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A lattice-dynamical theory is presented of the thermal expansion of a Bravais crystal
slab. The theory incorporates the static temperature-independent relaxation of the inter-
planar spacings in the vicinity of the crystal surface, the homogeneous temperature-depen-
dent deformation (thermal expansion) of the crystal arising from cubic anharmonic terms in
the crystal potential energy, and temperature-dependent changes in the interplanar spacings
at the surface arising from the same source. Numerical estimates of these effects are pre-
sented for a nearest- and next-nearest-neighbor central-force model of n-iron.

I. INTRODUCTION

In recent years there has been considerable in-
terest in the experimental and theoretical study of
structural and dynamical properties of crystal
surfaces. The work up to a few years ago has
been summarized in a recent review article. '
Nevertheless, until now, no general analysis has
appeared of the thermal expansion at a crystal
surface. To our knowledge, only Allen et al.
have studied this effect, but only by essentially
numerical methods. In this paper we present a
lattice-dynamical theory of the thermal expansion
of a Bravais crystal slab. Our analysis has the
advantage of being analytical and straightforward.
We are primarily conce"ned with the displacements
of the mean positions of atoms near the surface
from the mean position that these atoms would
have in the bulk of the crystal. If these displace-
ments are determined by minimizing the static en-
ergy, we shall call them the static displacements.
If they are determined by minimizing the total free
energy, including vibrational contributions, we
shall call them the dynamic displacements.

The free surfaces of our slab are created by
setting to zero all interactions which cross each
of two planes passing through an infinite lattice
parallel to a (001) plane but not containing any par-
ticles. The particles in the surface layer and in
the adjacent interior layers are then acted upon by
unbalanced forces, and consequently suffer dis-
placements to new equilibrium positions.

The static temperature -independent displace-
ments of surface atoms have been computed by
several authors. Our theory incorporates the
static relaxation of the interplanar spacings in the
vicinity of the crystal surface, the homogeneous
temperature-dependent deformation (thermal ex-
pansion) of the crystal arising from the cubic an-
harmonic terms in the crystal potential energy,
and temperature-dependent changes in the inter—
planar spacings at the surface arising from the
same source. Numerical estimates of these ef-
fects are presented for a nearest- and next-near-
est-neighbor central-force model of a slab of n-
iron bounded by (001) faces.

Our analysis also gives for the first time the
temperature dependence of the dynamical dis-
placements.

In Sec. II, we obtain the static and dynamical
contributions to the potential energy of a crystal
slab. In Sec. III, the dynamic contribution to the
free energy is also derived analytically. In Sec.
IV, we give the general analytic expressions for
the thermal expansion of a crystal slab. In Sec.
V, we apply them to a (001)-free-surface slab of
n-iron, with nearest- and next-nearest-neighbor
central-force interactions between atoms.

II. STATIC AND DYNAMICAL CONTRIBUTION TO
POTENTIAL ENERGY

We begin by expanding the potential energy of a
Bravais crystal slab in powers of the displace-
ments of the atoms from the equilibrium positions
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they would have had if they formed part of an in-
finitely extended, or cyclic, crystal instead of a
slab:

4' = 4'0 +~ 4' .«) & {l)+ —." & 4' .(«') h .(l) h (l')

+— Z 4,(ll l )u (l)u (l )u, (l )+ ~ ~ ~, (2 6)

n8y

with

4 „(l)= 4 (l) + Z 4 „ (ll ) [s (l') + d (l')]
l'8

+ ~ 4.„(ii'1")&.(1) &.(1') &,(1")+~ ~ ~ . (2. 1)
+ —,

' E 4,~,(ll'l") [s~(l,') + d~(l')]
)I )II
8x

]„(1)=s„(l)+d„(l)+u„{l), (2. 2)

where

s, (l) = Z e, x~(l) .

The vector x(l) isthevectortothe equilibriumpo-
sition of the Eth atom in the undeformed crystal.
The parameters (e j describe a homogeneous de-
formation of the crystal, and are not assumed
here to be symmetric in n and &. %e now substi-
tute Eq. (2. 2) into Eq. (2. 1) and collect terms in

powers of the displacement components (u (l)7, to
obtain

(2. 3)

In this expression 4o is the value of the static po-
tential energy. ( (l) is the n Cartesian component
of the displacement of the l th atom. The first-
order atomic force constants L4 „(1)]are nonzero
only for sites l near the surfaces, because a first-
rank tensor invariant under the operations of the
point group of the lattice site to which it refers
must vanish identically for an infinitely extended
Bravais crystal, which includes the inversion
among the symmetry operations at each site.
4 z(ll ) and 4„~,(ll l ) are the harmonic and an-
harmonic force constants, respectively.

We suppose that $,(l) is the resultant of three
terms, the first of which describes a homogeneous
deformation of the crystal, the second of which
represents the dynamical displacements of the
atoms due to the free surfaces, and the third of
which describes arbitrary displacements of the
atoms from their new positions in the deformed
crystal:

x[s,(l )+d„(l )]+ ~ ~ ~, (2. l)

4, (ll ) = 4, (ll ) + 2 4,(ll l )

x [s,(l")+ d, (l")]+ ~ ~ ~, (2. 6)

4, ,(ll l ) = 4', (ll l")+ ~ ~ (2. 9)

To first order in the deformation parameters
(e ~) and the displacements (d (1)], the vibrational
contribution to the Helmholtz free energy ob-
tained from the dynamical part of the crystal po-
tential energy, Eq. (2. 6), can be written in the
form

F(T) =F"'(r)+-,' Z 4.,„(ll'l") (u. (l) u, (l'))

x [s„(l")+ d, (l")]+ ~ ~ ~ . (2. 10)

+-,' 2 F 4.„(ll'l") [sa(1')+dg(1')7

x [s,(l ')+d„(l")]+ = 0 . (2. 12)

Explicit expressions for F' '(T) and the correla-
tion function (u (l) u~(l ) ) will be obtained in Sec.
III. There, the mean positions of the atoms at
temperature T are defined by the condition

(u„(l))=0. (2. 11)

This gives the following relation between the (e ~]
and the ld (1)):

4 (l) +2 4,(ll ) [s,(l, ') + d, (l )]+F (l
~

&)
r'8

where
4, =4., +2 4, (l) [s„(l)+d (l)]

+ —,
' 2 4'„~(ll') [s„(l)+d, (l)] [s~(l )+ dz(l )]

(2. 4)
The expression for F (l I T) will be give~ in Sec.
IG. In Sec. IV, this equation will be solved for
(d„(l)j as a function of the (c ~] and the result will
be substituted into the expression for the total free
energy of the crystal:

Oi8 X(r)=4, +F(T) . (2. iS)

+-', Z e.„(11'1")[s.(l)+ d„(l)] [s,(l')+ d, (l')]
&r
u8r

The deformation parameters (e„~j will then be ob-
tained in Sec. IV by minimizing this free energy.

