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A local pseudopotential of the form V= Vo coskr + C r & r„V=—llr, r & r, , is used to fit the

experimental ground-state energy of atomic sodium. This form is chosen so as to mirror as closely as

possible the actual valence charge distribution of Na. This is important in the calculation of chemical

properties such as bonding and cohesion. Electrostatic calculations of the cohesive energy of the bcc metal

from the virial theorem and from the electrostatic self-energy of the lattice are performed and the results

compared. The results bear on the accuracy of electron-gas calculations in metals and the techniques of
pseudopotential calculations. The phonon spectrum is calculated and all results are compared to those

obtained with a Shaw-type flat-bottom pseudopotential.

I. INTRODUCTION

Pseudopotential theory has proven to be of great
use both to experimentalists, as a framework with-
in which to report their results, and to theoreti-
cians, as a computationally facile way to approach
solid-state calculations. By far the most extensive
applications of the theory have been to the calcula-
tion of the one-electron properties of solids in a

nearly-free-electron viewpoint. Previous pseudo-
potentials have been designed to reproduce the
optical spectrum of the solid or the energy levels
of the atom. Little attention has been given to the
importance of matching the correct charge distri-
bution as well. We present here several calcula-
tions with a potential that models not only the
atomic energy levels but also the valence charge
distribution. The purpose of this choice is the cal-
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culation of properties relevant to binding. The re-
sults will be compared with a potential designed to
fit only the energy levels. We present two differ-
ent calculations for the cohesive energy: from the
virial theorem and from the electrostatic self-
energy of the lattice. As these are in principle
identical calculations, if customary approximations
and interpolations are valid, the results should be
the same. Discrepancies between these results
suggest the scale of errors in the present under-
standing. The phonon spectrum is also calculated.

In order to calculate the cohesive energy, a
necessary (although perhaps not sufficient) pre-
requisite is a pseudopotential which accurately
predicts charge distributions in the bonding region,
i. e. , outside the ion cores. The most convenient
class of pseudopotentials are the local, or energy
and angular-momentum-independent, ps eudopoten-
tials. In this paper we present a local pseudopo-
tential whose form is chosen to reproduce the atom-
ic valence charge distribution as well as the ground
state energy. A theorem useful in doing this is re-
reviewed in the Appendix. We also require that
this potential be continuous at the core boundary,
and that the slope be continuous as well. This con-
dition has been inserted to reduce spurious "ring-
ing" effects of abrupt changes in V(r). Previous
local pseudopotentials have suffered from several
defects, the most important of which, from our
point of view, being that although the ground-state
atomic energy could be fit, the excited states could
not. Further, the elimination of the core oscilla-
tions causes an arbitrary alteration of the amplitude
of the pseudo wave function in the tail region. Be-
cause in the long run the pseudo wave function
normally is treated as the real wave function in the
tail region, it is precisely this region which is im-
portant in the calculation of chemical properties
such as bonding. If the pseudoatoms are viewed as
the basis for the calculations of real chemistry, it
is essential to get the correct wave-function nor-
malization in the bonding region. Finally, all
present pseudopotentials have discontinuous slopes
at the core radius, and most have discontinuous
values as well. This leads to unphysically high
Fourier coefficients in the reciprocal space,
which in turn slows convergence of sums over
reciprocal-lattice vectors and may produce spurious
effects. Indeed it is found that in order to obtain
reasonable fits to phonon and band structures in
metals, reciprocal- space pseudopotentials must
be truncated after 4k~. Shaw has suggested "op-
timizing" a potential that is constant inside some
radius and Coulomb outside by making the potential
continuous at the core radius. However, this still
leads to an emphasized oscillating tail in reciprocal
space.

In the following sections we present calculations

of several atomic and metallic properties of sodium
using the potential chosen to improve the valence
charge density. The calculations are repeated
with a Shaw-type potential for comparison. Both
potentials involve parameters which are varied to
fit the experimental 3s level of atomic Na.

