' that when the self-consistency re-
quirement on the potential is taken into account,
the highly localized perturbation model cannot be
applied to any real physical system. Although one
may hope that qualitatively the highly localized
perturbation model will give still reasonable re-
sults, this can only be a hope because of the un-
physical nature of the model.

In a recent paper a new simple approximation
was presented which can satisfy the self-consis-
tency condition on the potential; thus it is physical
and is applicable to a class of real disordered
systems, namely, those for whom changes in
their Fermi surfaces can be defined. The prop-
erties of this new approximation were described
semiquantitatively, but the explicit multiple scat-
tering solution was not then given. This paper
presents such a solution for this approximation
which is called the "forward-scattering approxi-
mation" (FSA) for reasons to be given in Sec. II.
As will be discussed in Sec. IV, the FSA is close-
ly related to perturbation theory and is as simple.

In Sec. II the FSA is characterized in terms of
the energy shift or self-energy introduced by al-
loying. The essence of the material in Sec. II was
presented previously, but is summarized here in
a form more appropriate for the subsequent de-
velopment. The relation between the T and V ma-
trices is given in Sec. III, which gives the solution
to the multiple scattering problem encountered in
disordered systems. In Sec. IV a discussion is
given of the self-consistency condition on the po-
tential in the FSA and of the relationship between
the FSA and ordinary perturbation theory. - Sec-
tion V consists of a summary and conclusion.

II. ENERGY SHIFTS AND SCATTERING THEORY

When a pure crystalline solid is disordered in
some manner, such as by alloying or by being
made amorphous, its energy spectrum is, of
course, modified. One way to describe this modi-
fication is in terms of the self-energy or energy
shift of the energies of the Bloch states Eo(k). If
I denote the Bloch states by ik), then they satisfy
the relation

If, ~k) =E,(k) ~k&,

where B~ is the Hamiltonian describing the crys-
talline solid. The disordering process will modify
this Hamiltonian to H, where

and V is the appropriate random perturbation in-
troduced by the disorder.

The self-energy or energy shift Z(k) of (k) in-
troduced by disordering is defined as the complex
change in its energy as 7 is adiabatically turned
on, Writing

Z(k) = Z, (k) + iZ q(k), (3)

where Z, and Z~ are the real and imaginary parts
of Z(k), ff[2Zz(k)] ' is a measure of the lifetime of
]k) in the disordered system; i. e. , if an electron
were created in the state ~ k), it would decay in a
time of order k/2Z, (k) in the disordered system.
The usefulness and correctness of interpreting

(ReE(K) =Eo(k)+Z, (k) 4)

as accurately indicating the energy change of ~k)
in the disordered system depends on the relative
sizes of Z~(k) and Z,(k). 2Z3(k) is a measure of
the half-width of the uncertainty in the energy in-
troduced by the decay. If

5(k) -=Z~(k)/Z, (k) ~ I,
then the uncertainty in the energy shift is as great
or larger than the energy shift, and one cannot in-
terpret (4) as the energy of ~k) in the disordered
system having increased by Z, (k). However, if

5(k) «1, (6)

then (4) can be so interpreted. As shown in Ref.
9, 5(k) « I is the necessary and sufficient condition
that when disorder is introduced, both (a) changes
in the Fermi surfaces can be defined and (b) the
concept of the Fermi surface maintains validity for
all amounts of disorder. Thus 5(k) « I includes a
very important class of disordered systems.

It is important to note that it is not sufficient that

Z,(k),
ReE(k)

(5')

for (a) and (b) above to be valid. Relation (5') does
indicate that both the energy E(k) and the Fermi
surface are well defined, but unless (6) is also val-
id, then ckanges in ReE(k) are not well defined,
because the uncertainty in ReE(k) is as large as its
change. For dilute impurities, both Z~(k) and Z2(k)
are proportional to the concentration c, and it is
clear that (5') can always be satisfied, and thus
the Fermi surface is well defined when c is small
enough. This is, of course, the motivation for
purifying materials when experimental measure-
ments on the Fermi surface are made. However,
when defining cgapges in the Fermi surface, one is
not helped by decreasing c, since 5(k) is indepen-
dent of c in the dilute limit. It is true that the un-
certainty decreases with c, but so does the change.
Conversely, when the concentration c is large,
only (6) guarantees that relation (5') remains true
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Re&» ~~ Im~» ~ (6')