III. DYNAMIC CONTRIBUTION TO FREE ENERGY
x[s,(l )+d {l )1+

and

=Z 4' (l )u, (l) + —,
' 2 4 „(;l ) u (l) u (l')

zs'
e8

(2. 5)
If we add the kinetic energy of the atoms to the

dynamic contribution to the potential energy of a
deformed crystal slab, given by Eq. (2. 6), we can
write the vibrational Hamiltonian for the slab as
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H= Hp+Hg,
where

B'o=Z
2 +2 ZZ 4 (ll')u (l)u (l'),

le le l'g

a„=Z 4.(l)u. (1)+~2 Z Z 4.,„(11'i')u.(1)
le l'0 l "r

(3. la)

(3. 1b)

from the anharmonic Hamiltonian H„ is given by

( 1)nl &&

&&

F(T) —F&&(T) = —Q dP& dP„P„, n
0 0

x(TV(P )" V(P )).. . (S.S)

where P = (k» T)

x u&&(l ') u„(l")+ ~ ~ ~ (3. 1c) V(P)=e "H„e (s. 9)

through cubic anharmonic terms. Here p (l) is
the a Cartesian component of the momentum of
atom l, and M is its mass.

It is now convenient to introduce the eigenvalues
and eigenvectors of the matrix D s(ll ) =4 s(ll )/M
by

Z D,(ll') C,"'(l') = fl'C'"(l) s=1, 2, s ~ ~ p 3+g

(3.2)
where the (C &'&(l)) can be chosen to be real and to
satisfy

2 c„"&(l)c& "& (l) =6„, ,

2 C&'&(1)C&'&(l')=6„,6... (s. Sb)

and /, is the total number of atoms in the s) ab.
These eigenvectors and eigenvalues can be used

to generate a normal coordinate transformation

C"'(l)
uo(l)= 2 ] Z

( ),ps A, , (3.4a)

kM "'.(l) = -.
]

— Z (n )"' c &'&(l) B, ,
S

(s.4b)

where A, =A~ and B,= —B,"(are the phonon field and
momentum operators, respectively.

In terms of these operators the Hamiltonian Hp

and H„ take the forms

6F&(T) = —s P Q V, D, (0) V, , (s. 1o)

where
2n, 1 2@i

pl Qs —(1(d &)

The contribution associated with the diagram in
Fig. 1(b) is

5Fs(T) = —3p Z 5 V, D,(0) V„, D, (i&d&) . (3. 12)
l=-~ 1 1 1

1

7.
' is an operator which orders operators from

right to left in order of increasing arguments, and
the angular brackets ( ~ ~ ~ )„denote an average
over the canonical ensemble defined by the Ham-
iltonian Hp, and if the terms in the pe rturbation
series (S.8) are represented diagrammatically,
only the contribution from connected, topologically
distinct diagrams is retained. By topologically
distinct we mean diagrams which do not differ
from each other only by a permutation of the
"times". p1, ~ ~ ~, p„at which the interactions de-
scribed by V(P) occur.

If only the contributions of zero and first order
in V. .. are included in the anharmonic contribu-

$1$2s3
tion to the vibrational free energy, it is the con-
butions associated with the diagrams in Fig. 1
which must be calculated. The contribution as-
sociated with the diagram in Fig. 1(a) is

Ho= 2 sh Q, [BtB,+AtsA, ],
S

123 1 2 3123
where

g (S)

(S. 6a)

(S.6a)

Combining E&is. (3. 7), (S. 10), and (S. 12), we
obtain for the vibrational contribution to the free
energy

F(T) = k»T Z 1n[2 sinh(hQ, /2k»T)]

- -,' p Z v, D,(o) v,

1(e»2
V'i's's S ( aM ) (

ggs Z Co&&„(ll l )n, rs, fl,
2 3

O&&y

xC "i'(1)C,"s'(l ) C„"s'(l ) . (3.6b) Vs +ss,s

—SP Z Zi V D, (0) V„...D,,(i(u,), (3.13)
ss1 l g~oo

(3. l)

%e will treat the Hamiltonian H„as a perturbation
on the Hamiltonian Hp.

The contribution to the vibrational free energy
from the harmonic Hamiltonian Hp is

Fs(T) = ksT g in[2 sinh(hQ, /2k' T)] .
The contribution to the vibrational free energy

Vs Vs

(a) (b)
FIG. 1. Diagrams giving the first

the vibrational free energy from the
iltonian 0„ fzq. (3.Zc)].

Ovs, s,s

(c)
contributions to
anharmonic Ham-
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through terms linear in the cubic anharmonic force
constants.

The mean positions of the atoms at temperature
T are defined by the condition

+2 p Z Z D, (i~&, ) V. ..D, (0)
ss1S2 le l2

x V„, D, (i(d, ) ."2'2 '2 '2 (S.21)

(&(.(/)) = 0, (3. 14)

where the average is evaluated with respect to the
canonical ensemble defined by the Hamiltonian
(3. 1b). In view of Eq. (3.4a), and the orthogonali-
ty of the eigenvectors (C"'(/)], it follows that the
condition (3. 14) is equivalent to the condition

(A, )=0 . (3. 15)

The perturbation expansion for the expectation
value of any operator 0 can be written in the form

=- (-1)"
(O) =4 dP& dP, (T V(P&) ~ ~

f/% 0 0

x V(p„) O(0))„. (3. 16)

In the present case we find that

(A, &
= —(((D,(0& V, ~ 3D, (0&& Z V„, D, (iv,

&)
.

(3. 11)
Combining Eqs. (3. 15) and (3. 17), we obtain the
equation determining the mean positions of the
atoms in the deformed crystal at ten.perature T:

The second term on the right-hand side of this
equation is of second order in the cubic anhar-
monic force constants. Therefore, if we require
the vibrational contribution to the free energy only
to first order in the cubic anharmonic force con-
stants, it is given by

F(T) = k~T Z InI2sinh(kQ, /2ksT)] . (3. 22)

[In fact, the contribution to F(T) given by the sec-
ond term on the right-hand side of Eq. (3. 21) is
cancelled by the contribution associated with the
diagram in Fig, l(c), which we have not consid-
ered explicitly here. More generally, it can be
shown that when the condition (3. 15) is taken into
account, there is no contribution to the vibrational
part of the free energy from any diagram which
can be divided into two pieces by cutting a single
free-phonon line. 0]

We now recall that the I 4»(//')] are the atomic
force constants for the deformed crystal. In
terms of the eigenvectors and eigenvalues of the
dynamical matrix of the undeformed slab, D (&(// )
=4 (ll )/M,

V, +3 Z Z U„...D,,(i~&) =0 .
s, l---

(3.18)

By the use of Eqs. (3. 15) and (3. 17), we can
simplify the free-energy expression (3. 13). From
these equations we obtain the result that in the
equilibrium configuration,

Z V, (A, ) =0= —P Z V, D, (0) V,

where

B ( )(/) B( ')(/)
ll

(3. 24a)

Z B."'(I)B,"'(I') = 6 „.6.. . (3. 24b)

Z D (&(// ) B(I"(l ) = (a B"'(l), s = 1, 2, . . . , SN,
l'O

(3. 23)

—SP Z Z V, D,(0) V„, D (j(a&) .
ss,

Consequently, we can rewrite Eq. (3. 13) as

F(T) = k~T Z In[2 sinh(KQ, /2k~ T)]

(3. Io)
we find, using first-order perturbation theory,
that

n,'=~', +—2 Z Z B."&(/)4.,„(/I'l')
lu l'8 l"r

x B(&"(/ ) ts„(/")+d„(/ )], (3.25a)

—
~ PZ Z V, D, (0) V„, D (i~~&) . (3. 20)S s SS1S1 S1

1

If, finally, we use Eq. (3. 18) in (3. 20), we obtain

F(T) = k~T 2 Inr2 sinh(hQ, /2k~T)]