Sodium has been chosen because we expect that
the core will be well represented by a local (angu-
lar-momentum-independent) potential. A local
approximation is computationally simpler and has
some interesting normalization properties (Appen-
dix). In lithium there are only s states in the core
so that a potential would have to represent orthog-
onalization of the valence s wave, but not the P
wave, to the core. In potassium it is expected that
the low-lying d levels will complicate the chemis-
try. In either case the local approximation will be
less valid. Further, the potentials for either Li
or K will be stronger than that for Na, and thus
less amenable to the free-electron treatment we
have used to check the charge distributions.

This form contains four variables, Vo, C, k, and
Two of the first three are used to assure con-

tinuity of the potential and its first derivative at
the core radius. The third is used to fit the ex-
perimental atomic 3s level of Na. The variable
r, is relatively unimportant in real space and might
be varied to fit any property dependent on the re-
ciprocal-space potential, although we have not
done so here. (We did find, however, that the
phonon spectrum was not noticeably affected by
varying x,. ) Varying the core radius will vary the
point at which V(q) crosses zero in reciprocal
space.

It was found that a small core radius slightly
improved the fit to the excited s-like states, while
a larger radius improved the fit to the p-state en-
ergies. A compromise fit appeared to be at r,
=3.0 a. u. For comparison we calculated the en-
ergy levels of the ground and excited states of both
the cosine and flat-bottom (Shaw) potentials. The
potentials determined by fitting the ground-state
energy are

cosine: V(r) = 0. 1790cos(1. 224m) —0. 179,

Shaw: V(r) = —1/3. 26,

r~(3. 0 a. u,

r)~3, 0 a, u. )

r &3. 26 a. u.

II. ATOMIC SODIUM

The pseudopotential we used in this paper con-
sists of a cosine with greater than one-half period
in the core, joined smoothly to a Coulomb potential
outside:

V(x) = Vo cos (kx) + C,
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3S (1S)
4S (2S)
3P (2Z)

—0. 1888
-0.0716
—0. 1116

-0. 1888
-0.0729
—0.1098

—0. 1888
—0. 0741
—0. 1076

Units are e = 1 and I /2m =s.
"J. C. Slater, Qgantum Theory of Atomic Structure

{McGraw-Hill, New York, 1960), Vol. 1, p, 203.

=-1/r, y & 3.26 a. u.

The energy levels are shown in Table I and com-
pared with experiment.

It may be shown (Appendix) that a fit to not only
the ground-state energy but also the excited s-
state energies is essentially necessary and suffi-
cient to give a fit to the correct atomic valence
charge distribution in the tail region. Further,
al.l. the excited states Q, d, f, etc. ) must be fit
before the charge density in the solid will be
matched. Although both potentials fit the ground
state, the cosine potential gives much better agree-
ment with the excited states. Thus it is expected
to give the wave function in the tail region more
accurately. That this is so may be seen in Table
II, where the wave functions for the ground state
are compared at several points with a Hartree-
Fock Bs function.

It may be seen that the deepening of the well
just inside the core increases the binding of both
s-like and p-like states which have high density
here. The increase in the s-l.ike states can be off-
set by the introduction of a repulsive core near
the origin where only the s states penetrate. In
this manner a certain amount of effective nonlocal-
ity may be introduced into a local potential. The
deep-core region may be tailored to the L = 0 states
because the L 0 states do not penetrate to the
nucleus. The outer-core region may be tailored
to the L, 0 states. The result is a much better

TABLE I. Energy levels of the ground state and the
first two excited states of the pseudoatom found with the
Shaw and cosine pseudopotentials (both potentials were
fit to the ground state) compared with experimental values.

Level(pseudo) Experiment~'~ Cosine Shaw~ (a. u. )

r {a.u. )

1.0 20 3.0 40
I

50 60
l I

: -2-
O

0.02- 6= I.I a.u.
I

I

I

(b)

0.0 I-

over-all fit to the atomic spectrum. Physically,
the repulsive core forces the ground-state charge
density away from the nucleus and generates the
charge deficit produced in reality by the "orthog-
onality hole. " The cosine potential models much
more closely atomic sodium than does the Shaw po-
tential.

