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A theoretical treatment for the NMR absorption line shape of a tetrahedral group of protons
under the influence of tunneling has been developed for the particular case of NH4' ions. For
the applied fieM parallel to a twofold axis of the ion the derived line shapes depend on a single
splitting parameter J. This is a measure of the tunneling splitting of the torsional ground
state in comparison to the dipolar energy of the ion. As J varies from 0 to ~ the calculated
line shapes are found to vary between the limiting cases of the distinguishable proton (four
spin 2) and indistinguishable proton (spin isomeric) situations, respectively. These theoret-
ical line shapes are compared with the observed "ri.-id-lattice" line shapes reported for the
halides NH4C1, NH4Br, and NH4I. NH4C1 and NH4Br are found to be consistent with J=0
although the line shape of the latter exhibits an unexplained departure near the center of the
resonance. NH4I is found to exhibit observable splitting effects (J=3.3) in which tunneling
has displaced one absorption component sufficiently into the wings to be resolved.

I. INTRODUCTION

The problem of the low-temperature NMH ab-
sorption line shape for a four-proton group has
been considered by a number of authors. Bersohn
and Gutowsky calculated the line shape for a sys-
tem of four-spin-~ protons (the so-called four-
spin- —,

' system) in an ammonium ion (NQ') and used
their results to explain the line shapes observed in
a single crystal of NH4Cl at —195'C. Itoh et al.
performed an essentially similar calculation, but
included the nitrogen-proton interaction to discuss
the line shapes of single crystals of NH4Cl and

NH4Br at 90 K. They found good agreement be-
tween the theoretical and experimental line shapes
for NH4Cl, but not so good for NH48r.

In order to explain the narrow absorption line
observed in solid methane at 1.29 and 1.42 'K,
Tomita calculated the line shape for a four-proton
system on the basis that the total spin of the mole-
cule (I=0, 1, 2) was a good quantum number. These
two theories have been compared by Watton gt g).
in the discussion of the line shapes of a group of
ammonium salts. They point out that the four-
spin-~ and nuclear-spin-isomeric pictures are just
limiting cases of particle distinguishability. The
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four-spin--, ' picture is valid when the protons are
completely distinguishable over the characteristic
time of the experiment (of the order of the inverse
linewidth in this case), while the concept of nu-
clear-spin-isomeric states is valid when the pro-
tons are completely indistinguishable over this
time.

The simpler problem of tunneling of a three-
proton system (methyl group) has been treated by
Apaydin and Clough, ' some of whose ideas are
utilized in this paper. However, the four -proton
(ammonium ion) case is complicated by the three-
dimensional nature of the problem (three Euler
angles are needed to specify the orientation of an
ammonium ion as opposed to one azimuthal angle

'for a methyl group). Further complications result
from the crystal-field symmetry and the presence
of the nitrogen nucleus. These points will be
further clarified in the following treatment of the
four-proton system.

II. THEORY

The spectra for a system of four interacting
protons (spin —,') in a rigid tetrahedral configuration
were previously calculated by considering only
spin effects on the line shape. This paper in-
corporates the spatial effects of tunneling of the
proton group, in this case an ammonium ion, on
the spectra.

Since the ion is internally rigid we need only con-
consider the substitution group on the protons which
is isomorphic to the tetrahedral group T corre-
sponding to real rotations of the ion. The irreduc-
ible representations of this group are labeled A,
E', E, and F, where A, E ', and Eb are one dimen-
sional and F is three dimensional. The character
table for this group is given in Table I and the ex-
plicit matrix representation chosen is shown in
Table II.

A. %Pave Functions

The 16 spin states (P) for the four-proton group
in a large applied magnetic field IIO can be charac-
terized by specifying the components m& (=+ —,') of
each spin along Bo, i.e. , the states can be denoted
by Imqm2msm4). Also, if g(E) represents a nor-

TABLE I. Character table for tetrahedral group T.
82ifh /3

TABLE II. Representation of tetrahedral group T.