C„"&(l)=B„"&(l)+—Z K Z Z B."'(/)
s'(&s) l'0

(3.25b)
With these results we can rewrite F(T) as

F(T)= k»T Q In[2sinh(br~, /2ksT)]+ —4 2 Z 2 B"'(l)4»~(// L ) B(&"&(/') coth(k((&, /2kBT) [s„(/')+d (l )],
(S.26)

s . ds ln l'8 l "r

to first order in the cubic anharmonic force constants.
If we make use of Eqs. (3.6), the subsidiary condition (3. 18), which relates d (l) and & ~, takes the form

(3. 27)
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Recalling that 4 (),(ll'1') is already of first order in the cubic anharmonic force constants, we can replace
C"'(l) and 0, by B,"'(l) and z, in this equation, respectively. Then, with the definition (2. 7), we obtain
finally the condition

4 (l)+Z 4 q(ll ) [s8(l )+da(l )] +~ 2 4 4( ()„(ll l ) [s()(l )+d()(l )][sy(l )+d„(l )]l'8 r'8 r"r

+ Z Z Z 4' ()„(ll l ) Bg'(l ) B,"'(l )
' =0 . (3.28)

By using the result that'

B(s)(l) B(s)(l')
(u, (l) u, (l') ) =

2
Z ' coth(-,' li(~, )
8

(S.29)
and by calling

F'o'(T) = ksT Z 1n[2 sinh(K~~, /2kBT)], (S. 30)

we can rewrite F(T) as

F(T) =F"'(T)+ —,
' 2 4~,(ll'l") (u, (l)u()(l ))

x [s„(l") + d, (l")] . (3.31)

Let us define

F,(l
~

T) = —', Z (u (l)u (l ))4,(ll l ) . (3.32)

With this notation, the condition (3.28) which re-
lates d (l) and e ~ can also be written as

4.(l)+ E 4 „,(ll') [s,(1')+ d, (l')]+F.(1~ T)
r'8

+ —,' Z Z 4 ,(ll l ) [s (l ) + d, (l )]t"r

x [s,(l")+ d, (l')] = 0 . (S. 33)
In Sec. IV, we will solve this last equation by

iteration to obtain d (l), which will be substituted
into the expression for the total free energy F(T)
[Eq. (2. 13)], which will then be minimized with
respect to the (a ~j, yielding the temperature de-
pendence of the deformation parameters, and in
turn of the (d, (l)).

IV. THERMAL EXPANSION OF A CRYSTAL SLAB

To obtain the thermal expansion, we need to cal-
culate the (d, (l)) and the (a ~ j. Equation (3. 33)
will give d„(l) as a function of e ~. We will insert
this value of d (l) in the total free energy

V(T) = 4, +F(T),
and minimize the latter with respect to the (z )„j,
obtaining in this way these deformation parame-
ters, and in turn the (d (l)f. From Eqs. (2. 5) and
(3. 31), the total free energy is

3(T)=4),(T)=Q 4 (l)[s,(l)+d, (l)]+-,' 2 4 z(ll ) [s (l)+d (l)][s()(l )+d))(1')1

+ +6 Q 4 q„(ll'l' ) [s (l) + d (l)] [s()(l ) + d()(l )] [s„(l ) + d, (l )]

+-,' Z 4 ~,(/l'/')(u (l)us(l')) [s,(l )+d„(l )]+.. . , (4. 1)

where

e, (T) =4.,+F~)(T) .

f

with
x„(ll') = x,(l) —x„(l') . (4. 5)

Let us rewrite Eq. (3.33) in the form

Q 4 (((ll ) d(((l )= P (l) —
~ 2 Z 4 (),(ll l )

G„(l)= -Z 4.' (ll )x„(l )

=Z 4 (ll )x,(ll ), (4 4)

x[s8(l )+d()(l )][s„(l )+d„(l )], (4. 2)

where we have defined

P (l) =Z G 8 „(l)&()„ —F (l~ T) —4', (l),

Equation (4. 2) can be solved by iteration, solving
it first without the quadratic term in the (s()(l )
+ d (1')]. as shown in Refs. 11 and 12, then substitut-
ing this solution in the right-hand side of Eq. (4. 2)
and solving again as before. We only keep in the
solution linear terms in the anharmonic force con-
stants, remembering that the (e,„]are linear in
the (4 ()„(ll l )). One iteration is enough to see that
the quadratic term in the (s()(l ) + dz(l )j on1y con-
tributes one term linear in the (4 ~,(ll l ')J, but
quadratic in the ((1) (l)]. This quadratic term in
the (s~(l )+ d~(l )j gives a temperature-independent
anharmonic correction to the static relaxation ob-
tained with P, (l) = —4 (l). For this reason, we are
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neglecting this quadratic term, keeping only the
leading terms I 4, (/)} for the static relaxation. In
a more quantitative study, this correction should
be kept, as being linear in the anharmonic force
constants and possibly of the same order of mag-
nitude at T= 0'K as F,(/ I T), for l being near the
free surfaces. But here our main aim is to dis-
cuss the physics of each of these effects rather
than performing very accurate numerical esti-
mations.

= 4,()(/g —/[, /g —/g, ls, 0, 0, /q) . (4. 6)

The point symmetries of each site and group-
theory considerations enable us to find that the
only nonzero elements of the (G l„(/3)} [Eq. (4. 4)]
and (ea„}are the following ones:

G„„,(/, ) = G„„(/,), G„,„(/,) = G„,(/, ),
G,„„(l,) =- G,„,(/, ), G...(4),

(4.7)

(4. 8)

In the same way one finds that

P.(/,
i
T) = 6.,F,(/, i

T),

4.(l, ) = 6.,4,(l,),

P, (l ) =5„,P,(/ ),

(4. 9)

(4. Io)

(4. 11a)

P, (l3) =Z G,()g(/3) &l() —E,(/3~ T) —4,(/3), (4. 11b)

A. Dynamic Displacements d (1)

To solve Eq. (4. 2), one can take advantage of
the symmetries of the slab studied. In the case of
a slab with (001) free surfaces, the translational
symmetry of each site implies that the (P, (/)}
[Eq. (4. 3)] and fd„(/)} are independent of /, and l,
and functions only of 13 and that

From (4. 16) and (4. 11b) we see that d, (ls) will be
a linear function of E„„, &„, and &„. We will see
below that the solution (4. 16) has the form

dg(/s) = [Ag &gs+Ag(cga+ &ll)+B] xg(/3)+ Cg(/g) ~ (4 17)

In (4. 17), C,(/~) represents contributions to d, (l, )
localized near the free surfaces. The coefficients
A„A„, I3 are independent of l, and are different
for different crystals. The form (4. 17) will en-
able us to obtain a general expression for the (e ul.