While the cosine potential has larger low Fourier
components, which reflects in some sense a
stronger potential, the unphysical high Fourier
coefficients are absent because of the smoothness
of the potential. The Fourier transform V(q) is
plotted vs q in Fig. 1(b) for both the Shaw and
cosine pseudopotentials, while V(r) vs r is plotted
in Fig. 1(a). The damping of the oscillations at
large q should both &peed convergence and im-
prove the accuracy of calculations dependent on
sums in reciprocal space.

An interesting atomic property that may be cal-
culated using the pseudowave of the sodium model
is the atomic polarizability. This is related to
the second-order change in the energy due to an

TABLE II. %'ave function amplitude of the ground-
state pseudowave calculated with the Shaw and cosine
potentials compared to the Hartree-Pock 39 function of
Clementi at selected points in the tail region.

3.0

Radius (a.u. ) Hartree-Pock Cosine
3 /2) (a 3/2)

Shaw
(a.u. -'")

—-0.0I-CF

SHAW

3.01
3.25
3.51
4. 01
5. 01

0.1666
0. 1568
0. 1454
0. 1227
0. 0823

0.1676
0.1561
0.1432
0.1184
0. 0783

0.1645
0. 1526
0. 1404
0. 1162
0. 0768

-0.02-

-0.03-

COSINE

E. Clementi, Tables of Atomic Functions, IBM,
1965 (unpublished) .

FIG. 1. Real space (a) and Fourier space (b) Shaw and
cosine pseudopotentials in atomic units (et=1, 5/2m=)).
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external electric field by

wher e n is the polarizability. Hirschf elder has
shown that in a perturbation expansion it is true
that

E2- 8'|I+0 Eol ti&+ 8'o I %-Eil ti&+ 8'il3('s Ei
I 00&

(3)
for any g, . In this case E, = 0 (no first-order ener-

gy shift) and H, = Eer cosa (field in z direction), so
that

E. -. gil~o-Eolei&+2eil««ost)lto&
We know the unperturbed Hamiltonian Ho and the
unperturbed energy Eo, for a good choice of g, we

should be able to calcula. te E3. Dalgarno and
Lewis' have found an exact solution to the hydrogen-
ic problem and by analogy we choose

41= cosi ~ 3 3 1/2 (&&0&+ 2& )e " "' (5)
e „ (wn ao)

where the A„and ap are variable parameters. In-
serting this into (4), and taking the partial deriva-
tives with respect to the A„set equal to zero, leads
to a set of linear equations in A„. The solution of
these equations gives an upper bound on E, at a
given ap. Then a, may be varied to give the best
upper bound. For both potentials the scale paraIn-
eter ap = 2. 0 a. u. gave the best bound. For the
cosine potential this bound gave Q. =155 h. u. , while
for the Shaw potential a=146 a. u. '

The cosine potential pseudoatom is more ea,sily
polarized or distorted and hence should have a low-
er activation energy towards reaction. The atomic
energy levels and wave functions are more accu-
rately modeled. It is expected that in order to be
useful for the calculation of chemical properties
of molecules, a pseudopotential must give the cor-
rect charge density in the region of cheInical inter-
action, far from the nucleus. It is seen from the
polarizability calculation that fitting the ground-
state energy is not enough. If solid charge distri-
butions, energy levels, and polarizabilities are
calculated from the kind of pseudopotential that
gives correct charge distributions outside the
core, it is expected that correct results would be
obtained. There is somewhat more of a question
in this regard in molecules, where the low syrn-
metry can emphasize certain aspects of the core
region more than in solids. In Sec. III we inves-
tigate the importance of a correct charge distribu-
tion for the calculation of the cohesive energy by
calculating this quantity with both the Shaw and
cosine potentials.

III. COHESION

A. Virial Theorem

We know that for systems involving only two-
body central forces it is true that

2(T) =(~ aV/er&.

