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The thermal resistivity of single-crystal and polycrystalline potassium specimens having
residual-resistance ratios between 195 and 6500 has been measured between 1.5 and 15 K.
It is found that theoretical calculations based on semiclassical ideas are in reasonably good
agreement with the experimental data, particularly for the more impure specimens at low
temperatures. The role of umklapp scattering is clearly evident. Although the umklapp pro-
cesses can contribute as much as 50% to the total thermal resistivity, the simple expression
W =A/T+BT, obtained by only considering normal scattering, describes the results re-
markably well up to about 10 K. Depending upon the purity, the values of 8 ranged from 2. 38
&& 10 cm/W to 1.53 && 10 cm/W, indicating a deviation from Matthiessen's rule of about 50%.
The magnitude of the calculated thermal resistivity is very near the experimental result for
impure specimens but the calculated values are too high for the purer specimens. It is shown
that when impurity scattering is dominant, a variational calculation of the electron-phonon
thermal resistance should be quite accurate. In pure specimens the calculations are not ex-
pected to be nearly as good; reasons for this are discussed. At high temperatures, above 6
to 8 K, the theoretical temperature dependence is in considerable disagreement with the ex-
perimental results. Deviations from Matthiessen's rule, as well as other possible reasons
for this discrepancy, are discussed. Our data are in qualitative agreement with that of Mac-
Donald, White, and Woods; however, contrary to the observations of Stauder and Mielczarek,
we observe no anomalous behavior in the thermal conductivity of potassium. Reasons for the
differences between our results and those of Stauder and Mielczarek are presented and dis-
cussed. We conclude that the thermal resistance of potassium can be understood very well
within the framework of existing theoretical work. In specimens of low and intermediate
purity the contribution of lattice thermal conduction can be appreciable and should be taken
into account when making comparisons with theory.

I. INTRODUCTION

In recent years there have been many measure-
ments of the various transport properties of the
alkali metals. Much of this work has been on po-
tassium, which is known to have a Fermi sur-
face spherical to about one part in a thousand. '

In addition, it can be obtained with high purity and
does not have the complicating feature of a mar-
tensitic phase transformation that exists in lithium
and sodium. The high reactivity and other han-
dling problems have made experimental work quite
difficult; only recently, for instance, has suffi-
ciently good data been obtained to allow a detailed
comparison of the measured electrical resistivity
with theory. ' In zero magnetic field, the elec-
trical resistivity can be explained very well by

semiclassical transport theories provided elec-
tron-phonon umklapp scattering is taken into ac-
count. On the other hand, the high-field magne-
toresistance of potassium, which increases linear-
ly with applied magnetic field over a wide field
range, ' ' ' has proven difficult to explain on a
semiclassical basis.

To further elucidate the transport properties of
potassium it was decided to investigate the thermal
and magnetothermal resistivity to determine the
possible existence of differences similar to those
observed for the electrical resistivity. This pa-
per reports our zero-magnetic-field thermal re-
sistivity measurements. Single-crystal and poly-
crystalline potassium specimens have been mea-
sured between 1.5 and 15 E in specimens having
residual-resistance ratios ranging from 195 to
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6500.
There are only two other measurements of the

low-temperature thermal resistance of potassium.
The first by MacDonald, White, andWoods' was
done on specimens encapsulated in glass capillar-
ies. In addition to possible problems arising from
differential thermal contraction, their data are not
sufficiently extensive to permit detailed compari-
son with recent theoretical calculations. An anom-
alous behavior which is difficult to explain on any
fundamental basis is observed in the second set of
measurements. " Section II contains a detailed
discussion of the sample preparation and mounting
procedures. Section III describes the results and
makes comparisons to other work. In particular,
the role of umklapp scattering in the thermal re-
sistivity is discussed, the lattice conductivity is
shown to be of importance even in reasonably pure
samples, and fairly large deviations from Mat-
thiessen's rule are noted. Some concluding re-
marks are contained in Sec. IV.

II. EXPERIMENTAL DETAILS

sium prepared as described above was extruded
using a 1&3-mm die. The single-crystal samples
were either string cut from the large boules or
grown between glass plates on a hot plate. After
fabrication, all samples were etched and placed in
a vacuum dessicator filled with dry paraffin oil.
The samples were then allowed to anneal at room
temperature for at least 24 h before being mea-
sured.

Table I lists the physical characteristics of the
samples. Owing to the rapid deterioration of the
surface upon exposure to air (and the subsequent
need for etching), and the fact that the samples can-
not be measured accurately after forming, the
cross-sectional area of the samples is only accu-
rate to 5'%%uo.

9. Cryostat

A schematic view of the cryostat is shown in Fig.
1. All of the salient features are presented in the
caption; however, a few points are worth further
elaboration. H2 is the heater used to establish the
thermal gradient. The former is made of phosphor

For any particular transport property of potas-
sium, there are often a variety of results reported
in the literature. Most of the differences can be
attributed to probe effects and to problems related
to sample preparation and mounting. In view of
this and the previously reported anomalous thermal
resistivity of potassium, "we feel that it is neces-
sary to describe the experimental and sample prep-
aration techniques in more than the usual detail.
The following subsections explain the mounting
procedures, sample preparation and details of the
apparatus as well as the methods of data acquisi-
tion and analysis.

