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A theorem concerning the symmetry properties of the expansion coefficients of the Landau f function for
anisotropic systems is proved. We then calculate the dispersion curves of the ordinary high-frequency waves

(HFW) in copper in the region of small wave number q, for the static field Ac and current j in the [100]
direction (qlH ),paying attention to the parts of the Fermi surface which touch the boundary of the
Brillouin zone. We do this by reducing the transport equation to a system of linear equations, and by
looking for a condition under which there exist normal-mode solutions to the system of equations. We carry
out the calculation, first excluding and then including Landau Fermi-liquid effects. Qualitative differences
are found between dispersion curves in alkali and noble metals.

I. INTRODUCTION

Several years ago Walsh and Platzman' ob-
served what they called high-frequency waves
(HFW) in potassium. HFW are waves which propa-
gate in a metal placed in a static magnetic field
Ho with frequency &, which is of the order of the
cyclotron frequency &,. It has been shown by sev-
eral people ' that for an isotropic metal one can
extract the spin-independent part of the Landau
Fermi- liquid coefficients A„from the HFW disper-
sion curves. For potassium it was determined by
Platzman, Walsh, and Foo that A~= —0. 03 and

jA3l (0.01. Recently, some efforts have been
made to include the effect of crystal anisotropies
on HFW. Foo and Alodzhants have considered
ellipsoidal Fermi surfaces which do not touch the
Brillouin-zone boundaries. Cheng treated, in the
geometry q ~~ Ho, a model Fermi surface which may
have some characteristics of noble-metal Fermi
surfaces. Experimentally, HFW have been ob-
served in copper, a metal with an anisotropic
Fermi surface that intersects the Brillouin-zone
boundary.

In this paper we calculate dispersion curves of
HFW for copper propagatirlg perpendicular to Ho
in the limit of small q, where q is the wave num-
ber, Although a large part of the Fermi surface
of noble metals is nearly spherical. , it is far from
spherical in the [111]direction where the Fermi
surface intersects the Bril.louin-zone boundary.
This leads to qualitative differences between HFW
in noble and alkali metals. The main reason for
the qualitative differences is that the spherical
harmonics F„arenot orthogonal to each other with.
respect to the Fermi surface of noble metals.
Thus a variety of methods which have been used
for isotropic metals fail for noble metals. The
method we use here is the following. We obtain

from the transport equation a system of coupled
linear equations of infinite order for ~„,the ex-
pansion coefficients for the distribution function
defined in Etl. (16). We truncate this system of
equations at finite n=no and find a condition under
which there exist nontrivial solutions to the sys-
tem of equations. This truncation is an approxi-
mation, and we shall first check the validity by
calculating the dispersion -curve for isotropic met-
als by this method and comparing it with the one
in Ref. 3.

We use the Fermi surface and the velocity dis-
tribution for copper derived by Halse. ' But some
modif ication must be made so that the solution to
the transport equation satisfies appropriate bound-
ary conditions.

In Sec. II we discuss the expansion of the Landau

f function for anisotropic systems. In an anisotropic
system f(f, o; k', 5') depends on both k andlc', not
just the relative angle 0 betweenthem. Hence we
cannot expand it in Legendre polynomials; we need
to expand it in a double series. In Sec. III we re-
duce the transport equation to a system of linear
equations. In Sec. IV we discuss our numerical
results, and in Sec. V we summarize our findings.

II. LANDAU INTERACTION FUNCTIONS FOR
ANISOTROPIC SYSTEMS

In this section we discuss the expansion of the
Landau interaction function f(k, o; k', a ) for aniso-
tropic systems. It is customary to separate it in-
to two parts, the spin-independent part f(k, k ) and
the spin-dependent part g(k, k~):

(k, o; k', tr ) =f(k, k ) + o
'

~ a f(k, k ) .
The following discussion is valid for both f(k, k )
and f(k, k), but we shall discuss only f(k, k).