By the optical theorem,

imf„=» ~ lf» I'6(~o(k) -~0(k')) (io)

Choosing the appropriate average value I g», ) „,
Imt» can be obtained from (10) to be

lmt„= 2~l f,„l'„p(z(k)) . (1o')

Using the order-of-magnitude estimate that p(Z(k))
-N/W, where W is the width of the band and N is
the total number of atoms in the system, I have

imf„-
l f„„,l

'.,N/W . (11)

If I f»i «W/N, then perturbation theory is valid
and we knom the result in that case. I am inter-
ested in the case where perturbation theory is no
longer valid so that I Bet» I

- It» I
- W/Ã or larger.

Using this plus (11}, conditions (6} and (6') become

I t» I

(6")

We expect that l f», ( be normally a continuous func-
tion of k'. ~~ Continuity implies that for k' near R,

I f». I
=

I t» I, but for (6") to be true, I f» I
'« I t»l

for most of the remaining k'. Thus I g~, t2 is
peaked in the forward direction. Since I g». I is

I next analyze the condition (6) in terms of the
scattering caused by V. For simplicity, I consider
V to consist of a small number of discrete scatters
which can be analyzed individually, and interband
matrix elements are neglected. In Sec. III the
more general case is considered. The energy
shift is given by'

(?)

where I k) is the state in the disordered system
which is adiabatically related to ik). From my
simplifying assumption on V, Eq. ('?) becomes

Z(k)
N2(klglk&

(8)
(RIE&

where v is that part of V that comes from a single
scatterer, and N2 is the total number of scatters.
I am assuming that Nz is a small enough number
that I need expand Z $) to only first order in Nz.
Since (8) is already of order N2, the denominator
need only be calculated to zero order mhere it
equals 1. Thus,

Z(k) = &a(kl &1k) = &a&» (8')

and t» is the diagonal matrix element of the t ma-
trix for Ik). The t matrix is defined by

(8)

Condition (6) on Z(k) gives, by (8'), the condition
on &aa'

proportional to the scattering probability, equiva-
lent conditions (6), (6'), and (6") are designated as
the "forward-scattering approximation. "

G, =(Z-?f) '. (12)

Such a Green's function has both diagonal and off-
diagonal matrix elements. If I desire to calculate
the density of states of the alloy, I need know only
the diagonal elements. Let me define G» by re-
quiring it to be diagonal in a Bloch-state represen-
tation to be specified, and equal to the diagonal
elements of G~. Since G~ is diagonal, it must
correspond to some periodic Hamiltonian H„(not
necessarily Hermitian} defined by

G~s=(~ —&~} '

where

Hg=00+A=H- V+A,

A= Z A(«K)l.K&&. al.
n, n', %

(is)

The states I nK & are defined to be those Bloch
states which diagonalize H„. The reduced-zone
scheme is used, and ~ represents the band index,
while R represents the wave vector. As shown in
the Appendix, the states InK& comprise an ortho-
normal set, even though 0„ is not Hermitian.

In what follows I mill drop the 8 subscript and
the g index whenever convenient to simplify nota, -
tion. G„and G are related to one another by

G=Gg+ G„(V-A)G .
Defining the multiple scattering T matrix by

TG„= (V- A)G,

I obtain for (15)

G = G~ + G~ TGg .

(i6)

In order that the diagonal elements of G equal those
of G„, I require'

(18)T~~(«') = 0,
where T«(«') are the matrix elements of T be-
tween the states I nK& and In'R&.

The self-energy Z(k) is closely related to
A(«R) =A(nK). By definition, Z(k) represents the
difference between the complex-alloy energy cor-
responding to an initial state I~k& and its initial
energy Eo(k}. To understand the relationship be-
tween Z(k) and A(nK), I must determine the rela-

III. MULTIPLE SCATTERING PROBLEM

In disordered systems the main mathematical
difficulty to overcome is the multiple scattering
problem. In this section I solve the multiple scat-
tering problem for the FSA.

To do so, I introduce the Green's function G~ for
the alloy, defined a.s
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tionship between Ink), our eigenstates of Hp, and

InK), the eigenstates of H„. To do so, I note that
both Ho and H„have the same periodicity. Thus

I nK) and Ink) span exactly the same Brillouin-
zone space. We have defined the state I'npK) which
corresponds to I npk) by requiring that both states
have the same wave vector. The difference be-
tween Inpk) and InpK) is in their periodic parts.
In the spacial representation I can write

npk ) = N ' e' ' ' U„~(r), (19)

I ~K) = N '"e'"' y„,,(r),
where X is the total number of atoms, and both

U„~(r) and (t)„„(r)are periodic with the same peri-
odicity as Ho and H» and differ from one another
because of interband matrix elements of A.