A. Sample Preparation

HS1

HS2—

~ 8&

~ &

E

Potassium ranging from 99 to 99. 95%%ug nominal

purity was used; the least pure samples were made
by alloying pure potassium with pure sodium. Po-
tassium, in the glass ampules supplied by the man-
ufacturer, was melted under vacuum into Pyrex
tubes that had been coated with dry paraffin oil.
While in the liquid state, the metal was outgassed
in a vacuum of better than 10 ' Torr for at least
24 h. If a single crystal was desired, the oven
temperature was slowly lowered while an auxiliary
heater maintained a thermal gradient; this proce-
dure generally resulted in the formation of large
(2x 10 cm) single crystals.

For some of the polycrystalline samples, pieces
were cut from the large boules, etched in xylene
containing 2% secondary butyl alcohol, coated with

dry paraffin oil, and pressed into 1-mm-thick
plates using a stainless-steel sample press. From
these pressed plates, samples were cut to size
with a razor blade. For other specimens, potas-

P—

H1

—Fo

—Cu

FIG. 1. Cryostat: HS1 and HS2 are heat stations, HSl
is connected directly to the bath; S is a stainless-steel
platform with a copper rod C around the perimeter; T are
the measuring thermometers and R is the control ther-
mometer; Fo is a pleated copper foil, Cu is the ther-
mometer holder and Ge is the germanium resistance
thermometer; I' is a small press; I' is a tapered flange
and V are the vacuum lines.
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TABLE I. Physical characteristics of samples.

Sample

K-9
K-10
K-11
K-12
K-13
K-14
K-15
K-16
K-17

A'=(WT) ~,
(10 2 cm K /W)

4. 8
6. 6

16.5
6. 8
5.5
7.1

26. 8
151.2

4. 5

gb
(10"3 cm/%)

1.53
1.65
2. 23
1.72
1.73
1.94
2.35
2.38
1.80

6130
4455
1780
4325
5345
4140
1095

195
6535

Type

poly.
poly
poly.
poly.
poly.
single
single
poly.
poly.

Width
(mm)

7. 0
7.0
3.5

3.0
3.0
5.0
3.0
3, 0
3.0

Thickness~
(mm)

1.0
1.0
1.0
1.0
1.0
1.0
1.5
1.0
1.0

'Our potassium was purchased from MSA Corp. , Evans City, Pa.
"The coefficients A and 8 are obtained by fitting the data to R'=A/T+BT2 as described in the text.
The residual-resistivity ratio (RRR) is determined using the Wiedemann-Franz law; see Ref. 23.

"The thickness measurements were accurate to better than +0.05 mm while the width measurements are accurate to
about +0. 1 mm.

bronze twisted into a tweezerlike shape (see inset
A). The heater is wound on a cylinder of copper
foil and soldered to this former; such an arrange-
ment allows the heater to be attached quickly and

firmly to the potassium. It also has the advantage
that heat flows into the sample from both sides.
Flange F is tapered and mates with a correspond-
ing flange on the vacuum can. When the mating
surfaces are coated with a thin film of silicon
grease, '2 a seal that is leak tight to superfluid he-
lium ean be made in a few seconds. This enables
the air to be pumped from around the sample before
the potassium surfaces can deteriorate.

The specimen platform was made from 5-mil
stainless-steel shim stock. Six-pointed sta, r-shaped
holes (see Fig. 1, inset 8) were spark machined
into the platform io support the measuring ther-
mometers. This was necessary because it is very
difficult to attach anything directly to potassium at
room temperature. Most glues and varnishes will
react with potassium and it is too soft to withstand
the pressure of mechanical clamps. In this configu-
ration, the thermometers serve as supports for the
sample and are separated by a high thermal resis-
tance.

The thermometers are calibrated germanium re-
sistors mounted in small copper holders with GE-
7031 varnish. These copper holders, which have
flat upper surfaces, are inserted into the stars in
the platform. To the flat copper surface is attached
a 1-mil-thick accordian-folded copper foil (see Fig.
1, inset C). The sample is connected to these foils
which allow for the differential contraction between
the sample and the stainless-steel platform. This
avoids introducing strains into the sample when the
apparatus is cooled. To ensure thermal isolation,
the thermometers are attached to the heat station
pins with approximately 3 Q of copper and Evanohm
wire (The leakage. power is therefore about 0. 03

pW/deg temperature difference. ) A copper bar is
attached as shown, to the perimeter of the stain-
less-steel platform, to aid it in reaching thermal
equilibrium. Attached to the heat post is a press
that is used to obtain a small thermal resistance
between the helium bath and the sample. An ac
Wheatstone bridge and a carbon-resistance thermom
eter attached to the copper portion of the platform
near the press are used to control the sample tem-
perature through heater H1. The specimen tem-
perature could be stabilized to about 0.05 mK.

The data acquisition system used is essentially
the same as described by Stephan and Maxfield.
Briefly, it consists of a scanner, a digital voltme-
ter (DVM), and both printed and punched paper-
tape output. Using a 25-Hz current phase-locked
to the DVM clock frequency, both the thermometer
current and potential drop are measured using a
four-terminal configuration. The acquisition sys-
tem puts the thermometer currents and voltages,
the heater current and voltage, and all other per-
tinent information onto the punched paper tape for
computer analysis. This system works very well
for temperatures greater than 2 K. However, be-
low this temperature, noise in the scanner step-
ping switch made accurate measurements of the
temperatures impossible; at the lower tempera-
tures the scanner was manually stepped and the
system allowed to stabilize after each step.