B. e z fora Slab

I.et us now substitute d (l), solution (4. 17), into
the total free energy 7(T) [Eq. (4. 1)] and minimize
y(T) with respect to e„~. In this way we obtain

sS(T) g 8[s (l)+d, (l)]
Sev)( t0(

x[s,(/)+d, (l )]+-,' 2 2 4„„(ll l )( u(()/)u, (l ))

Z Z 0,~,())')")(s&O') ~ ds()')](s„(l")~ d, (('))) .
rr'r" Br

(4. 18)
By remarking that e„„and d (l) in the bulk will be
of first order in the anharmonic force constants,
and that 4 (l) has nonzero elements only in the
vicinity of the free surfaces, (4. 18) may be re-
written-after neglecting higher-order terms in
4 ()„(// l ) and terms proportional to the ratio of
surface area to volume, of O(N, /N, ), where N, is
the number of surface atoms, as

„(ll') [,(l') +d, (l')]
e~vk, r 0/ 8~vx r'8

Z r 4' „((1()(u() )u0 )))=0, (0. 10 )
rr'r" By

where

e[s „(/) + d„(/)] =6..x)(/)+6..6;[~g6,.
8&vx

d. (l, ) =6.,d, (l, ) .
Using these results and defining

(4. 12)
+A„(6„„+6„)]x (l) +6 ' . (4. 19)

BC,(/ )
~&vs

we can rewrite Eq. (4. 2) in the following form:

2 4,.(l„ l,') d, (l,') =P,(l, ) .
l3

In this equation the quadratic term in the lsl(/ )
+dl(/ )}appearing in Eq. (4. 2) is neglected, for
the reasons discussed following Eq. (4. 5). In
terms of U, the inverse of 4 „,

UC =I, (4

(4. 14)

the solution of Eq. (4. 14) is

d, (l, ) =2 U(/„/, ') P,(/,') . (4. 16)

4, (l, l, )= Z4 (l, —l„/ —l, /;0, 0, l ), (4. 13)
rara

C„~„=—Z 4 „()(// ) x), (/) x~(/ ),
rr'

(4. 2o)

which are the ordinary bulk elastic constants, V
being the volume of the crystal and

P„,(T)=-,' Z (u.(/)u, (/'))4„,„(//'/")x„(/") . (4. 21)

Finally (4. 18') takes the form

i,et us insert (4. 19) in (4. 18') and use the fact that
G,8~(/3) [Eq. (4.4)] and C, (l3) are nonzero only in
the vicinity of the free surfaces and will give
terms of the order N, /N, , which we neglect.
A'e define also
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eS(T) = V~ C.~s. &s.+ V~ C*.6. &s. 5.~
a&„~ Sv

x[A, 5„+A„(5,„+5„)]+V(C„„,+C„„5„[A,5„

+A„(5,„+5„)]][A, ~„+A„(~„„+~„)+B]

+F„„(T)+F„(T)5„,[A, +A„(5,„+5„)]=0 .
(4 16 )

To solve (4. 18 ), let us use the fact that by sym-
metry the only nonzero (&~J are e„c&„„=e» and
that in the bulk

F„„(T)=5„,F, (T)+O(N, /N. ) .
%e obtain, in this way,

sz(T) = (1+4,) v 7. c„~st~ PS(T))
~&zz

(4. 22)

+ VC„„[A,a„+A„(e„„+c»)+ B]=0, (4. 23a)

sS(T) = V Z C„„~8egg+F~(T)

+A„V Czzgg &gg+ F& T + V C~xzz+Ax Czzzz

C„,...= Cgp for gag (4. 24)

where C&z and C~~ are the usual elastic constants.
Equations (4. 23) and (4. 24) give two equations for
two unknowns &«,

x [A, ~„+A„(c„„+~») + B] . (4. 23b)

For cubic crystals, we have

Ceo' = C

or
e„=e,„+O(N, /N, ) . (4. 29)

Let us remark that c = e„=e„assume their bulk
values when terms of the order of N, /N, are neg-
ligible. The result (4. 26a) is identica, l to the bulk
one obtained by one of us.

In Sec. IVC, we will apply these general re-
sults to a slab of a, bcc crystal. The d, (lq) [Eq.
(4. 16)] will be obtained by a Green's-function
method for a slab extending from l, =0 to l, =N
and created by removing in an infinitely extended
crystal all interactions crossing the median planes
situated, respectively, between 33 = 0 and —1, and

l3=N and N+1. This Green's-function method
consists of obtaining first the inverse G of 4„
[Eq. (4. 15)] for an infinite crystal, and then cal-
culating the inverse U of 4„for a slab by the usu-
al Dyson relation. We will see that d, (4) may in-
deed be written in the form (4. 1"I). We will then
be able to obtain e„„=e»=e„from Eq. (4. 26a).
And by putting back the (e„] into the expression ob-
tained for d, (l, ), we will have the temperature-de-
pendent changes in the interplanar spacings.

C. Explicit Expressions for Displacements of Atoms

The results given in Secs. IVA and 8 are gen-
eral and can be applied to a slab of any cubic
Bravais crystal bounded by (001) free surfaces.
They can also be easily transposed for a slab
bounded by other than (001) free surfaces.

A central-force approximation will now be used
and applied to a bcc crystal. Explicit expressions
for the thermal expansion at (001) surface of a
slab will be derived in this case.

(1+Ag) Cu &gg+ 2(cg2+ Cu A„) &„„

= —F~(T)/V C„B, (4—.25a)

(1+A,)(C„+C„A„)e„+[C„(1+2A,')+ C, (1+4A„)]s„„

= —(1+A„)Fs (T)/V B(C„+—A„C„) . (4. 25b)

The solutions of these equations are

(4. 26R)

1. Central-Force A pproximation

In a central-force approximation we have

4.(f)= Z q. (&f'),
$' (~l )

with

y (ll ) = x (ll ) D q(r(ll ))

Dy(r) = (1/r) q '(r) .

(4. 30)

(4. 31)

(4. 32)

where

B= 3 (C11+2cgp)

12A B 0
1+Ag "" 1+A, N

(4. 26b)

(4. 2V)

4 „g(ll ) = —(p g(ll ), l & 1

4.,(ff)= Z q.,(ff'), (4. 33)

In this approximation, the harmonic force con-
stants are

is the bulk modulus in the harmonic approximation.
Let us remember that d, (ls) [Eq. (4. 1V)] has a
constant thermal expansion term. By adding this
term to the &„given by Eq. (4. 26b), we obtain the
effective &„for a slab, which we will call &„:

where

D'V(r)=(1/r') y"(r) -(1/r') ~ (r) . (4. 35)

with

y, (ll ) =x„(ll )x,(ll ) D'y(r(ll ))+5,Dy(r(ll )),
(4. 34)

e„=egg+A, e„+2A„e„„+B+O(N,/N, ) (4. 26) The nonzero anharmonic force constants are
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4 8,(l l l) = 4 8„(l ll ) = C 8„(ll / ) = —4 gy(/// )

= —4 ,(ll l) = 4 , „(l ll) = p „(ll )

for l& l, (4. 36)

@„~,(///) = Z y .~y(//'),
r'(~r~

with

y „,(// ) = x (ll ) x (ll ) x,(ll ) D' cp(r( //) )

(4. 37)

With these results in hand, we can rewrite
E,(l I T) [Eq. (3.32)] and F,„(T) [Eqs. (4. 21) and

(4. 22)) in the following forms:

Ey(/'~ T)=-,'2 Z [-(u (l')u, (l")) —(u, (l)u, (l))
e0 t (~r"

&

+ [x„(/l') 5,„+x,(/l') 5„.+ x,(/l') 5., J D'q(r(//')),
(4. 38)

where

D rp(r) = —
~

~n" (r) ——
4

y" (r)+ —,y'(r) . (4. 39)

+(u.(/) u, (l"))+(u„(l")u, (/))] q.„(//"), (4. 40)

F,„(T)= ,' Z—Z 2 [(u, (/) u, (/)) —(u, (/) u, (l")))
~g r ( g r

II ) r II

xy„~,(// )x„(ll ) . (4.41)

For a slab of a cubic crystal bounded by (001) free
surfaces, we know from Eqs. (4. 9) and (4. 22) that

E,(l T)=5„F,(l3 T),

F~„(T)= 5~„Fe(T)+O(N, /N, ) .