Now for a pseudopotential for which V= V„(r(r, )
and V= —I/x (x~ x, ),

8V 't
I 1

2 (T) = r p ld~—+ ( —pd7.
e )4 ()

)
C

where p is the charge density. Adding and sub-
tracting a term gives

2(V)=I ~~ ~~ (v—.V)V d.
I

~OO

1
vpd~+ l l --pd~l (8)

"""p "r j
C

q V) p dy- (V),
( 8V

„„.o
BVE= —(T)+ i x +V p d7
&v

~ p

E ~=E-Eat.

(10)

To calculate the average kinetic energy, we take
simply —,E„plus a correction for the kinetic energy
gained in electron- electron correlation. March'
has shown that the many-body virial theorem gives

2 (T&+ (V& = - ~,
eE

S

so that if we write

(13)

we find that

per atom of the metal and the atomic binding en-
ergy) of bcc sodium starting from the virial theo-
rem and from the electrostatic self-energy of the
lattice. The major ingredients of these calcula-
tions are the kinetic energy of the free gas E„,
= 1.105/x„ the exchange energy of the free gas
E,„=—0.458/x„and the atomic binding energy
—0. 1888 a. u. The Nozieres and Pines expression
for the correlation energy will be used:

E „=0. 0575+ 0.01551nx, a. u.

We will use Qverhauser's polynomial approxima-
tion to the (wave-number-dependent) dielectric
function of Singwi et al. to take into account the
response of the electron gas to the lattice. This
is a linear theory in which exchange and correla-
tion effects have been included.

In this section we calculate the cohesive energy
(defined as the difference between the total energy

9ET= —E-v-'er S
(14)



C HEMICAL LY MOTIVATED PSEUDQPQTENTIAL FOR SODIUM 1299

~Ecorr= Ep- Ecorr
s

(15)

so that

= 0.0575 —0. 0155 lnx, —0.0155, (17)

or that part of the correlation energy due to kinetic
energy is

Tcorr = Ecorr +s
e&s

(15)
w„, = —

'~ ( E V~GsinG ~ r
~ al 1 space

VoVo, G G'
8m c,c.xo

2 I 2

dT

(22)

sinG rsinG'rd7'

we must subtract the self-energy of the core
charge distribution, which is the same in the solid
or atom. Thus

T = ', E~ +—0.0575 —0. 0155(in', + 1) . (18) all syace

For the integral over the core in (10) we need to
know the charge distribution in the core. This
may be found from the electrostatic response of a
uniform electron gas to the lattice potential:

1

a

~ all syace

8V-
dT~

ex

eV.
dTq

ex

(23)

(24)

1
TV=—'

+ a11 syace

(20)

where E is the sum of the fields due to the uniform
electron gas and the lattice. It may be seen that
if this is done, the infinite (G= 0) terms cancel and

may be consistently ignored. Since the electron
gas is uniform, it has no term other than G = 0 in
a sum over reciprocal-lattice vectors and all that
is left is that term due to the periodic part of the
lattice field

E= Z Ve GsinG r.
c&

(21)

From this it is possible to find the total energy of
the assembly, but we are interested in that part of
the energy dealing with bonding or cohesion and so

p= po+ hp

3+ Z — 2!——1 VocosG r, (19)3e G f 1

m~s c~o 4'' I, &c

where G is a reciprocal-lattice vector, Vc is the
6th Fourier coefficient of the potential, and gc is
the zero-frequency wave-vector-dependent dielec-
tric function. Calculating the right-hand side of
Eq. (11)as a function of x„one obtains a function
that equals the real cohesive energy at the equilib-
rium lattice position. (The virial theorem as used
is incorrect except in the absence of external
forces or pressure. ) The results are shown in
Fig. 2(a) for the cosine potential and in Fig. 2(b)
for the Shaw potential.