C. Sample Mounting Procedure

The annealed sample was carefully removed from
the paraffin oil and etched slightly. It was then
dipped in dry Dow-Corning DC-200 fluid' (200 cS
viscosity), the excess fluid being allowed to drain
off leaving a very thin coating of fluid that served to
retard surface deterioration. A drop of very vis-
cous DC-200 fluid (60 000 cS) was placed on the ends
of the pleated copper foils attached to the thermome-
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ters, the sample was placed on top of the foils with
one end on the heat post, and a small pressure ap-
plied via the press. The DC-200 fluid, when frozen,
adheres very well to the potassium and provides an
adequate thermal link between the potassium and the
thermometers and heater. Several other oils and
greases were tried with little success'; they all
tended to crack at liquid-nitrogen temperature.

The thermal resistance of a typical DC-200 ther-
mal joint was measured to about 450 K/W at 6 K.
At this temperature both the power dissipated in
the thermometers and the maximum possible heat
leak through the thermometer leads was always
less than 0. 1 p, W. A heat current of 0. 1 pW
through such a foil-DC-200 joint will give a tem-
perature difference of hpproximately 0. 05 mK, a
negligible error for the temperature gradients that
could be used above 3 K. At low temperatures the
resistance of the joint increases but there is a cor-
responding decrease in both the power dissipated in
the thermometers and in the thermometer lead heat
conduction. In practice, errors attributable to this
thermal joint were negligible above 1.5 K. For
comparison purposes, the thermal resistance of a
1-mil-thick layer of GE-V031 varnish of similar
cross sections is approximately 50 K/W.

After placing the hot heater onto the sample, the
vacuum can was put in place and the cryostat evacu-
ated. The time between removal of the sample
from the DC-200 fluid and the end of the mounting
procedure was between 60 and 90 sec; in addition
it took about 2 min to evacuate the system to 100 p. .
Upon opening the system, there was always some
oxidation present on the surface of the sample al-
though there was seldom any in the vicinity of the
thermometers.

After evacuation, the cryostat was cooled slowly
to liquid-nitrogen temperatures. All of the sam-
ples were slo&~ cooled, meaning that it took from
& to 2 h to reach 77 K. Using such a procedure, it
has been shown that, in very pure potassium, the
electrical residual-resistivity ratio can be doubled
over that obtainable by quenching the sample from
300 to VV K.

D. Calibration, Testing, and Measurements Procedure

The germanium resistance thermometers used
in this experiment was calibrated against a com-
merical standard. ' For calibration, all thermome-
ters were placed in a large copper block that was
attached to the platform of the cryostat described
previously. The resistance of all thermometers
was determined at many temperatures between 1.2
and 20 K. A curve-fitting routine using Chebyschev
polynomials gave calculated temperatures that
matched the measured ones to within 1 mK below
5 K and within 4 mK above 5 K. Below 4. 2 K, the
thermometer calibration was also checked against

The temperature dependence of the thermal re-
sistivity W' of potassium is shown in Figs. 3-9. To
facilitate comparison with recent theoretical cal-
culations, Figs. 3 and 4 show Wr/T as a function
of the temperature, where Wr T = WT —(WT) r 0 and

TABLE II. Coefficients A. and B for several indium
specimens used in this study as vreH as the results ob-
tained by others.

A. (cm K jW} B (10 cmjW)

Hulm" 0.138
In A 0.014
In 8 0, 009
In C 0. 0085
Jones and Toxen 0.0034

A. and 8 are coefficients obtained by fitting the data to
m~=-x jT+ar'.

"J.K. Hulm, Proc. Boy. Soc. A204, 98 (1950).
'R. E. Jones and A. N. Toxen, Phys. Bev. 120, 1167

(1960).

1.89
1.64
l.Gl
1.41
1.11

the vapor pressure of liquid helium.
The thermal. resistivity data are taken in the fol-

lowing manner: Power is applied to the cold heat-
er Hl until the cold thermometer resistance indi-
cates that the desired temperature has been reached;
the resistance of each thermometer is then mea-
sured. This gives the zero-heat-current tempera-
ture difference and acts as a correction for small
calibration errors and heat leaks into the thermom-
eters. Power is next applied to the hot heater
H2 while power in the cold heater is adjusted to
bring the cold thermometer back to the correct tem-
perature. Again, the resistance of each thermom-
eter is measured. The thermal resistance is cal-
culated from the hot heater power and the true tem-
perature difference. The gradients used were less
than 50 mK below 4. 2 K, less than 100 mK between
4. 2 and 8 K, and less than 200 mK above 8 K.

Because of the relatively poor thermal conduc-
tance between the thermometer and the specimen,
self-heating must be kept to an absolute mimimum.
To ascertain whether these quantities had any un-
desirable effects upon our measurements and to
test the apparatus in general, several runs were
performed on indium specimens following essen-
tially the same mounting procedure as used for the
potassium. The temperature dependence of the
thermal resistivity of a typical indium specimen is
shown in Fig. 2 plotted as WT vs T [see Eq. (14)].
Results for other specimens as well as those of
other workers are given in Table II. Our results
are in good agreement with literature values. The
thermal resistivity showed no dependence upon ei-
ther heater or thermometer power within the ex-
perimental range of these parameters.