2. bee-Crystal Model

(4.40 )

(4.41')

We will use the same model as Clark et al. for
a monatomic bcc lattice. Each particle of the lat-
tice is assumed to interact with its nearest and
next-nearest neighbors. In the bulk, the equation
of motion for the x component of the atom identi-
fied by the all-even or all-odd integers (l, m, n) can
be written in the harmonic approximation as

Mu„(/, m, n)= n, 7 [u„(l+y, rn+ p, , n+ v) -u„(l, m, n)]
X vv=+1

+ o.2 E [y V, u, (/+ y, m+ p, n+ v) + Xvu, (/+ X, m+ u, n+ v)]
A, tv=xi

+ P, 8 [u„(l+x, m, n) -u„(l, m, n)) + P2 2 [u„(l, m+ z, n)+ u„(l, m, n+ x) —2u„(l, m, n)] . (4. 42)

Corresponding equations for u, (/, m, n) and

u, (/, m, n) can be obtained from Eq. (4. 42) by suit-
able permutations of symbols.

Using (4. 13) and (4. 33), we can evaluate the ma-
trix 4„in the bulk. Let us simplify our notation
and use

~~(y) =- 8o.,[cos(y) —1]+2P,[cos(2p) —1] . (4. 48)

By creating from an infinite crystal a slab between
n = 0 and n = N, by the cutting procedure described
above, the matrix L will be modified by a matrix
5L,

4„(/, , l3) —= —L„, /s —= n, /~ —= m . (4. 43)
L =L —5L. (4. 49)

The nonzero elements of this matrix for this model
For the slab studied here

L = —Bag —2',
Lmfm+1 m+1/m +1 &

(4.44)

(4. 50)

HALO and 5LN are 4x 4 matrices connecting, respec-
tively, n=1, 0, —1, and —2, and v=K+2, %+1,
N, N —1. We have

L~,~.2- Lm. a, m- P~ .
We need to calculate the inverse G of L:

LG=I .
To obtain G, we use the Fourier transform

6 „=G(m n)= J e" "'"g(y-)dp.

(4. 45)

(4. 46)

0
6LO = 5L~ = —, 4ng+ pg

—4n&

—Pg 0

—4ug

4n, + p, 0

0 p~

(4. 51)

We obtain in this way

g(q)=1/»~(q),
where

(4. 47)

The inverse of L is defined by

UL =I.
We simplify our notation by writing

(4. 52)
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P„=—P, (l,),
u'(n) = d, (l,), l, -=n (4. 53)

t 2+ (f"' f"-' ) (4 64)

Q I.„'„ lp(m)= P„, (4. 54a)

With these notations, Eqs. (4. 14) and (4. 16) read In the following sections we will calculate the
forces P„and give an analytical result for e„„=e„
in the case of a bcc slab bounded by (001) free sur-
faces.

N

lo(m) =Z U P„. (4. 54b) 3. Ca1culation of the Forces I'„

Let us remark that by summing on n the right-hand
side of Eq. (4. 54a), we obtain for a slab a useful
relation:

Using the model described above, we obtained
for the 4,(l, ) given by Eqs. (4. 30), (4. 31), and
(4. 32),

Z P„=o.

U can be calculated from the Dyson relation:

(4. 55)
4,(0)=-r(4/v 3) y'( o)+y'(2 /~3)l

= 2a (n, —n, ) —aP3,

U=G+U 5LG . (4. 56)

firn-nl

P +
(f m+1 f N+1-m)

1-t2 " 1 —t~
n=o

where

From there, we can now obtain (Appendix A) the
dynamical displacements lp(m),

Np Np

lp(m) = (m ——', N) Z P„+Z
~

n —m~ P„4 nl+ Pl n=o n=m

e,(1)= —y' (23p/W3) = —aP, ,

4, (N) = —4,(0), 4,(N —1) = —4,(l),
(4. 65)

C, (n) =0 for 1&n&N —1 .
The G,33(13) are obtained from their definition

(4. 4) to be, in this model,

4ro If 2ro ~ 2ro 8
'-"'=3WS ~ '"'~ ~ WS '3WS ~ '"'

—,'N for N even
3(N —1) for N odd,

f=(b'-I)"'- b,
b= 1+2nl/pl,

I~=K f"P

(4. 58)

(4. 58)

(4. 60)

(4. 61)

= a(2nl+ pl),

G„,(I ) = a y" (a) = a Pl,

Gn„„(0)= ~ ~
y (lp) — =2an, ,

4rp ( ir y'(rp)
3 3 ( ro

17=0

We have neglected in (4. 57) terms proportional to
t going to zero when R is going to infinity. %e
also used the antisymmetry of the forces P„ through
the middle of the slab, P„= —P„„. One sees also
that the solution (4. 57) has the following property:

u(m) = —u)(N —m), (4. 62)

as could be expected by symmetry.
Let us note that the first term in (4. 57) de-

scribes a homogeneous expansion of the slab due
to its free surfaces. As indicated in Eqs. (4. 17)
and (4. 28), we will add this term to e„given by
Eq. (4. 26b) and get Eq. (4. 28):

~nn= &nn+4(n p )
+ Pn ) (4. 63)

Ho N

u, (m)= Z ~n-m~P„+, 3Z f'""'P„
n1+ 1 n=m n=o

where —,'a is the distance between the layers.
In this way, we are left with the part of ur(m) de-

caying to zero, with increasing distance from the
free surfaces. Let us call it w, (m):

G,„„(1)=0,

Gn33(~3) for 1& t,, &N —1,
(4. 66)

Gml(N) = —G,33(o),

G,33(N —1) = —G,33(1),

G„~(n) = G,„„(n) .

(4. 67)R„(ll ) = (u„(l)u (l)) —(u„(l)u (l )) .
We will write in the bulk R 3(ll ) = R 3(3'), where
r is the distance between atoms l and l'.

Let us define

S 3(ll ) = —[R 3(ll ) + R 3(l l)] . (4. 68)

For l in the nth plane parallel to the (001) sur-

We will obtain the forces P„ from Eqs. (4. 53) and

(4, 11) and the above results, by estimating &33 and

F,(131 T) given by Eqs. (4. 26) and (4. 40). We need
now to calculate Fs (T) and F,(l3l T) from, respec-
tively, Eqs. (4. 41) and (4. 40).

Let us define
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faces, we define also

S "()) (n) = S,(ll') —S„(l/"), (4. 69)

We will rewrite the dynamical matrix as

D=d+R (5. 2)

where i=1, when / and /PP label a first-nearest
neighbor of / situated, respectively, in planes
n+ 1 and n —1; i= 2 when /' and / label a second-
nearest neighbor of /, respectively, in planes
m+2 and n —2. When / or / falls outside of the
slab, the corresponding S„p(ll ) is zero in Eq.
(4. 69).

We can now obtain from Eqs. (4. 40) and (4. 41) in
the central-force model of a bcc lattice described
above

where d is the diagonal part of D and R is the
remainder. We will use Schafroth's expansion'
near the diagonal d of a function Gp(d+R) in which
R is small in comparison to d.