In anisotropic systems f(k, k ) depends on the
directions of k and k separately and not on just
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where 3,„„.are expansion coefficients.
From a physical point of view we impose the

following conditions on f(k, k'):

f"(k, k ) =f(k, k ) ,

f(k, k) =f(k, k ),
P&(f(k, k~) =f(k, k ),

(2)

(2)

(4)

for any R in G, where P~ is the operator of the
group element R. From Eq. (4) alone, we have
the following theorem concerning the symmetry of

liA„,„..
Theorem. Let the Landau interaction function

f(k, k ) be expanded in the form of Eq. (1) where
{((&„;n = 1, 2. . .j is a complete set of orthogonal
functions in the space of functions defined on the
Fermi surface as the domain, and each p„trans-
forms according to one of the rows of one of the
irreducible representations of the symmetry point
group G of the crystal. Let 1""' and F"' be the
ith and jth irreducible representations of G with
dimensionality l, and l&, respectively. If {((&"„

a=1, . . . /, j and {P„'z,P=l, . . . I&j are sets of
partner functions which transform according to the
o.th row of I"' and &3th row of I"(~&, respectively,
then

(5)mrs mrs

provided that f(k, k ) satisfies Eq. (4). The super-
scripts s and x distinguish different sets of func-
tions among the complete set {((&„jwhich transform
according to the same irreducible representation.
We require that any two such sets not just belong
to equ~. valent representations but that the repre-
sentations be identical. .

Proof. Since {((&„;n = I, 2. . .j is a complete
orthogonal set, the set of coefficients {A„„.j is
uniquely determined for a given f(k, k ). From
this, and also from the fact that all p„transform
according to irreducible representations, we have
from Eq. (4)

P Ass (t&((&r & F((&)R+(J s &Isa&sc(R)
iy9 res egg lgl

At's +((&r +(j&ss (6)fl~mg ff N m g&tj res Rig

the relative angle 0 between them. Hence it is
not sufficient to expand f in Legendre polynomials
with cosO as the argument. It is most convenient
to expand it in a doubl. e series of a complete set of
orthogonal functions {((&„;n= 1, 2. . .j which trans-
form according to irreducible representations of
the point group G of the crystal; i. e. ,

f(k, k') = Z A„„.((&„(k)q„*(k'),

There is the following orthogonality relation be-
tween 1"s:

Q I",'(R) I'(&", *(R) = (h/I() 5,&5„z5«.,

where h is the order of the group.
Summing Eq. (7) over R and using Eq. (8) we

obtain

(I/I;) QA"„', ,5;,5 =A,"„'

In this section we shall describe in detail our
method of the calcul. ation. We choose the x, y,
and z axes so that they coincide with the crystal
axes, and assume that the wave vector q and the
static magnetic field Ho are in the x and z direc-
tions, respectively. In this geometry the system
as a whole has reflection symmetry with respect
to the x-y plane (note that Ho is an axial vector).
It follows from this that elements of the conductiv-
ity tenso r o„=o~ = o„,= o,„=0; hence the ordinary
and extraordinary waves are decoupled. s In this
paper we shall restrict our discussions to the or-
dinary wave, i. e. , the wave with j in the z direc-
tion.

We write the Fermi distribution function
n(k, r, t) for quasiparticles as

n(k, r, t) =n, (k) — ' g(k, r, t),
8EO

(10)

where no(k) is the distribution function at equilib-
rium, and co is the energy of the quasiparticle
without Landau interaction. Equation (10) can be
regarded as the definition of g(k, r, t). Then the
transport equation which includes the Landau in-
t6'raction is3
tj'

—
st +~v' &-(lsl/~c) (~a&&H) &."1(g+5e)

We see by Eq. (9) that the only nonvanishing coef-
ficients are for y"„and y' that transform ac-
cording to the same row of the same irreducibl. e
representation and that the value of the coefficient
for this case is independent of the particular row
of the irreducible representation, so we can choose
the first row. Hence Eq. (5) follows.

This theorem is quite general and can be applied
in principle for any Fermi system. However, it
is difficult to find appropriate {9&„;n=1, . . .j for
complicated Fermi surfaces, because the domain
of p„must be exactly the Fermi surface in order
that the set of coefficients be determined uniquely.

III. METHOD OF CALCULATION

for any B in G. Interchanging dummy variables on
the left-hand side of Eq, (6) and comparing the co-
efficients on both sides, we obtain where

=- lelv„-.E, (11)
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r
6@= d k'f(k, k)g(k)5(eo(k) —eg) . (12)

E in the right-hand side of Eq. (11) is the self-
consistent field associated with current j, which is
given by

1=-(lel/4+) fd'I vf(g+«)5(eo(~) -e~) . (13)

We look for a condition under which Eqs. (11)-
(13) have a solution of the form

(a)

Kc
Ka

f, Z

g(k, r, f) =g, (k)e'" '=""+ c. c. (14)