III. RESULTS AND DISCUSSION
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FIG. 2. Thermal resistivity of
indium multiplied by the temperature
as a function of I'3; indium was rnea-
sured as a check on the measurement
procedure.
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is the experimentally determined temperature-de-
pendent portion of 8'T. A smooth extrapolation to
zero temperature of 5'T as a function of Ts is used
to obtain the temperature-independent portion of
S'T; the zero-temperature intercept is then sub-
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FIG. 3. Temperature dependence of Wz/T, where
WgT =Wl' —(WT)z p (see text) for (a) sample K-15, (b)
sample K-14. The curves are theoretical values calcu-
lated by Ekin using different pseudopotentials: solid line,
Bardeen pseudopotential; broken line, Lee-Falicov
pseudopotential; double broken line, Ashcroft pseudopo-
tential. The relaxation time trial function [Eq. (1)] was
used for the calculations in (a) and the corrected trial
function [Eq. (2)] for the calculations in (b).
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FIG. 4. Temperature dependence of W~/T for (a)
sample K-13, and (b) sample K-9. The curves are the
same as shown in Fig. 3(b).

tracted from each of the measured points to obtain
W~. The data in Figs. 3 and 4 are representative
of all samples that were measured; the larger amount
of scatter in the low-temperature data arises from
problems inherent in subtracting two nearly equal
numbers. Data plotted in this manner emphasize
deviations from the simple Bloch theory of thermal
conductivity. If only normal electron-phonon scat-
tering were important, then the thermal resistivity
should increase as T' for T & 0. 10~~, where On is
the Debye temperature (O~ = 90 K for potassium' );
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FIG. 5. Coefficient 8 [see Eq.
(14)] as a function of the RRR. The
open circles are data from this
work, the closed circle is from
Ref. 30.
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such behavior would correspond to a straight, hori-
zontal line in Figs. 3 and 4.

The solid and dashed curves shown in Figs. 3 and
4 are theoretical curves calculated by Ekin using
the Kohler variational method; as indicated in the
figure captions, each curve corresponds to a dif-
ferent pseudopotential. Electron-phonon umklapp
processes are specifically included in the calcula-
tion and appropriate measured parameters for po-
tassium (such as the phonon spectrum and lattice
constant) were used. Also, the phonon system is
assumed to be in equilibrium; that is, no phonon
drag effects are included. The theoretical curves
in Fig. 3(a) were calculated using the trial function

P=k u(e —p), (I)

where k is the electron wave vector, u is a unit vec-

tor in the direction of the thermal gradient, p, is
the chemical potential, and a' is the electron energy.
This trial function is the exact solution to the lin-
earized Boltzmann equation in the relaxation-time
approximation. No adjustable parameters were
used in calculating the theoretical curves (see Ref.
20). In Figs. 3(b) and 4, which show results for
intermediate and high-purity samples, the calcula-
ted values were obtained using a corrected trial
function

y = k u(e —p, ) (I+a(T) [(a —p, )/keT]'), (2)

where a(T) is a variational parameter. Qualita-
tively, the calculations agree very well with the
data. The definite "hump" in the data is due to
umklapp scattering, and corresponds to large wave-
vector phonons being frozen out of the phonon distri-

N

E
O

N

O

I-

FIG. 6. Calculated thermal resis-
tance given by the solid curve in Fig.
3(a) replotted as WT vs T3. The dashed
line is an extrapolation of the linear
high-temperature region.
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mal resistivity. In the treatment that follows we
show explicitly that if a particular scattering mech-
anism is dominant and if that mechanism can be
described by a relaxation time, then the relaxation-
time trial function can be used to obtain the tem-
perature dependence of those scattering mechanisms
not describable by a relaxation time. a'

The electrical and electronic thermal currents
in a metal are given, respectively, by

J~ = L@@ E+ L@~ VT, (3)

Jq = L~@ E+ L~~e VT, (4)

Ol

E
D

-I eu

E

-0+

0
250 500 750 IOOO I 250

~'(K')

FIG. 7. Measured thermal resistance of potassium
times the temperature as a function of T3; {a) for sam-
ples K-9, K-15, and K-16; and (b) for samples K-11,
K-13, and K-14.

bution at the lower temperatures. As the tempera-
ture increases, larger wave-vector phonons are ex-
cited, increasing the amount of umklapp scattering
and thereby increasing W.

For the very impure samples, the quantitative
agreement between our measurements and the cal-
culated values is very good, even though a very
simple trial function is used to calculate the tem-
perature-dependent portion of the electronic ther-

where the L~& are elements of the thermoelectric
tensor. In zero magnetic field the tensors reduce
to scalars for materials having cubic symmetry.
Therefore, from Egs. (3) and (4), it follows that

o' = Lss, K, = —(Lr r —L@rLrs/Lz~),

Q = —Lsr /Lss,

where v, x„and Q are the electrical conductivity,
electronic thermal conductivity, and the thermo-
power, respectively. Using the Onsager relation
L»= —L»/T, one obtains

z, = —(Lrr+ Q' Ta).

Using the free-electron theory of metals, an order-
of-magnitude estimate can be obtained for the sec-
ond term in the bracket of Eq. (5). Taking a Fermi
energy of 2. 1 eV for potassium gives Q= 60 nV/K
at 5 K. Thus, for potassium ha,ving a residual-re-
sistivity ratio2' of 100 (very impure), one obtains
Q To 3&&10 ~ W/cm K. For potassium of this puri-
ty, g, is typically greater than 1 W/cm K, so
thermoelectric effects can be ignored. Hence we

have v, = —L» and Jz=~,VT.