Rotation~ Permutation ga gb

(1) (2) (3) (4)

C2+) (14) {23)

C, (y) (13) (24)

C, (z) (12) (34)

C,{yz) (134)

C23 tgyz) (143)

(243)

C,'( yz) (234)

(123)

C3 (xyz) (132)

C,{-yz) (142)

C', (-yz) (124)

1 1

E2

g2

1 1 0 0
0 1 0
0 0-1

1 1 0 0
0-1 0
0 0-1

1 —1 0 0
0 1 0
0 0-1

1 -1 0 0
0-1 0
0 0 1
0 0 1
1 0 0
0 1 0
0 1 0
0 0 1
1 0 0
0 0-1
1 0 0
0-1 0
0 1 0

—1 0 0
0 0 1

-1 0 0
0-1 0
0-1 0
0 0-1
1 0 0
0 0-1

—1 0 0
0 1 0
0-1 0
0 0 1

-1 0 0

The rotation axis is specified in the rotation symbol,
e. g. , C3(gyz) means a threefold rotation around the axis
represented by (1, 1, 1) in Fig. 1.,

malized torsional ground state of the ion in the
crystal field, there are 12 equivalent states g(R)
obtained from g(E) by the 12 operations R (particle
permutations) of the group T.

The spin and space states can be reduced with
respect to the group T by projecting out of each,
those parts which belong to the various rows of
the various irreducible representations. In this
context, the projection operators for the A, E',
and E states are, apart from a constant factor,

(la)

c,(3) C3(4) c', (4)
P =By, (R) R, (lb)

Ec

Eb g2

Q2 (lc)

and the projection operator for the ith row of the
Fth irreducible representation is
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=Kg„„g,ZD i (R)D,~(R)

K Kg + Kg + KN + Kpp + KyN

where each term has the following meaning: K& is
the rotational Hamiltonian consisting of kinetic and
potential energy contributions. It is a function of
spatial operators only. X~ = —y, @HO/& I,' is the
Zeeman energy of the proton system (I,' is the spin
component of proton i along Ho). K„=—y„KHpI,"
is the Zeeman energyof the nitrogen nucleus (I," is
the spincomponentof the nitrogen nucleus along Ho).

R„=KB,S, (Sa)

is the secular part of the proton-proton dipolar in-
teraction;

&&N= +8&08&o

is the secular part of the proton-nitrogen dipolar
interaction.

Also

8)) ——I'~(1 —S cos 8))),

8) p
—I N(1 —S cos 8) p)

S;0= I,'I",

(Sa)

(Sb)

(Va)

(Vb)

2 2
g 5

y y3
y

2
'YN'Yy@

N

where 8,.&
is the angle the proton-proton vector

(r,),, makes with E7~ and e,o is the angle the proton-
nitrogen vector (r„),makes with Ro. y, , y„arethe
proton and nitrogen gyromagnetic ratios, respec-
tively. Note that (6a) and (Va) consist of spatial
variables only, while (6b) and (7b) consist of spin
variables only.

Now K& is completely symmetric with respect
to spatial permutations of T and therefore belongs
to the irreducible representation A of T. Hence
X~ is diagonal in the representation chosen. The

by Eq. (2);

~(F ~Pm 4 Q~ yF yFm6
kt

by the orthogonality theorem of group theory;
pAqF yam 4 Q(E yFm6

k

Hence, Eq. (4d) results upon normalization.
Having obtained our unperturbed symmetric

ground-state wave functions we turn to the consid-
eration of the Hamiltonian for the system.

B. Hamiltonian

The Hamiltonian for the ion situated in a crys-
tal field and large applied magnetic field II0 can be
written

diagonal matrix elements are (Appendix B), for a
tetrahedral crystal field,

(@Atm~ ~
~

@Am& t + a+ 3

1+3s2+ 8s3

H =(4 ")K„/4 ) =(4™)X„/4'")
a, + 3~2-4~3

1+3s2 -4s3

H =(4'„""~3C
~

0™&=
1 —S2

(Sa)

(Sb)

(Sc)
where

H, =&~(8)~~.
~
C(8)&,

~, =&~(B)~ ~„~~(C, )&, ;=2, S.
To facilitate the evaluation of matrix elements

of K„andK,'„it is useful to write these in a sym-
metry adapted form. There are six terms 8,.&

which can be reduced to the members A+E+F,
e. g. , by applying the projection operators of Eqs.
(1) to the element B,a, we find

B = B12+B34+ B24+ B13+814+ B23,A (ea)

8 = Bqa+ 834+ e (834+ 8/3) + E(8/4+ Bp3) I (9b)

8' = (8")*, (ec)

B1 =B14 —B23 ~

F

B2 = B13 —B24

FB3 = B34 —B12

(ed)

(9e)

(ef)

BN = 81o+B20+ B3o+ B40
A

BN1 B10 B20 B30+ B40 &

F

B„2=B1o —B2o+ B30 'B40 &

F

BN3 = —B1p —B2p+ B3p+ B4p,

(IOa)

(lob)

(loc)

(lod)

with equivalent expressions for the symmetry
adapted spin parts $"„,etc. The subscript N dis-
tinguishes these as the nitrogen contribution.