Let us call P the symbols (I, n), for simplicity,
and define

d»= x(p), (5. 3a)
with

x -=x(p), x'=- x(p'), . . . , x, -=X(p, ) (5. 3b)

Fa(T)=N, [4p rpB (xp)y "(xp)+aR„(a,n)p (a)] .
(4. 70)

In this expression R„(a,P) =R (Il ), where I'
labels a second-nearest neighbor of / situated on
the P axis. We obtain also

a„(~, , ~, , . . . ;~„)=Z G, (~, ) II {~,- ~,)),
~=0

which has the following property:

(5. 4)

X0 'V 0

lim G„(Ap, X(, . . . , A„)
~1 ~0&~2 0& ' ~ ~ & ~m ~0

+ 3~3 S.',"(n) V"'(~p) + p S.".'(n) V"'(a)

~(s)() v () v'()) (4 7))a a

From Eqs. (4. 26) and (4. 70), we now obtain

2 2 ppps..(T)= a G 2G, ~3 P (&p)f~..b'p)a (C11 + 2C12 J

p"(a)a„„{a,x)], (4. )l)

e„(r)= e„„(r)+ O(A,/X. ). (4. 73)

V. APPLICATION TO A PARTICULAR CRYSTAL MODEL

W'e will now describe an easy and approximate
way to obtain numerical values for the correlation
functions (u (l)u()(l )). Then we will choose a Len-
nard-Jones interatomic potential, in order to ob-
tain numerical values of the "anharmonic" deriva-
tives y". Finally numerical results for the ther-
mal expansion of a slab of n-iron bounded by (001)
free surfaces will be given.

A. Calculation of Correlation Functions

To obtain an order-of-magnitude estimate of the
effects studied here, we will now apply the preced-
ing results to a particular crystal mode. Numeri-
cal results will be given for a slab of a-iron,
bounded by (001) free surfaces.

G„(X, , X,, , . . . , X„) . (5. 5)
~~m n-tft 0 ~ I+1 ~ p n

With these notations, Schafroth's expansion" is

IGp(D) I, , =I» Gp(~)+~» Gi(& ~ )

+ Z Q R» R~q ~ ~ ~ R(, ,pn-2 p1' ' 'p

x G„(A. A. i, . . . , )).„,, I ), (5. 6)

where I is the identity matrix. Using aq. (5. 5), it
is easy to see that Schafroth's expansion is equiv-
alent to Taylor's if

z(p) =-x (p'),

which is the case for infinite crystals.
This kind of expansion was used previously"

and was shown on simple models' ' to give re-
sults approa, ching the exact values obtained by
more complicated calculations, with precisions
comparable to the experimental ones, when re-
taining only the first two correction terms in the
expansion (5. 6). In Refs. 17-20a, Taylor's ex-
pansion was used rather than Schafroth's. This
was found to give errors of the order of 2%%up for
the mean-square displacements of surface atoms.

In Appendix B we give the (u (l)u()(l')) we need
to obtain the e„„,e„, and u), (m) [Eqs. (4. 72),
(4. 73), and (4. 64)] expanded to second order in R.

To evaluate the e„„, j„,and u), (m) obtained in
Sec. IV, Zqs. (4. 72), (4. 73), and (4. 64), we have
to calculate the (R ()(ll')], Eq. (4. 67), and there-
fore the correlation functions' [Eq. (3.29)]

(u (I)u()(l')) = (0/2M) [D 'i'coth(-,' PAD'ia)],
(5. 1)

B. Choice of an Interatomic Potential

m~~i) =»/~ i —&i/~ i, (5. 7)

Following Clark et a/. ' we assume for the in-
teratomic potential an expression of the Lennard-
Jones type:
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ments are different from the static ones. This is
due to the zero-point energy. We see that the sur-
face layer is displaced outward. The displace-
ments of successive layers are alternately out-
ward and inward, and their magnitude approaches
zero exponentially. It was checked that even a
Morse potential gives the alternating character
of the displacements se, (m). The uniformly out-
ward static displacements obtained by Jackson
for "e-Fe"may be due to the fact that his ap-
proach is a numerical one, and that we are con-
sidering only interactions between first and sec-
ond neighbors. In Fig. 3, we give the variation
with temperature of the dynamical displacements.
In Fig. 4, we plotted as a function of temperature
e„„IEq. (4. 72)].

In Fig. 5 we give the ratio between the surface
and the bulk thermal expansion coefficients o.,/os .
Let us define a as the spacing between the mth
and the (m —l)th planes, and the thermal expan-
sion coefficient between these planes as

n, (m) = a„'

os is the value of n, (m) in the bulk.
This surface thermal expansion was observed by

Wilson et al. on Mo and Cr at high temperature.
At high temperatures, their simple interpretation

o', (1)/o's = (u', ), /(u', )s

—, W, (m)
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200
T ('K)
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I I
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6- ~8

FIG. 4. Variation with temperature of strain
parameter c = & jEqs. (4. 72) and (4. 73)].
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FIG. B. Variation with temperature of the dynamic
displacements (2/a) ~~(~).

FIG. 5. Variation with temperature of the ratio
between the thermal expansion coefficients a, (m) near
the surface and in the bulk.
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FIG. 6. Variation with temperature

of the ratios of mean-square displace-
ments for surface and bulk atoms.

I

]00
I

200

(u',)/(u', ),

(u')/(u )
I

300

Tj)
il

400
T tK)

seems accurate, as only orders of magnitude are
taken into account. But in general, this relation
is not so simple. The same comment can be made
about the results obtained by Allen et al. '

Let us notice, also from Fig. 5, that at low tem-
peratures, although o.,(1) as well as n~ is going to
zero when T goes to zero, their ratio increases
significantly. The bulk thermal expansion coeffi-
cient n~ obtained in this calculation is bigger by
a factor of about 3 than the experimental one. This
is due mainly to the fact that o-iron is not a Len-
nard-Jones crystal, and that the anharmonic force
constants we used are too big. Therefore, we
feel that the dynamical displacements reported
here are also too big. Nevertheless, when ratios
like n, /o.'s are considered, our results should be
directly comparable to experimental values. Our
aim here was mainly to discuss the different physi-
cal effects determining thermal expansion at a
crystal surface.

In Fig. 6, we give the ratios between the mean-
square displacements of bulk and surface atoms.
Let us note that the difference between the mean-
square displacements of atoms in layers 0 and 1
is quite important. In our calculation the mean-
square displacements of atoms in layer 5 already
have the bulk values. Qfhen measurements of
mean-square displacements of surface atoms are
reported by the low-energy-electron-diffraction
(LEED) technique, it should therefore be made
clear how far the low-energy electron penetrates
into the crystal.

VI. CONCLUSIONS

We have presented in this paper a theory of the
thermal expansion at a crystal surface which
seems to be for the first time complete, analytical,
and straightforward. This enabled us to discuss
in a physical way the different effects involved:
the static relaxation of the interplanar spacings in
the vicinity of the crystal surface, the thermal
expansion of the crystal arising from the cubic
anharmonic terms in the crystal potential energy,
and temperature-dependent changes in the inter-
planar spacings at the surface arising from the
same source. Numerical estimates of these ef-
fects were presented for a slab of n-iron bounded

by (001) faces.
LEED experiments' seem promising for the ob-

servation of surface thermal expansion.
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APPENDIX A: SOLUTION FOR INTERPLANAR SPACINGS

Using Eqs. (4. 50), (4. 51), and (4. 56) and the
fact the U has the same block form as L [Eq.
(4. 52)], which implies that U„„—= 0 for m inside the
slab and ~ outside, we obtain

U „=G(m —n)+ Pq U~q[G(n+ 1) —G(n —1))+ f3& U ~ &[G(N —n+ 1) —G(N —n —1)]+U u [4o'q(G(n+ 1) —G(n))