However, the solutions in general do not possess
the required property

go (kA) go (kB) i

where k~ and k~ are points on both the Fermi sur-
face and the Brillouin-zone boundary and are re-
lated to one another by a reciprocal-lattice vec-
tor. This condition Eq. (15) is essential for go(k)
to be physically significant. Thus we must modify
the Fermi surface so that the solutions automati-
cally satisfy Eq. (15). We consider in a periodi-
cally extended zone scheme the part of the Fermi
surface which touches the zone boundary as in
Figs. 1(a) and 1(b), We then translate that part
so that its center coincides with the z axis [Fig.
1(c)]. This translation is merely for convenience
to identify points. We identify points on the Fermi
surface by means of a sphere whose center is at
the origin with radius kp where kp is the k value
on the Fe rmi surf ace in the ( 100) directions.
Corresponding to a point k on the Fermi surface
we have a point X on the sphere given by the inter-
section with the sphere of a line drawn from the z
axis parallel to the x-y plane through k [Fig. 1(c)].
The point k is specified by the polar and azimuthal
angle (8, p) of the corresponding point K. The ad-
vantages of our coordinate system are that first,
in our system electron orbits in k space with mag-
netic field H~ are given by constant 6), and second,
there is a one-to-one correspondence between (8, ip)
and k on the Fermi surface. This modified
Fermi surface has Da„symmetry which includes
invariance under reflection with respect to the x-y
plane but has only a twofol. d axis of rotation in the
s direction.

We now expand gp in spherical. harmonics, Cubic
harmonics might appear more reasonable to use,
but since the system we are considering does not
have cubic symmetry due to the presence of Hp as
well as due to the modification of the Fermi sur-
face, spherical harmonics turn out to be more con-
venient. Let us write go(k) and the Landau inter-
action function f(k, k ) as

g, (k) =Z ~„,.Y"„(k)

(b)

(c)
~8&l ~x

f(k, k) = Q Q (n, m;n, m ) Y„(k)Y„.(k') .
n ~m n' tm'

(17)
Here o„, and (n, m; n', m') are expansion coeffi-
cients. In these equations the coordinate system
defined above is implicit,

One can show by using Maxwel. l's equations that
when the fields and current are of the same form
as Eq. (14), E and j are related in the following
way',

E; = —(4m/(u)iA, , j~,
with

FIG. 1. Modification of the Fermi surface of noble
metals: (a) Fermi surface of the original form. Points
kz and k~ are physically identical, Points in the neighbor-
hood of k& are translated by a reciprocal-lattice vector to
the neighborhood of kD. We shall consider the strips of
width Z in the periodically extended zone scheme. (b)
Electron orbits in k space in the periodically extended
zone scheme for the strips of width Z. (c) The orbits
considered in (b) are translated so that the center of the
orbits coincides with the z axis. We identify a point k on
the Fermi surface by means of a sphere whose center is
at the origin with radius ko, where ko is the k value on
the Fermi surface in the (100) directions. Correspond-
ing to k we have point X on the sphere given by the inter-
section with the sphere of a line drawn from the z axis
parallel to the x-y plane through k. The point k is speci-
fied by the polar and azimuthal angles (8, y) of the cor-
responding point X.
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with

Og = ~ d k Y„.(k) Y„(k)6(eo—ey),

P„= ~
dsk Y„.(k)v„Y"„(k)&(&0—&y) i47t'

„

(21)

(22)

and

~a ga j, /aq"' = d'k Y"(k)

x Y„(k)5(eo —ez), (23)

1V'„= + d», Y"„(&)&(~-~&) .
4

(24)

Here N, N', etc, stand, for pairs (n, m), (n', m'),
etc. , and v (p, =x, y, z) is the p, component of vt-, .
In the numerical calculation, integrations with re-
spect to k are changed to surface integrations;
l. e ~ y

J d k ~(EO —6y) = f dSRvf, (25)

where FS stands for Fermi surface. It shouM be
noted in Eqs. (21) and (25) that one needs the
knowledge of the magnitudes of the Fermi velocity
as a function of k for the calculation of Oz . The
anisotropy of the Fermi velocity is one of the fac-
tors which contributes nonvanishing off diagonal
elements of 0„"for noble metals. However, O~,P„,and I)I„allvanish if one of Y„and Y„.is odd
and the other is even in cos8. Odd F„'scoupl. e
to the ordinary waves, and even to extraordinary
waves.