B. Electrostatic Self-Energy

In calculating the lattice energy it is important
to perform the calculation in such a way that the
infinite self-energy terms of the electron gas and

the positive lattice of ion cores exactly cancel. One

way of doing this is to calculate the electrostatic
self-energy of the assembly of charge composed
of the ion lattice and a uniform electron gas of
canceling charge:

where ~, =—3mr, .4 3

To this we must add the energy due to the re-
distribution of charge by the lattice

(25)

where hp is as in the previous section. Finally we

must add the exchange, correlation, and kinetic
energies of the electron gas and subtract the atomic
bi6ding energy to get the cohesive energy. This
may be done as a function of x, with the minimum

of the curve giving the equilibrium lattice constant
and the cohesive energy of the solid. The results
are plotted with the results of the virial calculation
in Figs. 2(a) and 2(b).

IV. PHONON SPECTRUM

While the cohesive properties depend on the
value of the q-space potential, the phonon spectrum
depends principally on the slope in q space. More-
over the phonon dispersion reflects the entire po-
tential curve, while the cohesion only samples its
values at the reciprocal-lattice vectors. Thus it.
might be expected that the phonon spectrum would

be more difficult to fit than the cohesive energy.
The equation of motion for the crystal normal

modes may be expressed as

(M(o 5)) —D() )A=0, (25)

where M is the ion mass, & is the f requency, A is the
polarization vector, and D is the dynamical matrix.
There are two important parts to the dynamical
matrix: that due to the ion-ion interaction and that
due to the electronic response to the ionic motion,
or the ion-electron-ion term.

The term involving the ion-ion interaction gives
the frequencies which the lattice of unscreened
point charges would have. Because of the long-
range nature of the Coulomb interaction the lattice
sums are divergent and a special technique due to
Ewald' is necessary to do the sums. The lattice
is split into a sum of two lattices. The first is a
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-0.8-
VIRIAL

where"

—G, G, E(5), (27)

-0.9-

-1.0-

Cl

-1.1-

ILI

-1.5
5.8

-09-

-1 0-

0
UJ

-1.2-

-1.3
3.9

-0.8-i
(h)

l

4.0
rs {a.u. )

4.0 4.1
r (a.u. )

LATTICE
ENERGY

LATTICE
ENERGY

= 4.00

I

4.1 4.2

VIR

4$

"M)n = 4-'5

E(G) = VgG (ee —l)(0, /4ffeo .
The two contributions are added and the matrix is
diagonalized to solve for the eigenfrequencies u.
For propagation along symmetry directions the
matrix is diagonal. The transverse and longitudinal
modes for r, =3.93 a. u. are plotted for bothpoten-
tials in Fig. 3 along with the experimental points
of Woods et a/. ' It may be seen that, unlike in the
other calculations, there is little to choose between
the two potentials, and that errors are typically
5-10%%uo. Repeating the calculation at the efluilibrium
lattice parameter r, =4. 00 a. u. gives only marginal
improvement. A much better fit can be obtained
by varying as few as one parameter with a wise
choice for the functional form of the reciprocal
potential, and the present work represents no sig-
nificant improvement over previous calculations.

To see why this is so, we need to look at a po-
tential which accurately fits the phonon spectrum.
The two q-space paramaters which characterize a
pseudopotential are qo, the point where it crosses
zero, and the height of the first maximum after qo.
While the cosine and Shaw potentials have approxi-
mately the same value at their maxima as the
empirical q-space potentials, giving reasonable
results for the phonon spectrum, the crossing
point is at about 0. 08 a. u. rather than at 0, 9V
a. u. That this affects the phonon frequencies is
obvious, if the crossing point is nearer to the first
reciprocal-lattice vector G, (= l. 1 a. u. ) the func-

FIG. 2. Plots of cohesive energy vs electron density
parameter ~, as calculated using the virial theorem and
the electrostatic self-energy of the lattice for the cosine
(a) and Shaw (b) pseudopotentials. Note the virial calcu-
lation is only correct at the equilibrium lattice point, but
that the two curves do not cross at the minimum of the
lattice energy curve, and that the crossing point is on
different sides for the two potentials.