The set of equations that relate U„, to &f&„~ are
npk

(t)„„=Za(mnk) U„„, (»)

(2o)

where

&
I
a(mnk) I'=I (22)

and

a(mnpk)E(mK) =2 a(mnk) (npkI H„I nk) ~ (23)

Here

E(mK) =- ( mK
I H„I mK) . (24)

To obtain the above relationships for the a(mnk),
I used the requirement that I mK) diagonalize H„.

and

E(npK) = Ep(npK) + A(npK), (26)

HpI np" ) = Ep(npk) I npk) ~ (1')

Thus, if I can solve for A(K), I can determine Z
and the diagonal elements of G.

To solve for A. (K), I first find a relation for T by
using (17) in (16) to obtain

T= (V-A)+(V —A)G~T . (2

Using (18) and (25), I calculate the diagonal ele-
ments of (27) to obtain

A(n'nK) = V (n'n)

V~x" (n'n") Tr"x (n "n)
&s ~ Kl ~ g x E E(n K )

The off-diagonal elements of (27) become, using
(28),

(28)

From (13), (14), (17), and (18) I have

G (np)=G„„(n,)=[E-E,(n K)-A(npK)]

where

Ep(npK) = (Knp
I
Hp

I npK),

and the matrix elements of G and G~ are denoted
by the same notation as used in (18) for T. By the
definition of Z(k), I have

Z (n,k) = E(n, K) —E,(npk),

where E(npK) is given by (24) and also has the rela-
tionship

(, ) ~ (, ) p v„„(n n )r. ,(n n),)'".. "

1 11$ / -1
x 1+ 5 Vx. (('"(n n j Tx "xc,'(n n )

G ( ~K ) (29)
K''4 K E —E(n"R")

In the FSA we expect that

ImA(nK) p

ReA(nR)
(6/I I)

I Vx. x(n n) I,„(p)
IV, (n)I' (3o)

the magnitude squared of V~.~ is on the average of
order x times that of I V«l . In obtaining (30) I
made use of the fact that G„(K')- I/W and V«- cW

This follows immediately from (6) and (26) if inter-
band effects are negligible, because then Z(k)
=A(K). It is reasonable to expect (6"') to be true
in general, because, except for special cases, in-
terband mixing does not change the magnitude of
A(K). From (28) and (29), the only way for (6"')
to be valid and still maintain ReA. (nK) large is for

or larger, where W is the magnitude of the spread
of the important values of E(K), c= Np/N, and Np is
the total number of scattering sites in a system of
N total number of atoms. We are interested in the
case where perturbation theory does not apply, and
thus are considering the case where V«- cd or
larger. It is important to note that (30) does not
say that all matrix elements of V~, ~ are small.
On the contrary, by continuity we expect that V~, ~
—V«when K' =K. Just as in (6"), Eq. (30) indi-
cates that in some sense V is strongly peaked in
the forward direction.

Relation (6"') can also lead to ordinary pertur-
bation theory if we assume that ReA(nK) is small,
and thus that all elements of V are small. In
that case, (6'") is satisfied because the ImA is
second order in V, while ReA is first order. Or-
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dinary perturbation theory and FSA exhaust the
possibilities to satisfy (6"'}, because either
ReA. (nK) is small or it is not. If it is small, then
perturbation theory applies, while if it is not,
then FSA applies.

Using x as the expansion parameter, it is easy
to find from (28) and (29) that

X(n'm) = V„(n'n)

n", R"0 R

Z'„, (n'n) = V», «(n'n)

n", R"w K', R '

V««" (n'n") V» .«(n"n)
E E( Ilgll) I /

(28'}

V„,». , (n'n") V», .«(n"n) 3

E( Ilgwu I)
(29')

Kv(K) ~ hk+ AA = 0,80

where

v(K) = e 'V, Z(nK) . (32)

The additional electron charge hQ enclosed by the
Fermi surface is

q = —(4«'g)-' Re & &

Iv(K)l

where

sz(nR)
en

(33)

Here dS is an element of area on the Fermi sur-
face, and the integration is on the Fermi surface.