+ P&(G(n+ 2) —G(n))] + U~ [4o.', (G(N -n+ 1) —G(N —n))+ Pq (G(N+ 2 —n) —G(N —n))] . (Al)
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By rewriting g(y) from Eqs. (4. 47) and (4. 48) in
the form

1 1 1 1g(y)=- — +
6o 6(o, + 6, ) ) —ooorp 6 ~ ooon]

(A2}

—(A10) —(A9)+ (All)] and [(A8)- (A9)] and two un-

knowns [(U ()
—U„„), (U„ 1

—U„„1)], from which
we can easily find

v. , —v.,„-v., + v„,„,=, , [G( )
4(n, + p, )

1

f =-1+»llP1,
we can calculate from (4. 46)

1 2t at+i

G(n+ 1) —G(n) = sgn(2n+ 1)+
8 o., +P, +

4w)

—G(m+ 1) + G(1V —m+ 1) G(Ã m}l ~ (A12)

Finally, by using (A4), (A6), and (A12), we have

K
M)(m)=4 G(m —n)P„+

( )(,)

where
t=(b —1} ~ —5 . (A5)

x (&"' —t"'
) . (A13)

The u (m) given by Eq. (4. 54b) may be expressed
in the following form:

Let us now write out explicitly the term

100(m) =Z G(m -n)P„ (A14)

1U(m) =E G(m n)P„+- Pl%
n=0 +1+

X(- Uml+ Um, N-1+ Umo —Um1(), (A6)

Using (4. 46) and (A2), we have

( )
1 ~ "cos(m-n)y

16v(nl+ Pl) „(), 1 —cosy

Z=Z t "P„. (A7) +
'" " ~

dq P„. (A15a)5+cosy
To obtain (A6) we used (A4) and the fact that the P„
are antisymmetric through the middle plane of the
slab,

as well as the relation (4. 55).
From (Al) we obtain directly, by using (A4) and

neglecting terms proportional to t" going to zero
when N-

2(o.l+ pl) U„0 —(2nl+ pl) U„„—pl U„„ 1

=4(n, + P, ) G(m), (A8)

2(+1+ pl} U 0+ (2+1+ pl} U, N pl U 1

=4(n, + Pl) G(N —m) . (A9)

Let us now use the fact that for m inside the slab

Um, -~ = Um, N.X
= O ~

to obtain from (Al), with the help of (A4) and by
neglecting terms proportional to t",

2a'. 1 U ()
—(2nl+ Pl) U, + Pl(1 —f) U 1

(1- t)

—pl Um, „ 1 = 4(o.'1+ pl) G(m+ 1), (A10)

Using the relation (4. 55), we can write

1~0(m)=-,
( )

X~ cos(m —n) q —cos(my)
dp

nK 1 —coscp

100(m)=+8 . Z ~n-m~P„+1+ nO

N

o( o E( n). (A)6)

Let us now remark from Eqs. (A3) and (A5) that
for N large

t Inl 0
nt~N/2

I'„=0.
n~N j2

Let us define No by

Np= 2N for N even

(A17)

+ l~ dq P„. (A15b)5+ coscp

These integrals can be easily done and

(1-t)2(+1+ pl) Um0+ 2nl 1+t U, pl v I = —,'N- —,
' for N odd . (A18)

+ Pl(1 —t}U, ~-l

=4(n, + P,) G(lV-m) . (All)

The set of four equations (A8)-(All) and four
unknowns reduce to a set of two equations [(A8)

~(-,'Z)= „2~n --,'llt~P„.
+1+ 1 nn0

(A19)

Now using again the antisymmetry of the P„we

This enables us to see from Eqs. (A13), (A14), and
(A16) t at
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have

Z )n--,'lv)P„=O
n=0

u)(-,' jV) = 0 .

(A20)

(A21)

X = d„(0, 0) = (1/M) (4 n + P, + 4 P ),

y3= d„„(1,1) = (1/M) (8ni+2pi+3p3),

yq ——d, (1, 1) = (1/M) (8ni+ P, +4P ),

where

N

E r 'j' ),"(„A22)
n=0

This result could also be predicted from symmetry
considerations.

Relations (A20) and (4. 55) enable us to rewrite
u)o(m) in the form

1 0

uo(m)=4
p

(m ——,'K) Z l „+S(m)ni+ 1 no

X = d„(2, 2) = d„„(2,2) = (1/M) (8n + 2 p + 4 p ) .
(B3)

In d„(n, pj) the index pj refers to the layer of the
slab in which the atom we consider here is situ-
ated. Let us note that d„(2, 2) already has the
bulk value.

The coefficients G„(Xo, Xi, . . . , X„) [Eqs. (5.4)
and (5. 5)] we need here are

(B4)

N0

S(m)=Z (n-m)a„ for m(-,'N G()(X,) G()(X,)
G3()(.; j A.j j Xq = +

(&, -~,)()(;-~,) (~, -~,)(~, -~, )

m5 (m —n) Ij„ for m ) —,
' lv . (A23) + for lx j~k . (B5)Go(~„)

Xn —X )(.5
—Xj

S(m) decays to zero when m goes away from the
free surfaces. The contribution from terms in-
volving n close to N0 being negligible, we will
write, in general,

N0

S(m) = Z iu —miI „, (A24)

so that finally

0 No

~(m)= (m--,'lV) 2 P„+5 in-mip„ni+ n~0 n=m

+ Q f Im-n(~ + (t m+1 t N+i m) -(A25)
n

APPENDIX B: CALCULATION OF CORRELATION
FUNCTIONS &u. {I)up{I')&

As explained in Sec. V [E(ls. (5. 1)-(5.6)], we
calculate here the correlation functions

(u.(l) u, (l')) = (e/2M) [D-"'coth(-,'~D"')].. .,,
(Bla)
(Blb)= [Go (D)li, i'5

D=d+R . (B2)

We will give here the first three terms of this
expansion for the correlation functions we need to
evaluate the fe„) and the (d, (13)] for a slab of n-
iron bounded by (001) free surfaces. We use the
phononmodel described in Sec. IVC 2. In what fol-
lows, we have P=x or y.

In this model we have, with the notations (5. 3),

yi = d„„(0,0) = (1/M) (4ni+ 2Pi+ 3P3),

using Schafroth's expansion near the diagonal part
d of the dynamical matrix:

If we define

Ai = 3 hhj i /lpj3T,

we obtain

(B6)

+ 3A, sinh (A, )+ 2A, sinh A, coshA;], (B8)

G3(~&, ~;, ~,) = [Go(~, ) —G (~;)]
1 1

—Gr(r, , r, )) for jr j . (89)

The (u (l)u5(l )) for the slab with (001) surfaces is
a function of only t, and l, We will therefore
write it as ( u m(l3) uo(l3) ) .

We now give to second order in R the correlation
functions we need to calculate the ]e„]and the
(d, (4)j:

(u„(4)) = Go(y5)+(I/M ) (8ni+2pi+4 p3+ 16Q3)

x G3(X» X» X5) + ~ ~ ~, n = x, y, or z

(u (4)u (3)) = (ni/M) Gi(X5, X5)+ (2/M ) Qi(P, +2P3)

X G3($5 j r(.5 j X5) + ~ ~ ~, Q = Xj y j Ol' Z

&uo(4) uo(2) &
= ( P /M) G (X, , X,)

+ (4/M ) ni G3(X5, a5, l.5) + ~ ~, p= x or y

(u, (4) u, (2) ) = (Pi/M) Gi(4 j A5)

+ (4/M ) ni G3()(.5, )(.5, X5) + ~ ~ ~

Gi(X;, X;)= —(i5/4M) (X;) i [cothA;+ A& sinh A,.],
(BV)

G3(X, , Xi, Xi) = (K/16M) (y;) 'i [3cothA(
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In the model used here and to second order in R,
the correlation functions given above assume their
bulk values. Let us give now the correlation func-
tions changed by the presence of the free surface
at l3=0:

(u,'(3)&= Go(~5)+(1/M') (an,'+ lan,'+2pla+3p,')

xca(X„Z„Z5)+(1/M') paaca(y„y„y5)+ .