4.0—

L:&p (111)
T:4(t,T,O), Ji(1,1,2)

l. Wood ef.ol. —
2.ShQW ~ ~ ~ ~ ~ ~~

3.Cosine

~y ~~Te1'e're ~ ~ ~ ~rr~ ~~" ~ ~ ~ ~ ~

/ '

Phonon Frequencies in the(ttpDirection of No

lattice of Gaussian charge distributions of same
sign as the ions. The second is a lattice of Gaus-
sian charge distributions of opposite sign added to
point charges of the same sign as the ions, When
this is done, it is found that both sums quickly
converge. The appropriate expressions can be
found in papers by Kellermann'3 or Wallace. '

The ion-electron-ion term is quickly convergent
because the screened reciprocal potential drops
off much faster than the Coulomb. The contribu-
tion to the dynamical matrix is

Df~ = ferf Q~E(Q)+ Z (Gf + Qf)(G~+ Qf)E(5+Q)
QAO

CL
V

CV

O
2.0

1.0

I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
) QaJS-

27r

FIG. 3. Phonon dispersion curves calculated with the
Shaw and cosine potentials in the (1,1, 1) direction of
sodium compared with the experimental work of Woods
(aef. Z5).
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tion will have a steeper slope at G„giving a larger
contribution to the ion-electron-ion frequency.
This is a canceling term which balances the ion-
ion term, so that this will cause the phonon fre-
quencies to decrease and bring them more nearly
into agreement with experiment. It may be seen
that while the magnitudes of the two q-space po-
tentials are different their slopes for low-q values
are very close; hence the similar spectra. In
order to shift qo outward the core size would have
to be increased, which is possible with the cosine
potential, although the fit to the atomic and cohe-
sive properties would be worse.

V. DISCUSSION

From the graphs of cohesive energy vs electron
density parameter it may be seen that the pseudo-
potential giving the more accurate charge distribu-
tion also gives the more accurate cohesive energy
and equilibrium lattice parameter. The experi-
mental cohesive energy is 1.13 eV at ~, =3.93 a. u.
Although the charge density is grossly wrong near
the ion cores and only marginally correct at the
ionic radius, it is accurate in the tail region.
Moreover, and perhaps more important, the ratio
of charge in the chemically inert core to the charge
in the bonding region is more nearly correct. It
is the correlation of electrons in the bonding re-
gion that determines the cohesive properties of the
system, and if there is sufficient charge in this
region the bonding will be strong. The phonon
spectrum, on the other hand, is not only a function
of how charge is distributed at equilibrium but how

charge is redistributed during small excursions
from equilibrium as well, and the proper in-out
normalization is not expected to be a sufficient
condition for a good fit to the phonon spectrum.
Apparently the calculation of the energy of a state
of lower symmetry (containing a strain) does not
work as well as that of the total energy.

While the calculated cohesive energy agrees well
with experiment a slight discrepancy exists between
the two calculations. If the electron gas approach
is valid, or more exactly if the various expressions
entering into this approach are correct, the two
calculations should be consistent for a given po-
tential. The virial calculation does not cross the
total energy calculation at its minimum as would
be expected. There are two possible reasons for
this. One is the presence of errors in the under-
standing of the correlation energy or of the dielec-
tric resyonse of the electron gas. Because the
correlation energy and the dielectric function enter
in different ways in the two calculations, discrep-
ancies will be introduced by errors in either. The
other is the failure of linear-response theory to
give an adequate description of the charge density
for the pseudopotentials used. This latter is

particularly important for the cosine potential, for
which the charge in the core region is severely
depleted. It is probably not important for the
Shaw potential. An error in the correlation energy
alone would produce crossing points on the same
side of the minimum for the two model potentials
because the correlation energy enters the calcula-
tion for the two problems in a virtually identical
fashion. Thus there must be errors in &~ or a
failure of a linear response analysis (or both).