Now X„andK» are completely symmetric un-
der simultaneous spin and space permutations
(particle permutations) and, therefore, belong to
the A representation of T in the product space.
Therefore, from the character table (Table I), the
space (8) and spin (S) parts of the dipolar inter-
actions occur only in the combinations B"S"',

where E = e "'. The labeling convention here and
for all symmetry adapted forms used in this paper
is exactly analogous to that employed for g and g
states previously [cf. Eqs. (4) and Table III]. Ex-
actly equivalent expressions can be obtained for
the symmetry adapted spin parts S",etc. , by ap-
plying the projection operators of Eqs. (1) to the
spin element S».

Similarly, the four elements B,.o in the nitrogen
contribution can be reduced to the members A+F
by applying the projection operators to 8,0 to give
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8 Ss, 8 S, and 8 S .Using the projection
operators [Eq. (1)] to project the A part out of the
BxS product representation in the same way that
led to Eqs. (4), it can be shown that K» and 3C',

„

[Eqs. (5)] ca,n be written

X = 8 S B—S B—s —'ZB S"
yy 6 + 6 + 6

(lla)
(lib)A A 1 b~ F F

+yN 4 BN~N+ 4 ~ BNlt. Nlt

C. Matrix E1ements of Kpp

Having reduced both our wave functions and Ham-
iltonian into symmetry adapted forms, standard
theorems in group theory can be employed to
simplify the evaluation of matrix elements. For
example, consider the matrix element of X„be-
tween F states since this is the most complicated.
The techniques employed, however, apply to all
matrix elements. Note that since K'„commutes
with K2 (is secular), it is necessarily diagonal with
respect to the quantum number m.

Since from the character table (Table I) AxF =F,
E'xE=E, E"xE=E, and ExE=A+E+2E and all
matrix elements transform like A (are invariant
under permutations because they are just numbers),
then all parts of X„in Eq. (lla) contribute to
&@F I~mI @Fm&

Consider the first term
1

& @Em
I

BA SA
I

@ Em &

= 4 &&4 IB"I(."~&&e;'" Is" Ie~ & (»)
i)

from Eq. (4d). Similar expressions for the other
terms and other matrix elements can be obtained
and in principle be evaluated. However, let us at
this point make the simplifying assumption that the
overlaps (ss or s, ) &g(E)I g(R)&«1 for It eE, i. e. ,
the ion is fairly well localized in the crystal field.
This condition means that matrix elements of X„
between states of different orientation can be ne-
glected in comparison to matrix elements between
states of the same orientation. This is not to say
that &p(E)IKslg(B)& for RssE (i. e. , ss or ~3) can
be neglected as small since X„»3C». Substituting
in Eq. (12) from Eq. (M) and making the above
approximation gives

1
&

@Em
I

BA SA
I

@Fm
&

1 BA SAm

= —&O'„"I8 $ I4F."&

where

i Q &@FmI BESFI@Em& 0 .

a= sBA

j. BSb

/ 3 F
& =-aB&

&

1 F&=s Bi

(13a)

(13b)

(13c)
1 3 F

C ——sBp
] 3 Fd= sB3

=s B2

d=s 83,F

f= 3 (812+ 834+ 824+ 813 814 823) 1

g 3 (812+ 834 —824 813+814+ 823) ~

ls= s (- 8 12
—834+ 824+ 813+ 814+ 823)

(1M)

(13e)

(13f)

(13g)

(13h)

It can easily be shown that for a tetrahedral con-
figuration, 8" (and hence a) —= 0 for all orientations.

The matrix in Table IV is equivalent to those de-
veloped by previous authors' 3 with different spin
bases.

D. Matrix for KpN

There are three cases of equal statistical weight
depending on whether mN=O, —1, +1. For m„=0,
3C,„=Oand the nitrogen nucleus makes no contribu-
tion to the dipolar interaction. For mN=+ 1 we

TABLE IV. Matrix representation of SC'. The:
elements are defined in the text.