(u, (3) ) = Go (X5) + (1/M ') (8 n', + 18n, + p ', + 4 p 2)

x Ga(~51 3 51 X5) + (1/M ) p 1 Ga(X5, X4, X5) +. . .

{ua( )ua( )) =(nl/M) Gl(~5i &5)+(1/M ) nl(2pl+3pa)

x Ga(&5, a.„y5)+ (1/M ') nl pa Ga(y... ya, y5) +. . .

(ug(3)ug(2)& = (nl/M) Gl(&5, A5)+ (1/M ) nl(pl+4pa)

x Ga(y» y» ~5)+(1/M') nl p, Ga(~» ~4, 4)+. . .
(ua(3) ua(1) ) = (Pa/M) Gl(X, X )

+ (4/M, ) na, Ga(&5, 15, Za)+ ~,

(u (3)u (1)& (Pl/M) Gl(X X4)

+{4n,/M ) Ga(x„a.5 x4)+ ~ .

(u,'(2)&= Go(X,)+(1/M') (4n +ana+2pl+3pa)

Xca(&5, X5, 15)+ (4/M')(c ', + naa)ca(Z„Z„X5)+ (4/M')

x na Ga(X5, X4, X5) + (pa/M ) Ga(ya, yl, y5)+ ~ ~ ~

(u,'(2)) = G, (~,)+(1/M') (4n', + an,'+ P', +4P', )

x Ga(1.» X„a.5) + (8/M ') n,' Ga(1 „X3 X5) + (4/M ')

x n', Ga(a.» X4, 1.5) + ( p', /M ') Ga(X5, Xa, X5)+ ~

(u, (2) u, (l) ) = (n,/M) G,(X„y,)+ (n, /M')

x pl Ga(15 y Xl p Xa) + (nl/M ) (2p2+ pl) Ga(X5 y X5 ) Xa)

+(n,/M') (p, + pa) G,(x„z„xa)+~ ~ ~,

(u, (2) u, (1))= (n, /M) G,(Z„~,)+ (n, /M')

x P, G,(~„~„X4)+ (n, /M ') (2P, + P, ) G,(~„~„~4)
+ (2/M ) nl pa Ga(X5, X4, X4) + ~

(.,(2).,(o) ) = (P,/M) Gl(~5, »)

+(4n, /M ) Ga(~„Z„»)+

(u, (2) u, (o) &
= (pl/M) Gl(xa, xa)

+(4/M ) n, G,(a„q, ~,)+.",
(ua(l) ) = Go(ka) + (2/M ') (p 1 + p 2) Ga(X3 ) Xa y X3)

+(1/Ma) (4n', +ana'+ p', ) Ga(~„~„~3)

+ (4/M ') (nl+ n', ) Ga(X„al, Xa)

+(4/M') n', G,(a„a„~,)+

{u g(1) &
= Go(~4) + (1/M ) (4 nl+ 8 na+ P 1) Ga(~4 ) ~5 ) ~4)

+ (8/M ) na Ga(X4, Xl, X4) + (4/M ) nl Ga(1.4, A 2, X4)

+ (4/M ') p', Ga(&4 Z4 14) + ~ ~ ~

(ua(1) ua(0) ) = (n, /M) Gl(xa, ») + (nl pa/M )

Xca(X, , X5, X,)+(n,/M') (p, + pa) Ga(a„z„x,)
+ (nl/M ') (pl+ pa) Ga(&3, &1, &1) + ~ ~

(u, (1)u, (0) &
=- (n, /M) G,(~„~,)

+ (nl pl/M ) Ga(14, X5, Xa)

+ (2nl/M ') Pa l Ga(~4, 4, ~a) + Ga(~4, ~a, ~a) l +

&,'(O)) = G,(~,) (2/M') (r', + r', ) G,(~„~„~,)
+ (4/M') (n', + n', ) Ga(w„aa, Z, )+ (4/M')

n2 Ga(~1 Pl 14 Pl ~1) + (p2/M ) Ga(~j yl ~5 yl ~l) + ' ' '

(u', (O) ) =- G, (~,)+ (4/M') p', G, (a „~„X,)+ (8/M')

Xn', G,(a„y„z;)+(4/M') n', Ga(z„x„aa)
+ (p', /M ') Ga(xa, 1.„1.2) + ~ ~ ~ .
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Thermal-Resistivity Anisotropy of Zinc and Cadmium

P. Pecheur and G. Toussaint

54000 Nancy, France
(Received 31 July 1972)

The Mannari —Ziman-Baym theory has been used to calculate the phonon-limited thermal resistivity of
hexagonal metals in the two symmetry directions. This calculation introduces an inelastic contribution
peculiar to anisotropic metals. A numerical computation using empirical form factors and experimental
phonon spectra shows that this term could explain the low-temperature behavior of zinc.

I. INTRODUCTION

Experimental measurements of the thermal re-
sistivity of hexagonal metal single crystals show
peculiar behavior for zinc in the low-temperature
range: The curves for W, and 5'„appear to inter-
sect above 20 K. ' This does not happen for cad-
mium, '3 nor for the electrical resistivities of both
metals. A complete calculation of this anisotropy
should take into account the Fermi-surface distor-
tion (together with the exact form of Bloch waves),
realistic phonon spectra, and the geometry of the
umklapp processes. Moreover, at low tempera-
ture one should allow for inelastic scattering. Such
a calculation is obviously quite intricate. As a
first approximation, we have used the Mannari-
Ziman-Baym theory. ' ' In this theory one has to
take a spherical Fermi surface but all the other
previously mentioned factors can be taken into ac-
count. In the ease of zinc and cadmium, the elec-
trons are known to be nearly free, and this approxi-
mation is reasonable for not too low temperatures.
Besides, analogous calculations have already been
made for the electrical resistivity in cubic and
hexagonal metals' " and it has been shown that
they give the right order of magnitude for the an-
isotropy of single crystals of zinc, magnesium, and
cadmium.

In Sec. II we derive the formula we have used for

the phonon-limited thermal resistivity of hexagonal
metals. In Sec. III we give the results of numerical
computation for zinc and cadmium, and in Sec. IV
we give some conclusions and discuss the validity
of the method.

II. THERMAL-RESISTIVITY CALCULATION

The thermal resistivity is given by

vm(~ -()e, are ). (()sf 0

~&a

The trial function C g is taken as 4 x = (&r —$)K ~ u

(u being a unit vector along the thermal gradient).
The transition probability is

p
+OO

P(K, K)= S(g, &u)i V(q)~ f (K)

x [1 -f0(K ') ] 5(e». —e„h(d) d(g, (2)-
where Qo is the atomic volume, q=K —K is the
diffraction vector, S(q, &u) is the dynamical struc-
ture factor (less the Bragg contribution), and V(q)
is the pseudopotential form factor. Kith the hy-
pothesis of a spherical Fermi surface, the integra-
tion in K is done analytically (see the Appendix)
with the result