The terms due to the redistribution of charge
are nearly an order of magnitude more important
in the cosine potential calculations. The potential
is more rapidly varying and contains portions both
more attractive and more repulsive than the Shaw
potential. Further the charge redistribution term
in the virial calculation involves V~ multiplied by
1 —1jeo, while in the self-energy calculation po
enters as V2o multiplied by 1 —1/eo, so that if the
screening function were altered, the two calcula-
tions would be differentially affected. A change
towards a more responsive electron gas would both
bring the crossing point to the same side as the
Shaw calculation and improve the agreement with
the experimental energy, of course, within the
framework of a linear response. Alternatively, a
nonlinear effect in the case of the cosine potential
which decreases po for G= [ill] would also put the
crossing points on the same side.

The errors in the phonon spectrum cannot be
easily pinned down. The phonon spectrum is only
partly a function of the charge distribution at
equilibrium, and involves importantly the redistri-
bution of charge for distortions away from equi-
librium. It is probably not so sensitive to in-out
normalization, but has great sensitivity to the re-
sponse of the electron gas. Thus both errors in
the dielectric response function of the electron gas
or the supposition of linearity would have major
effects on the phonon spectrum. Lacking at present
an assessment of either of these problems, we
cannot tell whether the cosine potential will be
adequate for the phonon spectrum. This is an im-
portant question, for if it fails in such a simple
case of lowered symmetry, it could not be expected
to be an adequate basis for molecular calculations

VI. CONCLUSIONS

The addition of a repulsive core to a model po-
tential introduces a degree of effective nonlocality
and improves the fit to the excited states of the
atom. From the theorem proved in the Appendix,
this means that the valence charge distribution in
the tail region is also correct. This can be under-
stood physically as the wave function being excluded
from the deep core by the repulsive center, thus
reducing the orthogonality hole. As expected, the
cohesive-energy calculations show that replicating
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the actual charge distribution in the region of
chemical overlap is indeed necessary for the cal-
culation of chemical properties such as binding
energy and equilibrium lattice parameter. The
Shaw-type potential which gives a poor charge
distribution gives poor results for other chemical
properties as well. However, no improvement
was seen in the phonon spectrum, though it is not
clear whether this represents a failure of the po-
tential or of'the calculational method.

The electron-gas ayproach, with minor excep-
tions, seems entirely consistent and very accurate
indeed. The best cohesive energy calculated was
1.09 eV at r, = 4. 00 a. u. , only slightly different
from 1.13 eV at x, =3.93 a. u. One should remem-
ber, however, that the direct and virial calcula-
tions do not agree, and this error could be evaluated
as 0. 09 or 0. 002 eV depending on the interpreta-
tion of Figs. 2(a) and 2(b). The interpolation
scheme of Nozieres and Pines is just that. The
Pads approximation may prove useful in obtaining
a more nearly correct interpolation. It is inter-
esting to note that the Wigner-Seitz treatment of
the cohesive energy, which involves a completely
different approach to electron correlation, gives
curves that have minima at almost exactly the
minima of the lattice self-energy calculations but
at lesser binding energies. Moreover, the quanti-
ties involving displacements such as the coefficient
of thermal expansion and the compresszbility mere
given much more in agreement with experiment in
the Wigner-Seitz approach than in our electron-
gas calculation, for whatever reason. Thus it is
possible that the linear screening broke down in
the phonon calculation because the cosine potential
is not weak enough.
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APPENDIX

In this appendix we first show that if a potential
gives both the atomic ground-state energy and the
energies of the excited states of the same symme-
try correctly, it gives the correct in-out normal-
ization of the wave function. The form of the wave
function in the region outside the core is determined
by the Coulomb tail to the potential. This, coupled
with the correct in-out normalization, assures
that we have the correct charge distribution in the
tail region. We then generalize to the charge den-
sity in the unit cell of a, solid.

Take an arbitrary potential such that

( —
p V + V)gs=zgs,

( - —,
' v'+ v)|)„„=(z+ ~z)tj „„.