~2 ~i yFi yFi @F1 @AO yEsO @EGO @F0 @F0 @FOi 2 3 1 2 3

( @Em
I

BFSF
I

@Fm
&

1 BF (SE1m + SE2 + SF3m

where

s"„".„,=
& y",.I

s„'
and (n, n', n") are (1, 2, 3) and cyclic permutations.

The spin matrix elements, S", etc. , are evalu-
ated between the states given in Table III by substi-
tution from Eq. (6b) and the spin equivalent of
Eqs. (9) in a straightforward manner. When this
is done we end up with the matrix representation
of 3C„shown in Table IV, where

where SF"Fm =& /Em I

S"
I pF, &

has been introduced
for convenience in writing (n= 1, 2, or 3).

Similarly, the other terms of this matrix ele-
ment are

,'&e„"IB"s" Ie„',"&

F ibm Ebm 3 Bbm
Ks 8 (oF1F1+KSF2F2+ 6 SF3E'3 )

X (tI„1+4 5,2+ 45ss)5»,

-a b'
bt

c d
'd'' c

G d
d c
g b

b h

2Q

0

e*
0
0

-2f -2d -2c
—2d —2g —2b
-2c -2b -2h
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@Ff @Ff @Ff Qp @E p @E&p @Fp @Fp @Fp
3 f 2 3

fN
CN dN

dN CN

4
dN CN

fN

fN

0 0
0 0
0 0

CN 0
dll 0

bll II dll
N CN N

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

can perform an identical treatment to that above
for tKr'„and produce the matrix representation for
XpN given in Tab1e V, whe re

TABLE V. Matrix representation of +N.
elements are defined in the text. Blank spaces are zeros.

noted that the diagonal matrix for 3C„ofEqs. (8)
can be reduced by any multiple of the unit matrix.
Since this shifts all levels by an equal amount the
transitions observed between levels will be unaf-
fected. Hence let us reduce each element of Eqs.
(8) by H so that the new elements become

J =H —H =4(62+282),
Z' = H' -H' = 4(A, —A,),
tJ" =a~ -e' = 0 .

F. Ho Perpendicular to Tetrahedral Edge

Consider H0 in the z direction of the coordinate
system defined by Fig. 1~ In this case,

e„=e„=—e„=—e„=cos-'(-', Ms)

and hence,

A
aN 4 +N y (14a)

~10 +20 +30 +40

1 p l 1 If 1 p
bN= g B„l, bN—- —4 B„l, b„=—OM3BNl' , (]4b)

CN —' BN2 r cN = —g BN2 r cN =
2 r 3 BN2, (14c)

dN 4 BN3r dN 4 ~ger dN —— 243 BN3 r (14d)

fN='BN r
A (14e)

where again, for a tetrahedral configuration, 8"„
(and hence as and f„)=—0 for all orientations.

The matrix for mN = —1 is just the negative of
this. Also note that since the matrix for —m is
identical to that for + m only the positive m ele-
ments are presented in Tables IV and V.

E. Transition Probabilities

The transition probabilities between unperturbed
levels induced by an rf magnetic field applied at
the Larmor frequency are proportional to the
square of the matrix element of I„(=g,I„')between
the unperturbed states. These have been shown
previously3' to be

~"(~ 2 =+ I) =
I ( y""

I I. I

e""
& I

' = I,
~A(+1 0)

I
(yA+1II

I

~Ao) I2 2

grF(+1 0)
I
(yFalII

I

yF0) I2

(15a)

(15b)

(15c)

In the matrices of Tables IV and V and of Eqs. (8)
together with the transition probabilities of Eqs.
(15) we have all the necessary machinery to cal-
culate the absorption spectra for any crystal ori-
entation. However, the largest matrix to be handled
is a 4 && 4 and cannot be diagonalized analytically.
Hence a powder average cannot be obtained in gen-
eral for arbitrary ~2, 43 . We shall confine our-
selves to the consideration of certain symmetry
directions.

An initial simplification will be achieved if it is

Therefore, for this particular orientation all ma-
trix elements of X,N given by Eqs. (10) and (14) are
zero. The nitrogen contribution is zero for H0

along z and equivalent x and y directions.
The 8&& terms for this orientation are

1
&13= &14 = &23 = &24 = --~, ,

so that the matrix elements for K,', [Eqs. (13)] are

a = b = b' = c = c' =d =d' = 0,
1 1f=g = gI'2, h = —2I'2.