We look for conditions under which Eqs. (20)-
(24) have nontrivial solutions. But they are of in-
finite order and difficult to handle. Therefore, we
truncate Eq. (20) at finite n=no. The justification
for that is the following. Since the experiment is

A = 0 [1—(qc/(())~] ~ 0 . (19)

o o I( —(ve/td)']'/

We substitute Eqs. (12)-(14), (16), and (17) into
(ll) and multiply by Y„.(k). Then integrating over
the Fermi surface, we obtain the following ex-
pressions for the ordinary wave (j in the z direc-
tion):

I

o"„'(-i~)+iq(iiN'+ 2 Z p,'.. ()i ;'.).('"' ")o„'')"'
Ntt gttt

+( ' ' o„"'+Z Z o"„.'. (o":,o"')o„"'")»
cA Ntt Nttt

a 471 (0 gg
a aa~N+ —qc

xZ )"„+Z E )'N-(ii";ii'")oNN")»,

by means of the absorption of electromagnetic
waves, the mode of HFW must produce an electric
field in order to be detected. In the case of a
spherical Fermi surface, only the F, mode pro-
duces j, and all others do not; hence, experimen-
tally dominant signals are from such solutions that
have a l.arge component of F, , and there is only
one such solution for each subharmonic in the limit
of small q. Although this is not quite true for no-
bl.e metal. s, dominant signals are still from such
solutions that have large components in small n,
where n is the order of the spherical harmonic. It
is reasonable to assume, even in the case of the
anisotropic metal. , that the coupling between modes
F„with small n and F„twith large n' is small. .
Taking n large enough, one can neglect the cou-
pling of Y'„with small ~ to F„twith n') n . This
justif ies the truncation.

The truncated Eq. (20) is a homogeneous linear
system of equations for z~. It has nontrivial solu-
tions if and only if the determinant of the coefficient
matrix vanishes. Therefore we seek the relation
between Ho, &, and q for which the determinantal
equation vanishes. We do this by actually calcul. at-
ing the determinant for various values of Ho for
fixed M and g.

Unfortunately, T„donot transform according to
irreducible representations of the group D»,. hence
we cannot apply the theorem in Sec. II for this
case. But their linear combinations g"„(-n ( m
(n) do transform according to irreducible repre-
sentations as shown in Table I, where „are de-
fined by

(Y„+Y„-)/v 2,
cpm yo

m&0

m=o (26)

(n, m; n', m') *= (n, m; n', m'),

(n, —m; n', —m') = (n, m; n', m'),
(27)

(as)

(n', m'; n, m) = (n, m; n', m') . (29)

Thus nonzero coefficients relevant to the ordinary
wave for n, ~' & 3 are

(1,0;1,0),
(1,0;3, 0) = (3, 0;1,0),
(1,0; 3, 2) = (1,0; 3, —2) = (3, 2; 1,0}= (3, —2; 1,0) ,

(2, 1;2, 1) = (2, —1;2, —1) ,

(2, 1;2, —1) = (2, —1;2, 1),

(YI)oI Y-ImI)/( ~2) m (0
One expands f(k, k') in Il"„'sin the form of Eq. (1)
and by applying the theorem finds the symmetry
relations among expansion coefficients, ' which

, then can be translated into the rel.ations among
(n, m; n', m'}'s. We obtain
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TABLE I. Irreducible representations of the group D~, according to which various 'g~'s transform. The last column
indicates whether the mode couples to ordinary or extraordinary waves. The table is arranged in such a way that it is
apparent that D2I, is a direct product group of C2I, and C~z, For the subgroup C2&, the last four elements should be ig-
nored. Hence for that, O', P' . . . coincide with 0. , P. . . , respectively.

$ m even
even

Label Cz
2

Cx Mode

ext
Old

evenn~e~0, odd
odd

ord
ext

even
, even

even-n~ m&0 odd
odd

ext
ord

ord
ext

(3, 0;3,0),
(3, 2; 3, 2) = (3, —2; 3, —2),
(3, 0; 3, 2) = (3, 0; 3, —2) = (3, 2; 3, 0) = (3, —2; 3, 0) .