(Al)

(A2)

b ~+@gs,~@dr . (A4)
"440

Multiplying through by AE ' and taking the limit
b,E-O gives

2 8 9 + ~C

—cl& @
s ~ d =I I g*@ d

2 I ~GE8~ 8E e~
(A5)

t

ysysdr| 2 ad s4z ~

~ g (A6)
~ds a~ rc' 0

If the eigenvalues for the ground and excited states
for any given angular momentum are matched, the
logarithmic derivatives at any point on or outside
the core radius mill be correct, The energy
variation of the logarithmic derivative will then
be correct, and by expression (AG) the amount of
charge in the core mill be determined mithin a con-
stant (a scale factor multiplying ga). Since the
potential in the tail region is pure Coulomb, the
amount of charge outside the core will be deter-
mined except for this same constant. Because we
require that we have unit total charge, this con-
stant must be equal to unity. Thus if a potential
gives the ground- and excited-state energies of a
given symmetry in agreement with experiment, it
will give the correct wave function in the tail re-
gion as well. ' We here presume that any reason-
able potential will, if it gives the slope-to-value
ratio correctly at a set of discrete energies, also
give the slope-to-value ratio correctly at inter-
polated energy points.

The generalization to charge densities in the
solid is straightforward„Assume that the Bloch
function within the unit cell can be expanded in a
series of partial waves:

e, = Z a, ,„ft, , (r) r, .(e, y ). (A'7)
l y02

For an arbitrary potential V,

(- 2 V + V) 4s = Eks, (A8)

Cross multiply by g s*,~s and ps*, take the complex
conjugate of (Al) and subtract it from (A2), and
integrate over the core volume V (dr is the volume
element in spherical coordinates and da is the
area):

fff 4's(- ~a& + VN'seas 4s+nz( 2& + V)

&&y,*]dr= fff 'Szy,*(„„dr (A3. )

If we assume Ve V(E), then Green's theorem gives

( s 24s+as
~

st)' z
@+Qg
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( g V + V)@s ~s= (E+ bE)ks ~s, (AQ)

Now cross multiply by B~ ls Plums and R/s g+hgI looms

and proceed as in the atomic problem. This gives
~rc

2 d &R)s/sr g 32«iz = & ~zRrsr d~
Rl8 r rc lo

(Ai.O)

for every l. Thus in order that the charge density
of the solid be properly represented between cores
it is necessary to fit the ground and excited states
of all symmetries.

It should be noted that this theorem is only valid
if V is independent of the energy E, for then [d/dE,
V]= 0 and the potential terms in (A3) cancel.
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Changes in the Fermi surface with disordex can be defined for only two cases: (a) when

ordinary perturbation theory is applicable and (b) when the forward-scattering approximation
is applicable. In the forward-scattering approximation (FSA) the perturbation is large in the

vicinity of the forward direction or diagonal elements, but the average off-diagonal element
is small, in contrast to the ordinary perturbation approximation where all perturbing matrix
elements are small. The multiple scattering problem is solved for the FSA, and its close re-
lation to ordinary perturbation theory is discussed. All the results of ordinary perturbation
theory can be carried over to the FSA if proper account is taken of the self-energies of the

states and interband mixing. The self-consistent condition on the potential imposed by shield-

ing is given. The fact that the FSA can satisfy this self-consistency makes it a physically
realistic approximation. All systems with a large concentration of disorder whose properties
still can be appxoximated by the concepts of ordered systems, such as a Fermi surface, must
be describable by either the FSA or ordinary perturbation theoxy.

I. INTRODUCTION

In the development of our understanding of a
given subject, it is helpful to have models which
are simple yet good approximations to physical
reality. The field of disordered systems is such
a developing subject, but its progress is being
hampered by a scarcity of such simple models.
One simple approximation that has proven to be
successful is perturbation theory. ' Both disordered
alloys~ and liquid metalsa have examples which
have been successfully described by perturbation

theory. However, especially for disordered alloys,
the most interesting and most numerous cases can-
not be described in terms of perturbation theory.

Much effort has been expended on developing
other approximations which can supplement per-
turbation theory. Perhaps the best known and
most widely pursued one has been the coherent-
potential approximation (CPA). 4 6 The CPA has
the advantage that it is relatively simple if applied
to the highly localized perturbation model where
the random perturbations are localized to a single
site and enter into only the diagonal elements of a