Thus the nz = 2 and 1 magnetic submatrices are di-
agonal while the A and E states are mixed in the
nz = 0 sublevel.

It is a straighforward matter to diagonalize this
matrix and obtain transitions at frequencies v rela-
tive to the central transition of

Z]k
Hp~l

Nitrogen

Proto~

FIG. 1. Coordinate system of NH4' ion. Direction of
Hp is defined by the polar angles (~, ft)).
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(18)]. This is not true for any other direction
since, in general, the line shape will depend on
both J" and J separately and not just on their
difference. For this reason no general dependence
of line shape on splitting has been shown for other
directions although these are easily obtained for
any desired splitting J" and J~ from the matrices
of Eqs. (8) and Tables IV and V.

In a very large crystal field the overlap of the
torsional wave function from one "well" to another
is very small and b,3«l'; so that J is essentially
zero In .this situation the line shape (Fig. 2) cor-
responds to that for the four-spin- —,

' system dis-
cussed by Bersohn and Gutowsky' and Itoh eg gl.
If the crystal field is reduced the overlap of wave
functions increases and J increases. One of the
components of Eq. (17d) begins to move out into
the wings while the other moves in toward the ori-
gin (H= 0). Eventually, bs becomes greater than
I', and the one component completely disappears in-
to the wings while the other is pushed into the ori-
gin. This situation corresponds to the spin-iso-
meric system discussed by Tomita and Watton
et al. in which the spin-symmetry types are un-
mixed (total spin of the ion is a good quantum num-
ber). Of course, if the crystal field becomes too
low, and the overlap too large then the approxima-
tion employed in the neglect of matrix elements
like (g(E) ~3C,', I ~p(R) ) for R o E breaks down and the
line shape will be further modified beyond that for
the spin-isomeric type.

G. Tetragonal Crystal Field

The effect of a tetragonal crystal field [see Ap-
pendix B, Eq. (Bl)] is just to change the diagonal
element (4f"~Ks 1

@~3")from zero to J~s. The Jl

submatrix of K~+K,', for the z direction is diagonal
so the l4'~3") levels are just shifted by this amount

J3 from m=0 and +1. Since there are no transi-
tions from these levels to other levels the observed
spectrum for the z direction is unaltered in a tetrag-
on31 crystal field.

1

III. DISCUSSION

two materials are structurally very similar.
Below the X point (243 'K), NH4C1 has the CsC1-
type structure; all NH4' ions having the same ori-
entation with each nitrogen-proton bond directed
towards a nearest-neighbor halogen atom. Below
its X temperature (235 'K), NH4Br is tetragonal but
only slightly distorted from CsCl type. However,
below about 78 'K it undergoes a first-order phase
transition to the same cubic structure as NH4Cl.

We have measured the derivative of the proton
absorption line shape at 4. 2 K of a single crystal
of NH4Br by the standard cw technique described
earlier and have observed a line shape very simi-
lar to that reported by Itoh eI; al. In Fig. 3 we
compare our experimental line shape for Ho in the
[100] crystal direction (i.e. , along the ionic x axis)
to the theoretical line shapes obtained for J= 0 and
0. 7. The line shape for NH4Cl has not been re-
produced in Fig. 3 since the excellent agreement
between this and the J=0 case has already been
established. ' Some comments should be made
here on the choice of the broadening factor (a8 ).
As pointed out by Itoh et al. 3 the interionic second
moment calculated from the Van Vleck formula is
only valid if the interionic dipolar interaction is
sufficiently large to broaden the component lines
so that they completely overlap. If the interionic
interaction is very much smaller than the intra-
ionic interaction the component lines of the spec-
trum remain resolved with no overlap. In the lat-
ter case, those parts of the interionic dipolar in-
teraction which couple states belonging to different

It is instructive now to compare the theoretical
line shapes obtained with various splitting param-
eters with those observed in some selected am-
monium salts to see if the latter are understandable
in terms of the tunneling theory developed here.