50

E 20

IO

FIG. 8. Thermal conductivity f(.
' as

a function of temperature for potassium
samples ranging in purity from RRR
=6000 to RRR=195. The curves are
calculated from 1/~ =A/T+ BT2, [See
Eq. (14) and Table I. ]

0 2 4 6 8 IO I2 I4 I6

T (K)

18 20 22
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~p&p~

2
E

FIG. 9. Thermal conductivity as a
function Of temperature for the lowest
purity sample K-16. The solid line is
calculated from 1/v =A/T+ BT [see
Ect. E'l4) and Table I]. As described
in the text, the broken line includes
the lattice thermal conductivity in the
calculated values.

0 2 4 6 S io I2

T(K)

I
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The thermal current can be written

Jo = (1/4m~) f dk f„(e—ij, )-v-„,

where v"„ is the electron velocity and fg is the elec-
tron distribution function which is obtained from the
Boltzmann equation:

sf~ e - 1 — sf~
v« ~ E+ vgxH ~"er h c ek

3 dk gl 1 g k
&
k «k 1 —~i k~ k

(7a)
When linearized, the Boltzmann equation can be
written (for zero external electric and magnetic
fields)

written as the sum of the individual scattering
probabilities. Here we consider two scattering
mechanisms. If one of the scattering mechanisms
can be described by a relaxation time v, then the
collision integral may be written

w(q) = —q/~+ w'(q), (9)

where W'(q) is the collision integral for the second
scattering process, one which cannot be described
by a relaxation time. It should be noted that this
does not amount to assuming Matthiessen's rule
to be valid. If the scattering mechanism describ-
able by a relaxation time is also the dominant one,
then substituting Eqs. (8) and (9) into Eq. (7) and
iterating yields g to zeroth and higher orders,
namely,

where

f.„=f~+ k~( V„T)q, -

(Sb)

dk' (g —P') P(k, k') = W(q), (7b)
7T

qi =go+ ~w'(qo)

q, =q, + ~w'[~w'(q, )].
Substituting Eqs. (Ba), (10), and (11) into Eq. (6)
and noting that, for a crystal with cubic symmetry,
x, = Jo/VT, one obtains

and

P(k, k') =f„(1 f.„i)Q(k, k'). -
Q(k, k') is the transition probability from state k
to k, f.„is the equilibrium distribution function,
and the temperature gradient is taken to be in the
x direction.

The total scattering probability can always be

1 ~ g-p, p
+—,— dk v„~ W (q,).

4m B

The first integral on the right-hand side is If.„ the
thermal conductivity when only the dominant scat-
tering mechanism is present. When both mech-
anisms are present (but W, = 1/K, is still domin-
ant) it follows that
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W, =—= W, 1-, dk ~.«'(no)l
Ke 7r Kf ~ B

(1/4 n ) f d k p, [- W'( —8f;/8&„")g, ]
1(I/4n') f dkkatto(e —p, )(- sf „.'/s~f) I

'
(13)

The second term on the right-hand side is just the
variational expression for the thermal resistivity
if the first-order deviation function (0. is identified
as the trial function. W (q) is the collision inte-
gral for the other scattering mechanism. When the
simple trial function, Eq. (1), is used to calculate
8'„one readily obtains the Wiedemann-Franz law
and thus W, T is independent of temperature.

Impurity scattering is generally considered to be
isotropic and amenable to a relaxation-time approx-
imation. For our very impure samples, we will
assume that electron-impurity scattering is the
dominant scattering mechanism and that it can be
described by a relaxation time. Taking W'(qo) to
be the electron-phonon collision integral and noting
that the second term in Eq. (3) is just W» one
observes that, in the impurity dominated case, Eq.
(1) used as a. trial function yields the tempera-
ture-dependent portion of the electronic thermal
resistivity due to electron-phonon scattering. Thus,
it is not surprising that the simple trial function
(often called the impurity or "dirty-limit" trial
function) yields calculated values that are in ex-
cellent quantitative agreement with the experimen-
tal results, as shown in Fig. 3(a). One expects cal-
culations done using the impurity trial function [Eq.
(1)] to become increasingly less accurate as elec-
tron-phonon scattering becomes more important
because the impurity trial function becomes an in-
creasingly poorer description of the real deviation
function.

Figure 4(b) shows results for sample K- 9, the
purest sample shown; at low temperatures the data
lie 10-20%%uo below the calculated values even when
the corrected trial function, given by Eq. (2) is
used. (This corrected trial function has no partic-
ular physical meaning but is merely an attempt to
obtain lower values of the variational calculation. )
Ekin points out that below 4 K the corrected trial
function yields a thermal resistivity that is esti-
mated to be about 10% too high. This is insuffi-
cient to account for the observed difference.