Note from (29') and (30) that the average off-
diagonal element of T is of order x, and thus scat-
tering effects in FSA disordered systems can be
calculated by expansions in z.

I conclude this section by deriving a Friedel-
type sum rule imposed by the requirement of
shielded potentials. When the perturbing potentials
are shielded, the Fermi level remains fixed, say,
at p, , regardless of the concentration of scattering
centers. ' As mentioned in Sec. II, the FSA per-
mits the definition of a Fermi surface. The Fermi
surface in the band yg is defined by

ReZ(nK) = p .

Say that I have some parameter 0 with which I can
describe the disorder in our system. This could
be the concentration c of a second component in a
disordered alloy or a measure of the disorder in an
amorphous or liquid system. If I change Q a small
amount but maintain shielding of the potentials,
then the new Fermi surface can be def ined by dif-
ferentiating (31) to find

Equation (33) is a generalized form of the Friedel
sum rule in the FSA valid to order g~ for all con-
centrations of disorder. The usual form of the
Friedel sum ruleo is applicable only in cases of
dilute disorder.

For example, consider the case of a binary dis-
ordered alloy consisting of type-1 and type-2
atoms, where 0= c, the concentration of type-2
atoms. Each type-2 atom increases the number of
electrons in the system by Z. Then, as shown in
the Appendix, (33) becomes, in this case,

Z = —(470 a) '$ 5„(n)d S
~
VN:)

~

', (34)

where paj is the potential change introduced when a
type-1 atom at a given site is replaced by a type-2
atom. If I now replace vzq«»(n) by its value

(v2q«(n)) averaged over the Fermi surface (not
averaged over configurations), (34) becomes

p(u) = —&/& ~ai««(n) &

where p(p) is the alloy density of states at the
Fermi energy Equa. tion (34') gives a direct rela-
tion between p(p) and the alloy potential. It is im-
portant to note that this relation comes directly
from the self-consistency requirement on the po-
tential. It is a special case of the general the-
orem that the alloy density of states is intimately
related to the self-consistency requirement on the
potential.

The total number of states in our band n is equal
to ~N, where ~ is usually some integer; e.g. ,
for an g band, ye=2, while for a d band, ~=10.
If g is of the order of gyes, then the band becomes
filled when the number of type-2 atoms becomes
of the order of N. If the band is initially near
empty, then the states from near the bottom of the
band to near the top sweep through the Fermi level
as Nz- N. This means that Z, (k) = V»- cW, as was
assumed, and ordinary perturbation theory is not
valid.

IV. DISCUSSION

It is instructive to note the relationship between
Eqs. (28), (28'), (29), and (29') and ordinary per-
turbation theory. If in (15) I had considered V- A

small in the sense of ordinary perturbation theory,
I would have ended up with the same formulas as
(28') and (29'). Yet V-A does not satisfy the re-
quirement for ordinary perturbation theory, name-
ly, that gll matrix elements of V-A be small. We
know that off-diagonal elements of V-A are given
by V alone, since A has only diagonal elements.
If Z- m, we expect V«». to be large for K- R', as
discussed previously. What is small is I V« l„,
because V is highly peaked in the forward direc-
tion. A discussion of the matrix elements of V,
where there are many random scatterers, is com-
plicated somewhat by the fact that the magnitude of
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the off-diagonal elements are of the order of
(N~)

~ ~ times those of the diagonal elements. When

appropriate sums are taken as in (28'), the (N, ) '~~

sorts itself out so that all terms are the same or-
der in N&. In the FSA the additional parameter g
remains and gives us our expansion parameter.

It is important to note that V could not be treated
by ordinary perturbation theory directly because
of the large value of V«. Ordinary perturbation
theory with Ho as the basis would have used )k)
in place of IK) to calculate the matrix elements
and Eo(k) in place of E(K). The difference be'tween

these energies is A(Z)- cW, and is not negligible.
However, the inverse is true. Ordinary perturba-
tion theory becomes a, special case of the FSA when

V~~ and V~~, a're small.
Returning to our self-consistency condition on the

potential given in (33) and (34) note that if Z is
small compared to nz, then V«will also be small
compared to cW. In that case it might be possible
to treat V by ordinary perturbation theory. In this
view it is possible to understand why liquid metals
have so successfully been treated by perturbation
theory. 3 In the disordering process that leads to
the liquid from the periodic solid, q or Z=O.