The theoretical line shape for zero splitting
(J'=0) is identical to the four-spin- —, situation dis-
cussed by Bersohn and Gutowsky' which serves as
an adequate description of the low-temperature line
shape observed by them in NH4Cl. In a later study
of both NH4C1 and NH4Br, Itoh et al. found that the
four-spin- —,

' treatment, while adequate for the line
shape of NH4Cl, was not so good for the line shape
of NH4Br near the center of the resonance. These

(
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FIG. 3. Proton derivation line shape observed at
4. 2 'K in a single crystal of NH4Br with Ho along I100]
(curve a). Theoretical line shapes for J=0 (curve b)
and J=0.7 (curve c) are calculated for the same orien-
tation with (4H) =6 G. The modu1ation was 1 G.
(Yhe vertical scale is arbitrary. )
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I

~ o

~ b

FIG. 4. Proton derivative line shapes observed
(Ref. 12) for NH4I powder after 3 h at 20'K (curve b) and
10 h at 4. 2'K (curve c). Theoretical line shape for Hp

along [100) is calculated for J =5.5 and (AHt) =5.5 &
(curve a). The modulation is 0. 5 G. (The vertical scale
is arbitrary. )

intraionic dipolar energies (the perturbed Zee-
man states) must be dropped from the calculation.
This is the idea employed by Abragam and Kambe'
for the broadening of pure quadrupole resonance
lines. This additional truncation of the dipolar
Hamiltonian results in a smaller broadening of the
component lines in this "resolved" case over the
Van Vleck case. Itoh et al. have performed both
calculations for NH4Br with Hs in the [100]direc-
tion and found a broadening factor of about 7. 5 6
for the Van Vleck case and about 3. 3 6 for the
resolved case of Abragam and Kambe. This latter
broadening actually differs slightly for each com-
ponent line but its average is about 3.3 6 . Since
the actual situation in NH4Br is somewhere be-
tween these two extremes (components are par-
tially resolved), they take a value somewhere be-
tween these two limits and find that 6 6 gives the
bes. fit with experiment. This is the value we have
employed in determining the theoretical line
shapes in Fig. 3. Comparison of those with the
observed line shape reveals that the J=0 situation
is a very good description of the observed line
shape except near the center of the resonance.
This discrepancy near the center is clearly reduced
in the J=O. 7 case but only at the expense of the
agreement elsewhere. In fact, it can be seen that
any nonzero splitting in pushing one component
out from, and another into, the origin will only
serve to worsen the agreement in the wings. We
must conclude from the excellent agreement just
noted for J= 0 over most of the line shape that the
actual splitting in NH4Br is still much less than
the diPolar energy (hs «I', ). Like Itoh et af.s we
can offer no adequate explanation for the observed
line shape near the center of the resonance but it
would not seem to be a result of tunneling.

Below about 231 K, NHAI has the same tetrag-

onal crystal;structure as NH4Br but with a slight-
ly larger unit cell." I.alowicz and Hennel' have
measured the derivative of the proton absorption
line shape for a polycrystalline sample of NH4I at
temperatures from 1.4 to 78 'K and find a slow
variation with time as the sample is maintained
at constant temperature. In Fig. 4 we reproduce
the line shapes they obtained after 3 h at 20 K
(dotted line) and after 10 h at 4. 2 'K (dashed line).
These are compared with the theoretical line shape
for a, single crystal with Hs along [100] (i.e. , the
ionic x axis) and with J = 3.3 (full line). As in the
case of the bromide the actual broadening factor
should be between the Van Vleck case and the re-
solved component case of Abragam and Kambe.
These two limits in NH4Br were 7. 5 and 3.3 G~

for Hn along [100]. Now the proton contribution
(which is the only significant one) to the Van Vleck
interionic second moment in NH4I is easily cal-
culated from the structure to be about 4. 5 6 .
This is the upper limit of the broadening. Now

since this tetragonal structure of NH4I is the same
as that of NH4Br, the lower limit of the broadening,
corresponding to the resolved component case,
must be about 2 6 . Therefore we can say that in
NH4I the broadening factor should be between 2 and
4. 5 G~. In light of this, the chosen broadening fac-
tor of 3. 5 G in Fig. 4 is not unreasonable. For
a smaller broadening the twin nature of the central
peak would become more pronounced (cf. Fig. 2).