This difference between theory and experiment
should be contrasted with the electrical case, where
calculations using the various pseudopotentials
bracket the results for both pure and impure sam-
ples. ' Except perhaps for the very impure sam-
ples, the thermal-resistance calculation is not as
good as the electrical-resistance calculation. The
correct pseudopotential should be the same for the
electrical or thermal case; since the electrical cal-
culation is very good, the pseudopotentials used

should be reasonably accurate reflections of the true
ion potentials. Hence the observed differences can
probably be attributed to the choice of the trial func-
tion. The two most obvious possibilities in this
regard are neglecting both phonon drag and any
anisotropy in the electron distribution function. Boy
and Wilkins ' have calculated the effect of phonon
drag on the electrical and thermal resistivity. They
find that the magnitude of the phonon-phonon re-
laxation time is quite critical in establishing the
drag resistance. However, when experimentally
determined phonon-phonon relaxation times are used,
the drag resistance turns out to be only a few tenths
of a percent of the total resistance, negligible for
the purposes of this discussion.

As the temperature is reduced, umklapp scat-
tering will be confined to the areas of the Fermi
surface nearest the zone boundaries ((110)direc-
tions). Such localized (in momentum space) phonon
scattering, similar to the so-called "hot spots"
of Young, "could play a significant role in deter-
mining the transport properties of potassium. In
particular, such localized scattering will create
an anisotropic distribution function. The trial
function used in the variational calculation should
reflect this anisotropy. The effects of such an
anisotropic distribution function have been calcula-
ted for the electrical resistivity. " In that case,
the magnitude of the umklapp scattering contribu-
tion to the electrical resistivity is reduced by 10-
15%%uo while the normal component is unaffected. The
umklapp contribution to the electrical resistivity
exceeds that due to normal scattering by a factor
of 4-5, whereas in the thermal resistivity both
mechanisms contribute about equally in the 2-8 K
temperature range. Thus it is likely that the ef-
fects of including an anisotropic trial function in a
calculation of the thermal resistivity will be an or-
der of magnitude less than in the electrical case,
and therefore insufficient to account for the ob-
served differences. Hence it appears that the dif-
ference between theory and experiment is not likely
to be found in the gross approximations that have
been made but rather in the more subtle behavior
of the energy dependence of the trial function.

Referring again to Figs. 3 and 4, it is evident
that; with the exception of the most impure sam-
ples, the measured thermal resistivity above 8 K
does not change as rapidly as the calculated ther-
mal resistivity. Wr/7 decreases more rapidly
for impure specimens than for the pure specimens,
but as discussed below, this behavior is due to
lattice thermal conduction. Therefore, for all
specimens the calculations seem to underestimate
the high-temperature electronic thermal resistivity.
Reasons for this are not clear. As far as the tem-
perature dependence is concerned, electrical re-
sistivity calculations yield excellent agreement with
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the experimental results over the whole tempera-
ture range; again, this indicates that the various
pseudopotentials are not grossly incorrect. The
main differences between the electrical and thermal
resistivity are the roles of small angle and inelastic
scattering. Pseudopotentials are generally consid-
ered to be quite good when used to calculate the ef-
fects of small angle scattering. Therefore, the en-
ergy dependence of the pseudopotential and the treat-
ment of inelastic scattering appear to be possible ex-
planations for the difference between the electrical
and thermal cases. Yet another possibility may be
related to the observed deviations from Matthiessen's
rule.

The temperature-dependent portion of the mea-
sured thermal resistivity, which we have identified
as W~, will not be due entirely to electron-phonon
scattering, but, as is shown below, can contain an
additional temperature-dependent term. With only
electron-impurity scattering present, the electrons,
under the influence of a temperature gradient, will

impreach a steady-state distribution P„. Similarly,
with only electron-phonon scattering present, the
steady-state distribution will be ff~. In general,

p11 impf.„willnotbe equalto ff . Whenboth types of
scattering are present simultaneously, the result-
ing steady-state distribution will be a compromise
between the two. The result of this is that when
both mechanisms are present, the total resistivity
is greater than the sum of the resistivities when
each mechanism acts separately. Thus, the total
resistivity can be written

W= W,m~(c)+ W»(T)+5(c, T),

where W, ,(c) and W,„(T) are, respectively, the
impurity and phonon resistivities with each mecha-
nism acting separately. 5(c, T), which canbe shown
to be always positive, can depend upon bath the im-
purity concentration and the temperature. The
variational calculation is done with a trial function
that yields the best values of W»(T), whereas the
experimental data 8'~ contain the additional term
5(c, T). In the electrical case it is known that
5(c, T) can have a temperature dependence different
than that of W»(T). " 5(c, T) will be small at the
lower temperatures but deviations from Matthies-
sen's rule might account for the observed difference
between theory and experiment at the higher tem-
peratures. In order to actually calculate a value
for 5(c, T) with any degree of accuracy from ex-
perimental data the specimen geometrical factor
must be very well known. In this experiment the
geometrical factor is not known with sufficient ac-
curacy so no attempts have been made to extract
a value for 5(c, T) from our data.

We can, however, demonstrate deviations from
Matthiessen's rule at Eosv temperatures by com-
paring the coefficient 8 [see Eq. (14)] for samples

of different purity. The purity dependence of 8 is
shown in Fig. 5. (The estimated error is 5%. )
The 50/Ochange overthispurityrangeis larger than
the corresponding deviations (30%) observed in the
electrical resistivity. ' The curve drawn through
the data points in Fig. 5 is only meant to indicate
the general trend in the data; B is essentially con-
stant in the low-purity range, decreases as the
purity increases and then tends to become constant
for high purities.