Besides the self-consistency condition of (33),
the potential must also be self-consistent with re-
spect to the potential produced by the electron
charges in its vicinity. For example, in a disor-
dered alloy, if one constituent at a given site is re-
placed by another, the potential perturbation is the
sum of both the perturbation introduced by the
changing ion-core potentials and the perturbation
introduced by the changing distribution of the
shieMing electrons. The change in the distribution
of the shielding electrons can be estimated by com-
paring the V and T matrices. From (9) note that
any changes from ~ K) are reflected in the differ-
ence between 7 and V. Since the difference be-
tween V and T in (29') is of order x', the change
in the wave function is of order g, because V itself
contributes one order of x. The change in potential
is proportional to the square of the change in the
wave function and thus is proportional to ga, i.e. ,
both the change in shielding cloud and the change in
the potential are of order g2 ig, the FSA. If this
were the whole story, then A(K) would be equal to
V«Produced by the ion cores alone to order g~.
However, as I shall discuss in the next paragraph,
one does not expect the FSA to be valid for all occu-
pied states inthe "band. " Sincethe shielding charge
comes from all occupied electron states, those
states that cannot be described by the FSA couM
give a large shielding contribution to V«, and one
cannot conclude that the V«comes from only the
ion cores. It is interesting to note that in ordinary
perturbation theory, the shielding contribution to V
could be of second order in the perturbation, since

TABLE I. Calculated values of g for some dilute
alloys. The Z=. 1 row refers to a free-electron gas with
the density of Ag and dilute impurities of a positive point
charge of unit charge.

AgCd
AgIn

Again
Ag81
S=1

0.470
0.669
0.S55
1.037
0.879

0.221
0.448
0.731
1.074
0.773

it is possible for all states in the band to be de-
scribed by perturbation theory.

If we consider the dilute limit as discussed in
Sec. II, we note that (8'), when compared with
(28'), implies that f»= v» to order x . The for-
ward-peaked character of V«and v» can come
about because v has a spatial extent large com-
pared to the wavelength corresponding to k. Clear-
ly, when, one considers states lower down in the
band, there must come a region where the electron
wavelength is of the order of or greater than v.
%hen that occurs, the scattering will be g-like with
a more or less spherical distribution about the
scattering center. For those states, the FSA does
not apply. From this type of reasoning we see
that the FSA is expected to be appropriate only for
metallic-type alloys where the Fermi level is not
near the bottom of the band.

By comparing with appropriate experimental
data, it is possible to calculate g~ for some dilute
alloys. %e can obtain Z, and Z~ in the dilute case
from the forward-scattering amplitude as per (8').
Analysis of experimental data'6 has determined the
phase shifts introduced by various impurities in
Ag. From these phase shifts, the forward-scat-
tering amplitude can be calculated by standard
formulas leading to the values of x listed in Ta-
ble I. Note, from Table I, that the n phase of AgCd
alloys can be well approximated by the FSA, while
AgSn and AgSb alloys cannot be so approximated.
The alloy AgIn is an intermediate case. The last
row in Table I corresponds to a positive point-
charge impurity of one charge unit screened by a
free-electron gas of the density of silver. If
screening in Ag can be approximated by the free-
electron model, then the last row in Table I should
approximate the AgCd case. Such is clearly not
the case, and we note that the Z= 1 model cannot
be approximated by the FSA.

The presentation in this paper has omitted a step
which is common to most all discussions of disor-
dered systems, namely, averaging over possible
configurations of the alloy. It is usually found
necessary to perform such an average in order to
obtain expressions which can be managed. The
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argument for this is that, because of the large
number N of atoms involved, the average is a good
representation of any given alloy, because the frac-
tional fluctuations about the average are of the order
of N ' 3. The technique employed in this paper re-
quiring use of i18) instead of (T) = 0, as is stan-
dard, ' sidesteps the need for an average and pre-
sents the result for a give~ configuration. If de-
sired, an average over configuration can be per-
formed later, but, by not averaging, no informa-
tion is lost. Thus the expressions (28), (28'),
(29), and (29') have all the information in them
after insertion into (17) to calculate all other prop-
erties of the alloy, such as transport properties.
Because of its formal similarity to ordinary per-
turbation theory, the transport properties of the
FSA alloys can be calculated from a Boltzmann
equation, but with the reference states inK & and
reference energies ReE(&K). In fact, FSA alloys
are closely analogous to pure materials with a
small amount of scattering. All the formulas de-
rived for the case of pure materials with a small
amount of scattering apply to FSA alloys if the un-
perturbed reference states l nK) and energies
ReE(nK) are used in place of Ink& and Eo(nk).