IV. NUMERICAL RESULTS

mainly of mode F2, but it also has components of
F~4', Y~4', Fz', etc. , at @=0, and branch (B) con-
sists mainly of Y4, but it also has components of
Fz, F4', Y4', etc. Consequently, these two
branches are not degenerate at q=0. This should

In this section we shall discuss our numerical
results. In order to check the validity of our
method we first carried out calculations for po-
tassium with & = 10" sec ' and no = 5 and 7. The
dispersion curves for the fundamental. mode are
shown in Fig. 2 together with the previous calcu-
lation of Ref. 3. Here 8, = v, /v with the Fermi
velocity v, , and the cyclotron frequency +',. The
subscript s stands for "spherical Fermi surface. "
The agreement is very good in the region qR,
-6. 5 with no = 7. This is the region where experi-
mental data have been taken, and from which A„
can be extracted. In the region qB, & 6. 5 our meth-
od seems to fai1.. This is because the q ~ V term
in Eq. (11) is so large that it mixes the Fz' mode
with Y„'sfor n & n = 7.

We now proceed to the calculation for copper.
In Fig. 3 are plotted dispersion curves for copper
for small q with n =8 and 10, a=10 sec"', and
with vanishing Landau parameters (n, m; n', m').
In this case e, and ~', are the Fermi velocity and
the cyclotron resonance frequency, respectively,
in the absence of band structure. For noble metals

5

4

I I I I I I I

@0 =7

P. W. F.

and

v, = 5. 685/a cm sec '

~', =1.759xHox10' sec '
l.5 2.0

with lattice constant a in cm and the static magnetic
field Jlo in gauss. For copper a=3. 603x10 cm. . -'l

Since O~ and Q„arenot diagonal, a wave in the
noble metal consists of many modes even in the
limit of q-0. By actually solving the simultaneous
equations by setting some &„=1,one can show
that, for example, branch (A) in Fig. 3 consists

MAGNETIC FIELD / FREQUENCY - ~c /~

FIG. 2. Dispersion curves for potassium calculated
by our method with no = 5 and 7 for the purpose of check-
ing the validity of this method. The previous calculation
by Platzman, Walsh, and Foo (P.W. F.) (see Ref. 3) is
also shown. Our method yields a correct result in the
region qB & 6. 5 with no=-7.
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(a)n, =s

8 A

J.~ Jl

(b) n =10

Eh
CLa

ll&
0.2 OA 0.6 0.8 IA

MAGNETIC FIELD / FREQUENCY —(v~ /(u

FIG. 3. Dispersion curves for copper with cu =10
sec" and all (n, m; n'm')=0. (a) np

——8; and (b) np=~0.
The agreement between (a) and (b) is fairly good, but may
not be good enough to enab1e us to extract Landau coef-
ficients from experimental data.

be compared with the fact that in an isotropic met-
al all branches which consist of Y„with a given m
are degenerate, and among these only one branch
is dominant for small q. The latter statement is
not applicable either for noble metal. s for two rea-
sons: First, the way each mode couples to Y~ is
not as simple as in isotropic metals, again because
O~ and Qg are not diagonal. Second, although
mode Yo produces the largest self-consistent fields
for a given amplitude, other modes also produce
it; thus g~(k) need not contain the Fo, component in
order to be detected electrical. ly. For these rea-
sons one has to consider many branches. How-

ever, it is qualitatively true that Y„with Large ~
fails both to couple to Y, and to produce apprecia-
ble self-consistent f ields,

If one increases no, more branches appear. In
Fig. 3 we have plotted only those branches which
give similar dispersion curves for n = 8 in Fig.
3(a) and no= 10 in Fig. 3(b). They are the branches
which consist of Y„with smaller n, and should
therefore give stronger signals. We see fairly
good agreement between these two calculated re-
sul.ts.

A trial has been made to include Landau param-
eters. Guessing from the experimental vaLue Aa
= - 0. 03 for potassium, 6 x 10 3 would be reason-
able for (n, m; n', m') as an order of magnitude.

~ has been set equal to 10 for the following calcu-
lation. First we set (1, 0; 1, 0) = 6x lp '6 and all
other (n, m; n', m') =0. With these parameters we
did not see appreciable change in the region of
small q. This is reasonable since there are no
branches in which Y& is the dominant mode in this
region. Next we set (2, 1; 2, 1) = (2, —1; 2, —1)
= 6&10 6 and all others zero. Paying attention to
about a half of the branches, the results are shown

in Fig. 4(b). In Fig. 4(a) some branches of Fig.
3(b) are redrawn in the same scale as in Fig. 4(b)
for the purpose of comparison. The most eminent
change is that the intersecting point of branch A
with the x axis is shifted by about —0. 03. This
is consistent with the fact that Y2 is the most
dominant mode in A. One aLso notices that the
shapes of branches B, C, and some others are af-
fected. This is because they contain small compo-
nents of F~. In Fig. 4(c) we show the dispersion
curves with (3, 2; 3, 2) = (3, —2; 3, —2) = 6x 1p "
and all others zero. Comparing Fig. 4(c) with Fig.
4(a), one notices that the intersecting point of
branch E is shifted by about 0. 015, and also the in-
tersecting points of C and D are slightly shifted.
At finite q the change of curvature of branch C is
large.