The comparison of a signal obtained with a poly-
crystalline sample to that calculated for a single-
crystal orientation also requires some discussion.
Let us specify the direction of Ho in the coordi-
nate system of Fig. 1 by the spherical angular co-
ordinates (8, P), i. e. , 8 is the angle Hs makes
with the s axis and g is the angle which the pro-
jection of Ho on the xy plane makes with the x
axis. %'here a given component line occurs in the
spectrum is a function of these angles, H= H(8, g)
and can be calculated for any arbitrary (8, Q) by
the machinery previously developed. If we knew
this function H(8, Q) we could calculate the powder
spectrum by taking a polycrystalline average. The
intensity, s(H)bH, of the powder line between H
and H+ AH is proportional to the number of crystal-
lites so oriented as to give a component line in
this range, ' i.e. ,

s(H)nHn f sin8d8dp,

where the region of integration R is such that H
& H(8, p)& H+n. H.

This can be written as

ea-' .
S(H)n sin8d8 .

J

The interrand of this exoression becomes in-
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finite and produces an infinity in the powder spec-
trum when H(8, Q) is at a maximum, since then
(SH/8$) = 0. Now H(8, P) is at a maximum, or two
lines are degenerate when Ho is along a twofold
symmetry axis of the ion, e. g. , consider Ho along
the x axis so that 8= —,'v, /=0. Letting Q-5Q must
result in the same spectral positions as letting Q- —5Q, since the latter situation can be obtained
from the former by a twofold rotation of the whole
system about the x axis, which cannot itself alter
the spectrum. Therefore, the component lines at
H( 2w, 0), if they are not degenerate, must be a
maximum with respect to changes in P. Note,
however, that for this particular direction, the
same argument also applies to small changes in 8

and shows that H(2m, 0) is also a maximum with

respect to e.
Even after broadening the powder spectrum by

the interionic broadening factor, one still expects
to find peaks at the maximum values of H(8, Q).
Since these occur for Ho along symmetry directions
such as [100] (the ionic x axis) in NH4I, we expect
the single-crystal spectrum for this orientation to
be at least qualitatively similar to the powder spec-
trum. An example of this similarity in the case
where the theoretical powder spectrum is calcu-
lable isprovided in the theory of spin isomerism.
This argument has been necessitated, of course,
because an analytical solution for H(8, &f&) is not
tractable in the general case.

In view of the foregoing remarks, the agreement
between the experimental line shape (particularly
at 20'K) and the theoretical one for,T=3.3 (Fig.
4) is gratifying. This determination of the split-
ting parameter J should be compared with an anal-
ogous determination for a tunneling methyl group
in CHBCD2I. ' However, the latter is equivalent
to the one-dimensional case of the three-dimen-
sional problem treated in this paper. NMB line-
shape analyses of this kind appear to be the only
method for measuring tunneling splittings a,s small
as the dipolar linewidth (typically 10-100 kHz) in

solids.
Now, with no dipolar interaction J", J~ are the

spatial splittings of the A and E states relative to
the F state [Eqs. (16)]. So, from Eq. (16), J' is
a measure of the splitting between A and E states
compared to the dipolar energy I', . Hence, since
J=3.3 gives a good fit with experiment for NH4I

as demonstrated in Fig. 4, we can say that in this
material J"—J -1",-10 ~'K in temperature units.
Therefore, the Boltzmann factor can have no effect
on the relative populations of the A. and E states
at the lowest temperatures under discussion (-4
'K). However, Lalowicz and Hennel" interpret the
slow changes observed in their line shape to spin
conversion from the A (and E) species to the E
species, so increasing the amount of 5' component

present. This is consistent with the increased in-
tensity at 4. 2 'K of the peak at 1.5 I', /y, h (i.e. ,
9 G) in Fig. 4, since this is associated with the
E species [Eq. (17c)]. However, for the effects of
spin conversion to be apparent at this temperature,
the splitting Z" between A and E states [Eqs. (16)]
must be at least of the order 1 'K, i.e. , J", J~
» J"—J~. If this interpretation is correct, then
the wave-function overlap necessary to achieve
such a splitting may not be negligibly small. In
this case, the approximation adopted of neglecting
matrix elements of X,', between states of different
orientation may begin to break down. The qualita-
tive effect of a larger overlap would be to average
the terms 8,&

over a finite region of (8, P) space
so reducing the value of every matrix element in
Tables IV and V. Diagonalization would then lead
to component lines closer to the center of the reso-
nance. This is in the direction necessary to im-
prove agreement between theory and experiment
in Fig. 4.