V. SUMMARY AND CONCLUSION

Changes in the Fermi surface with disorder can
be defined in just two different cases: (a) when

ordinary perturbation theory is applicable and

(b) when the FSA is valid. The FSA differs from
ordinary perturbation theory in that the diagonal
matrix elements of the disordering perturbation
and others in its vicinity are large. The perturba-
tion is highly peaked in the forward direction, so
that the average off-diagonal matrix element of the
disordering perturbation is small, giving the ex-
pansion parameter for the FSA. The band charac-
ter with its gaps is not greatly perturbed in the
FSA, because the matrix elements of the perturb-
ing potential at the large wave vectors correspond-
ing to the gaps are small. If the FSA is applicable,
it is expected to be so for metalliclike systems
with the Fermi level far from the bottom of the
band, and where the valence difference between
the constituents is of the order of the number of
states per atom in the band.

The fact that the FSA has the same solution as
ordinary perturbation theory when E(K) and the

i K) are used in place of Ea(k) and the Ik) basis
means physically that all the properties of pure
materials also apply to those systems that satisfy
the FSA, except that the energies E(K) and the
states iK) depend on the disorder. As discussed
previously, the Fermi surfaces of FSA systems
change their dimensions in k space qualitatively as
predicted by the rigid-band model, expanding as
the electron-per-atom ratio increases, and the de

II„~~K&=E(nK)~A&. (Al)

I change e by replacing a type-1 atom at a given
site with a type-2 atom. This corresponds to a
change in c of

4c=N (A2)

With this change, and using (14) and (28'), the new
Hamiltonian that defines i K) is, to order x',

H„=H„+ Z .„„(&,&')~nK&&n'K~,
n, n', K

(As)

where v~, is the perturbation introduced by the sub-
stitution of a type-1 atom by a type-2 atom at a
given site. In general, v» may vary from site to

Haas-van Alphen effect measures the shape of the
Fermi surface of the disordered system. The re-
sults of this paper show that all the transport prop-
erties of FSA systems about theA Fermi surfaces
have exactly the same dependence on V as given by
ordinary perturbation theory. Since in ordinary
perturbation theory the Boltzmann equation is ap-
plicable, it is also applicable for the FSA, though
account must be taken of the change in the Fermi
surface with disorder. The optical properties of
FSA systems are also the same as those predicted
by ordinary perturbation theory, at least around
the Fermi surface. For energies where states
near the bottom of the conduction band contribute
appreciably to the optical properties, deviation
from perturbation-theory behavior will occur be-
cause, as discussed in Sec. IV, these states are
not described by the FSA. Recent optical data ~

on the FSA alloy systems AgCd, Ag Zn, AgMg,
AgSn, and CuZn a,re in agreement with this analy-
sis.

The complete solution for the FSA is given in
this paper. By "complete solution" is meant in the
usual sense where the perturbing potentials are
assumed known, and the multiple scattering effects
are calculated. However, in actual practice the
perturbing potentials have to be determined self-
consistently, e ~' and this part of the problem has
not been solved. The FSA has the important fea-
ture that it can satisfy the restriction imposed by
shielding and is thus a physical approximation as
opposed to the highly localized approximation. e

In giving the solution to the FSA summarized by
Eqs. (17), (28'), and (29'), no averaging over
disorder whatsoever was performed. Thus these
equations have all the information necessary to
calculate all properties of the disordered system,
including transport properties.

APPENDIX

In this appendix I calculate BE(nK)/sc for an al-
loy in the FSA that satisfies the assumptions that
lead to (34). By definition,
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site. We have an expansion parameter in (A3) be-
cause vs~rE(nn') is of order N, and we need to
consider any quantity only to order N ~. Expand-
ing in terms of the states inK), the new eigen-
states of (A3) will be

y„'(K) =
~
nK)+Z a(n'X)

~

n'K), (A4)

v„,(n) = ~Z(nK).