The present experiments show quite clearly that
umklapp scattering plays an important role in de-
termining the low-temperature thermal resistivity.
However, the temperature dependence is not very
much different from what one would expect if only
normal scattering were present. Figure 1 of Ref.
20 shows the calculated thermal resistivity decom-
posed into the separate contributions due to normal
and umklapp scattering. In the temperature inter-
val from 4 to 7 K, umklapp scattering contributes
as much as 50% to the total thermal resistivity.
Even so, the total thermal resistivity is closely rep-
resented by a T dependence. This should be con-
trasted with the electrical case where umklapp
scattering contributes as much as 4 to 5 times the
resistance of normal scattering in the same tem-
perature range and the electrical resistivity cannot
in any sense be described by a simple power law.
It is a curious coincidence that just when the ther-
mal resistivity due to the normal processes begins
to deviate below a T dependence, the resistivity
due to umklapp processes increases in nearly the
correct proportion to give a total thermal resistiv-
ity having a quadratic temperature dependence;
this extends the regime over which the simple T~

law appears valid.
This simple power-law behavior is best illus-

trated by displaying both the theory and experi-
mental results in the more standard form shown in
Figs. 6 and 7. The expression generaQy used to
describe the electronic thermal resistivity of a
metal is

W, =A/T+BT ~ (l4)

Here BT' represents the electron-phonon scat-
tering contribution to the resistivity, usually cal-
culated using the Bloch theory and A/T is the ther-
mal analog to the electrical residual resistivity;
A= po/Io, where po is the electrical residual re
sistivity and Lo is the Lorenz number. The results
of calculations using the Bardeen pseudopotential
and the uncorrected trial function are shown in Fig.
6. [These are the same results as the solid curve
in Fig. 3(b) ~ ] This pseudopotential was chosen be-
cause it gives the greatest low-temperature curva-
ture and therefore has the greatest deviations from
a straight line on such a plot. The scale of the
abscissa is the same as that used when plotting the
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experimental data to obtain (WT) r o. Above 3 K,
the theory is closely approximated by a straight
line, but there is some upward curvature at the
lower temperatures. Because of this, data should
be taken to fairly low temperatures so that (WT)r o

can be determined accurately. In the less pure
samples, the percentage error introduced by ex-
trapolation from a high temperature will be small;
however, it can be as large as 10% in the purer
samples. (Note that the other pseudopotentials
will give a much smaller curvature which repre;
sents a smaller possible extrapolation error. )

Suchan error will always overestimate the residual-
resistivity ratio and can cause large errors in de-
termining the temperature-dependent portion of
the thermal resistivity. However, the percentage
error in 8'~ will decrease with increasing tempera-
ture. Figure 7 shows the measured temperature
dependence of the thermal resistance of potassium
when plotted as WT vs T . The relevant specimen
parameters as well as those parameters describ-
ing the curves [A and I3, Eq. (14)j in this figure
are listed in Table I. The residual-resistivity
ratios listed in Table I have been obtained using
the experimentally determined values for (WT)~o
and assuming the Wiedemann-Franz law to be val-
id. Values for 8 were determined from the data
between 4 and 8 K. Both g and B are accurate to
about 5%, the major error arising from the deter-
mination of the cross-sectional area.

To facilitate comparison with other work, the
thermal conductivity as a function of temperature
for representative samples is shown in Figs. 8 and

9. The solid curves in Figs. 8 and 9 are calculated
from Eq. (14) using the experimentally determined
values for A. and 9 given in Table I. The dashed
curve in Fig. 9 is computed in a similar manner
except that the lattice conductivity, which is ap-
preciable, has been included.

Our results are in reasonable quantitative agree-
ment with those of MacDonald, White, and Woods'
whose measurements were done on potassium en-
capsulated in small glass capillaries. Differential
thermal contraction will strain such potassium sam-
ples""; the resulting effects can introduce signif-
icant errors in the electrical resistivity and, pre-
sumably, in the thermal resistivity as well. Be-
cause of this, it does not seem reasonable to make
any further comparisons with their data.

Our results are in considerable disagreement
with those of Stauder and Mielczarek. We see no
evidence for any anomalous contributions to the
thermal resistivity in any of the potassium samples
that we have measured, whether pure or impure
or in either single-crystal or polycrystalline form.
(Samples K —16 and K —15 are in the same purity
range as the single crystals measured by Stauder
and Mielczarek. )

In an attempt to determine possible reasons for
the differences between our measurements and
those of Stauder and Mielczarek we have compared
our experimental technique with theirs. There
exist a number of difficulties which we feel invali-
date much of their data; several of them are listed
below.

(i) Copper leads were used to make electrical
connections to the thermometers. The low thermal
resistance of such leads (about 0.01 0 compared to
our resistance of 3 Q) gives poor isolation between
the thermometers and the liquid-helium bath. Poor
thermal isolation is particularly troublesome when
the sample-to-thermometer thermal resistance is
high as is likely when making contact to reactive
materials such as potassium.

(ii) As far as we could determine, no attempt was
made to compare their two germanium thermorne-
ters against one another or to take a zero-power-
input temperature difference to use as a correction
for small heat leaks and small thermometer cali-
bration errors (see Sec. IID). They used commer-
cial calibrations which are, in general, only accu-
rate to 5 mK. When small applied temperature dif-
ferences are used large errors in W will result.
Note that our thermometers were both calibrated
against the same standard.