It should be noted that there are two groups of
branches: Branches [group (a)] whose intersect-
ing points with the x axis are shifted by finite
(2, a 1; 2, + 1) but not by (3, + 2; 3, t 2), and

branches [group (b)] which are affected in the other
way. Group (a) includes branches A, B, F, and G,
while group (b) includes branches C, D, and E.
The reason why there are two groups is the fol.low-
ing. Since O„=Q„=Ofor n+n'=odd (one can
show this by Table I), the corresponding go(k) at
q= 0 cannot have components in Y„with both even
and odd n at the same time. If go are made of Y„
with even n, then the branch belongs to group (a),
and if with odd n, then the branch belongs to group
(b). Hence the intersecting points with the x axis
of group (a) branches are shifted by (2, + 1; 2, + 1)
but not by (3, + 2; 3, +2). And those of group (b)
branches are shifted by (3, + 2; 3, a 2) but not by
(2, + 1; 2, x 1). In terms of Q"„,the go correspond-
ing to group (a) branches at q= 0 are made of g „"
with even n; therefore, under operations of the
group C», which is a subgroup of D», go trans-
forms according to irreducible representation P
(refer to Table I) although it does not transform
according to any irreducible representations of

D2„. Similarly, go at q=0 of group (b) branches
transforms according to irreducible representa-
tion 5 of group Cz„.

The largest source of errors in the present cal-
culation is probably the truncation of Eg. (11) at
n=n . Comparing Figs. 3(a) and 3(b), we esti-
mate that the errors due to the truncation are with-
in a few percent for those branches plotted there.
Another source of relatively large errors would be
-'the uncertainty of the exact shape of the Fermi sur-
face and the velocity distribution. They are im-
portant because off diagonal el.ements of O~ and

Qg, which determine the mixing among different
modes, are very sensitive to them. In particular,
one must expect that errors in the velocity distri-
bution would be rather large.
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(a) in, m; n', m') = O

)G
F t ~

2—

(b) (2,i;2,1)=(2,-l;2,-II = 6 X lO

(c) (3,2;S,2) = (3,-2; 5g) = 6 X iO
"

E D cI'

FIG. 4. Dispersion curves
for copper with no=10 and
~=10~~ sec t. (a) al1
(n, ~;n', ~~') =0; (b) (2, &; 2, ~)
= (2, Z; 2, -X) = 6 xXO-" and
a11 others zero; and (c)
(3, 2 3, 2)=(3 -2 3 -2)
=6x10 8 and all others zero.
Shifts of intersecting points
with the x axis of various
branches are seen. Also:
curvatures at finite q values
change,

04
I, I I

05 0.6 0.7 0.8 I.5
MAGNETIC FIELD / FREQUENCY —a)c/(y

V. SUMMARY

We showed that for anisotropic Fermi systems
the expansion of the I andau interaction function
f(k, k') must be done in double series; by a proper
choice of the basis functions one can make many of
the expansion coefficients vanish due to the crystal
symmetry. We then calculated dispersion curves
for HFW in copper. They differ qualitatively in
several ways from those for isotropic sysI:ems.
(a) With q= 0 there are no degeneracies between
modes F„with the same m but different n's even
with no interaction among quasiparticl. es; (b) even
with @=o, mixing between different modes is im-
portant, and consequently each branch point is
made of several different F„components; and
(c) other modes than Fo can produce a self-con-

sistent electric field; hence waves need not couple
to the F, mode in order that it be observable by
experiments involving the absorption of electro-
magnetic waves.

At present, experimental data for copper are not
available to us, so that no comparison with experi-
ment has been made. However, a comparison for
an anisotropic case might not be as simple as in
an isotropic case because in the former case there
are many branches which are important, and it
may not be clear from which branch a given maxi-
mum or minimum in the absorption curve is com-
ing. Therefore, in order to compare theoretical
calculations quantitatively with experimental data,
one probably needs to include coupling between the
impinging r. f. fields and HF%', which is still an
open question even for isotropic metals,
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