Using (A2) in (A6), one obtains

eZ(nK)
=Nvag~r(n) ~

(A6)

(AV)

which, inserted in (33), leads to (34).
In this appendix and also in the text it was im-

where the a(n'K) are of order N '.
The P„'(K) satisfy the equation

H „'y„'(K)= [Z(nK)+ ~Z(nK)] y„'(K),

where ERE(nK) is of order N '. One can calculate
the desired ~(nK) by finding the overlap of (A5)
with I nK) and keeping terms to order N '. One then
finds

plicitly assumed that the eigenstates inK) form an
orthonormal set. Off-hand, this is not obvious,
because II„ is not Hermitian. That states of dif-
ferent K are orthogonal to one another follows im-
mediately from Fourier analysis. The states with
different K have no Fourier components in com-
mon. Vfhat does not follow immediately is that

i n'K) and inK) are orthogonal. To see that they
are orthogonal, note that the ImA does not have
any interband matrix elements because of its
small value that produces a requirement of approx-
imate energy conservation in (28). Therefore, the
interband matrix elements of H„betwe enl n K)
and ink) are Hermitian because they have no con-
tribution from ImA, and the usual proof~0 follows
that the states are orthogonal to one another. It
should be noted that though ImA has no interband
matrix elements, the ReA will have, in general,
interband matrix elements. In summary, the
states with different K are orthogonal to one an-
other because they contain no common Fourier
components, while the states with the same K but
in different bands are orthogonal to one another
because the ImA has no interband matrix elements.
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The free energy of a binary fcc metallic solid solution is calculated using the statistical ap-
proximation of Yang and Li. The analytic expression permits one to separate, in the free-
energy contribution, the homogeneous part from any inhomogeneity due to an arbitrary one-
dimensional concentration fluctuation. The extra free energy introduced by a nonuniform
solid solution is shown to be completely equivalent to the gradient free-energy term intro-
duced phenomenologically by Landau and Lifshitz. By comparison with the Bragg-Williams
approximation, the gradient coefficient is no longer constant, but concentration dependent at
low temperature in a solution with miscibility gap as well as in a system exhibiting ordering.
The free energy obtained is consistent with the discontinuous order-disorder transition in a
fcc structure of the CuAu type.

I. INTRODUCTION

A supercooled solid solution tends to evolve to-
wards its equilibrium state, either by infinitesi-
mally small fluctuations that are extended in space,
or by intense fluctuations that are localized, as
noted by Gibbs. In either way, spatial variation
of concentration in the solid solution is produced,
and this introduces an excess free energy into the
system, generally called the "gradient free en-

ergy. " The repercussion of the inhomogeneity of
an internal parameter on the free energy was first
taken into account phenomenologically by Landau
and Lifshitz for the density n(1) of a one-compo-
nent fluid. Considered as a function of n and of its
spatial derivatives, and restricting the develop-
ment to quadratic terms, the free energy is written
as

E= J [f()+En(Vn) + ~ ~ ]dV,

f (n) being the free energy per unit volume of a
homogeneous fluid of density n. , and K a coefficient
generally listed as the "gradient coefficient. " Such
an expression, widely used afterwards for numer-
ous internal parameters, was apparently introduced
in the treatment of binary solid solutions by Hil-

lert, who found for a one-dimensional variation of
concentration

z=Z„{f(c„)+-,' ac[(c„„-c„)'+(c„,—c„)']),
(2)

g„being the concentration in a plane indexed n,
E= —zv, (3)

g being the number of nearest neighbors that an
atom has in one of the adjacent planes, and
v=-,'(v»+v») —v» is the interaction energy be-
tween nearest neighbors.

The free energy I was calculated from statisti-
cal thermodynamics assuming the Bragg-Williams
approximation of a "regular" or "lattice" model.
In the regular model of solid solutions the atoms
are supposed to occupy a regular rigid lattice, so
that all volume effects are thus omitted (this may
be a good approximation for atoms of nearly equal
size); the interaction energies between atoms of
two species A and 8—v»(1.), v»(r), and v»(r)
are supposed to be a function of the distance be-
tween them but not of concentration or of local ar-
rangement. Generally interactions are limited to
nearest neighbors, although interaction between
more distant atoms might be included if necessary.
In the Bragg-Williams approximation, the atoms
are assumed to be distributed among the sites in
a random manner, exactly as if the well-known in-
teraction energy v= p(v»+v~e) —v„e were zero.

For negative interaction energy v, the phenome-