Of course, if the overlap is too large then tor-
sional oscillator states are not appropriate as a
description of the spatial wave functions. This is
probably the reason that this theory does not give
adequate agreement with the observed line shapes
in materials such as (NH4)3SnC18 reported pre-
viously. The extremely narrow line shapes of such
materials exhibit no peak as far out as 1.5 I', /y, S'

and it seems probable that their low activation en-
ergies lead to significant delocalization of the ionic
orientation so that a theory based on torsional os-
cillator states would not apply. A more fruitful
approach in this case would seem to be a descrip-
tion of the spatial wave function in terms of free
rotor states. Work along these lines is currently
in progress.

APPENDIX A: NORMALIZING FACTORS

Consider the state given in Eq. (3a):

g" =N„~ Z g(R) .

If g" is to be normalized then

X„=&K &g(~, )~y(ff, ))=ZZ &e(E)~y(ft, 'a, ))
B1 B2 R1 82

because matrix elements are invariant under ro-
tations, being simple numbers. Making the sub-
stitution R = 91'B2 we have

X„=12K'&g(E)~ir(Z)) .

Now, if the crystal field is at least tetrahedral all
twofold rotations (C,) are equivalent and all three-
fold rotations (C, ) are equivalent so that

'I

N„=12(1+3sz+ 8s3),

where
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&g(E)lg(c, (x)))= &g(E)l p(c, (y))&=s', ,

&y(E)l g (c,(z)) &
= s, ,

while s3 are the same as before.
Hence we find fron: Eq. (A1)

X„(tetragonal) = 12(1+sa+ 2s2+ 8s, )

and similarly,

Xz(tetragonal) = 12(1+sz+ 2sz —4sz),

A,„=&~&~ &y(H, )ly(H, ))D„,. (H, ')D„,(H )
Ry Rp

(A2)

s, =&g(E)lg(c, )&, s, =&|((E)lp(c,)) .

Similarly, for the other states of Eqs. (3), Nz and

N~ can be found.
Suppose, however, that the crystal field is not

tetrahedral, but tetragonal, with the tetragonal
axis along z. Then all C3 axes are still equivalent
because they can all be transformed into one
another by rotations around the tetragonal axis,
and Cz(x) is equivalent to Cz(y) for the same rea-
son. Then we can write

Now, if the crystal field is at least tetrahedral
we can write

~ = &e(E) lxs I g(c, ) &, &3= &e(E) lxs I
e(c,) &,

(cf. Appendix A), whence

H" = (H, +3a, +Sa, )/(1+Ss, +Ss, )

and similarly for the other elements H~ and H~.
However, if the crystal field is not tetrahedral

but tetragonal we must write, in analogy to (A2),

&y(E)lx lg(c, (x))&= &y(E)lx„ly(c,(y))) =a,',
&g(E)lxs I g(c, )) = ~, .

Then we find

B (tetragonal)

= (H, + &~+ 2hz+ Sb~)/(1+ sz+ 2sz+ Sss)

and similarly,

H (tetragonal)

= 4(1 —s, ) for a=1, 2 = (H, + h2+ 2hz —463)/(1+ s~+ 2sa —4ss),
=4(1+s, —2s, ) for g=3 .

APPENDIX B: MATRIX ELEMENTS OF Kg

X~ is diagonal in the representation chosen.
Consider the diagonal element of Eq. (Sa):

e'=&+""lx, Ie""&=&q"Ix„lq"&

from Eq. (4a) since Xs is a function of spatial
variables only. Substituting from Eq. (3a),

H" =x„'zz &y(H, )lx„lq(H,)&
By B2

= pr„'z z &q(z)lx, Iy(B, 'H, ))
Ry R2

because both the matrix element and K~ are in-
variant under the operations A, , R~. Substituting
A=A& B~ we have-1

H"=12+„-'z&y(z)lx„ly(H)) .

H =&+ "lx„l+„"&
= (H, —~,)/(1 —s, ), g=1, 2

Jg 2=Hg p
—H( =0,

+p =Ha —Hy = 2(h —6') .

Note that if the crystal field is only slightly dis-
torted along z, J3 is very small.

=(H, +~, —2~', )/(1+s, —2s,'), ~=3 .

Now if we reduce the matrix for X„byH~
I 1],

where ll] is the unit matrix [cf. Eqs. (16)] the
new diagonal elements become, for the limit of
small overlap,

J~ = B —Bg = 2(62+ b 2+4hg),

= H —Hg = 2(b.g+ h2 —26'),
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