(iii) They do not report any attempt to use their
method to measure a metal such as indium of cop-
per, whose thermal conductivity is known. If such
measurements had been made, under the same ex-
perimental conditions as used for potassium, and
the apparatus shown to perform properly, then
doubts raised by the first two possibilities might be
eliminated.

In the absence of any such calibration measure-
ments and in view of the problems raised above we
must conclude that the anomalous results reported
by Stauder and Mielczarek are not a property of po-
tassium.

Figure 10 shows the calculated lattice thermal
conductivity of potassium as a function of the tem-
perature. The lattice conductivity values in Fig.
10 were calculated by Ekin assuming only phonon-
electron scattering; phonon-impurity scattering has
been neglected. Archibald, Dunick, and Jericho3O

have measured the lattice thermal conductivity of
extremely impure potassium-cesium alloys. When
their results are compared with theory, phonon-im-
purity scattering is found to be quite important.
Our "dirty" samples are an order of magnitude
more pure than any of their specimens so such scat-
tering will be much less important. However, pho-
non-impurity scattering will increase with tempera-
ture. Thus the calculated thermal conductivity
plotted in Fig. 10 should be regarded as an upper
limit, particularly at the higher temperatures.

The heat current carried by the lattice will be
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FIG. 10. Theoretical lattice thermal conductivity as a
function of temperature (from Ref. 20).

added to the electronic heat current; therefore,
when lattice conduction cannot be neglected, the
measured thermal resistance will be less than the
resistance due to electronic conduction alone. Com-
paring the curve in Fig. 10 with those in Figs. 8
and 9, one sees that below about 6 K the lattice
term can be neglected in all but the most impure
specimen. For reasonably pure specimens (resid-
ual-resistivity ratio& 2000), the calculated lattice
conduction is less than 1/p of the total conduction
at 6 K. At higher temperatures the lattice becomes
more important. Above 20 K, the lattice can ac-
count for as much as 50/0 of the heat conduction de-
pending on purity. However, for impure samples
the lattice conductivity may be very important at
lower temperatures. For example, in sample K-
16, having a residual resistivity ratio of 195, lat-
tice conduction accounts for about 13/0 of the total
heat conduction at 10 K. The lower curve in Fig.
9 represents a fit to Eq. (14) where A and 8 are
determined from the data below 6 K. If the lattice
conductivity given in Fig. 10 is simply added to the
conductivity given by Eq. (14), one obtains the up-
per curve in Fig. 9. It is quite evident that the
correction is larger at the higher temperatures.
As the purity decreases, lattice conduction becomes
an increasingly larger fraction of the total conduc-

tion. As previously mentioned this is responsible
for the decrease in Wr/T for the more impure
samples being more rapid than in the purer speci-
mens above 8 K. (No corrections for the lattice
conductivity have been made for the calculated
curves shown in Fig. 8. )

IV. CONCLUSION

We have presented evidence showing that the low-
temperature thermal resistivity of potassium can
be adequately explained using semiclassical ideas.
The importance of umklapp scattering has been
demonstrated. Umklapp processes become impor-
tant between 2 and 3 K and eventually become re-
sponsible for about 50/0 of the total thermal re sistiv-
ity. However, the temperature dependence of the
normal. and umklapp contributions to the thermal
resistivity complement one another in a manner thai
results in an apparent T3 law for the total thermal
resistivity to temperatures greater than —,~OD.

Detailed comparison between theory and experi-
ment shows that the agreement is better at low than
at high temperatures. The fairly large observed
deviations from Matthiessen's rule might be re-
sponsible for the disagreement at high temperatures
and it would be useful to attempt to include both
electron-phonon and electron-impurity scattering in
the variational calculation to see how this affects
the temperature dependence of the thermal resis-
tivity.

No anomalous electron or phonon contributions to
the thermal resistivity are observed. The effects
of lattice conductivity are clearly present even in
samples of intermediate purity, ' this additional con-
duction mechaniam must be taken into account if
accurate comparisons with theory are to be made.
The exist;ence of a sizable lattice conductivity in
even reasonably pure samples makes the thermal
resistivity a much more difficult transport property
to analyze than the electrical resistivity.
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A local pseudopotential of the form V= Vo coskr + C r & r„V=—llr, r & r, , is used to fit the

experimental ground-state energy of atomic sodium. This form is chosen so as to mirror as closely as

possible the actual valence charge distribution of Na. This is important in the calculation of chemical

properties such as bonding and cohesion. Electrostatic calculations of the cohesive energy of the bcc metal

from the virial theorem and from the electrostatic self-energy of the lattice are performed and the results

compared. The results bear on the accuracy of electron-gas calculations in metals and the techniques of
pseudopotential calculations. The phonon spectrum is calculated and all results are compared to those

obtained with a Shaw-type flat-bottom pseudopotential.

I. INTRODUCTION

Pseudopotential theory has proven to be of great
use both to experimentalists, as a framework with-
in which to report their results, and to theoreti-
cians, as a computationally facile way to approach
solid-state calculations. By far the most extensive
applications of the theory have been to the calcula-
tion of the one-electron properties of solids in a

nearly-free-electron viewpoint. Previous pseudo-
potentials have been designed to reproduce the
optical spectrum of the solid or the energy levels
of the atom. Little attention has been given to the
importance of matching the correct charge distri-
bution as well. We present here several calcula-
tions with a potential that models not only the
atomic energy levels but also the valence charge
distribution. The purpose of this choice is the cal-


