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Linear Chains with a Ferromagnetic Interaction in RbFeCls
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The temperature dependence of the electric field gradient of RbFeG13 has been measured in
the range 4.2-300 K (Tg=2. 55 'K). These results are analyzed together with the parallel
and perpendicular susceptibilities observed by Achiwa. The Hamiltonian describing the sys-
tem contains a single-ion crystal field term and an anisotropic bilinear interaction between
nearest-neighbor Fe+ pairs along the c axis. A best fit is obtained assuming a ferromagnetic
pair interaction J„=5+1 and Ji =11+ 2 cm", with the spins lying in the basal plane. At low
temperatures (T &TN) the correlation length along the chains (parallel to the c axis) is long
enough for a one-dimensional spin-wave theory to be applicable. This assumes that the mag-
netic properties are predominantly determined by excitations propagating along the chains.
Using this approach the magnetic moment per Fe+ ion at 0'K is calculated to be 2.2p~, as
compared with 2p~ observed by Davidson et al. by neutron scattering.

I. INTRODUCTION

Recently several substances have been found to
possess one-dimensional antiferromagnetic
chains. ' Theoretical models exist that describe the
thermal and magnetic properties of such systems.
Steiner et al. have found indications for the exis-
tence of ferromagnetic chains in CsNiF~. 3 Here we
report the results of Mossbauer measurements on
BbFeC1~ which have been correlated with the sus-
ceptibility measurements done by Achiwa. The ex-
perimental results are consistent with the existence
of linear chains with a ferromagnetic interaction
and spins perpendicular to the crystallographic
axis, as observed by neutron diffraction by David-
son et al.

The space group of hexagonal RbFeC13 is D~.
The Bb and Cl ions form a hcp lattice, and the Fe~'
ions occupy the octahedral interstices surrounded
by six Cl ions. The octahedra form an infinite
chain along the hexagonal axis. There is a much
stronger magnetic interaction between the Fe2' ions
along the e axis than between those in the same
layers perpendicular to this axis. This results in
a very low transition temperature (T„=2. 55 'K)'
into a three-dimensional ordered state. For tem-
peratures above T„, the intrachain interactions
solely deterrrine the magnetic properties of this
crystal.

In RbFeC13 the axial crystalline field at the Fe~
ion is of the same order of magnitude as the spin-
orbit interaction. The combination of these two
interactions determines the single-i' anisotropy
energy and the form of the magnetic interaction be-
tween pairs of Fe ' ions. This problem is dealt

with in Sec. II. In Sec. III we develop the theory
of the magnetic properties in the paramagnetic
phase of BbFeC13, using the basic system of a pair
of interacting Fe ' ions. In Sec. IV the one-dimen-
sional spin-wave theory for the ferromagnetic chain
is used to describe the elementary excitations of
BbFeC13 in its ordered phase. It is shown that this
theory correctly explains the observed value of the
zero-point magnetic moment per Fe2' ion.

II. SINGLE-ION AND MAGNETIC INTERACTIONS

The single-ion anisotropy plays an important
role in determining the magnetic properties of
BbFeC13. Each Fe~' ion is subjected to the crystal-
line field produced chieQy by the distorted octahe-
dron of Cl neighboring ions. The situation is
similar to other cases of (FeCl, )4 octahedra ~ In
the weak-field approximation that is applicable here
the 'D term of Fe' is split by the cubic component
of the crystalline field. The lower-lying 'T@, level
is further split by the spin-orbit interaction and the
residual trigonal component of the crystal field.
The perturbing Hamiltonian for the '2'+ level
has the f'orm X = —g(1.,' —2) —XL S, where z mea-
sures the axial crystal field strength, X is the spin-
orbit coupling constant, and L= 2, S=2. The sign
of ~ can be determined from Mossbauer studies on
the Fe~' ion in a single crystal. The ground state
of the Fe~' ion in the crystal is a singlet for g& 0
and a doublet for g& 0. The sign of the V„compo-
nent of the electric field gradient (EFG) is negative
for the singlet and positive for the doublet. For an
axially symmetric EFG and a thin absorber, the
sign of V„can be determined from the ratio of the
intensities of the two transitions of the " Fe nucle-
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tion between the zeal stains of the ions is adequate
to explain many magnetic properties. Thus we as-
sume the magnetic interaction between two Fe '
ions to be of the form
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FIG. 1. Typical Mo'ssbauer spectrum of BbFeC13,
T =174.5 'K.
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The Mossbauer measurements were of RbFeC13

single crystals and powdered samples for the tem-
perature range 4. 2-300 K. RbFeC13 possesses a
cleavage plane which contains the e axis. Crystals
were cut with the EFG principal axis (z axis) in the
plane. Down to 4. 2'K the Mossbauer spectrum of
BbFeC13 shows a well-defined quadrupole splitting
(Q. S. ) with a value of 1.47 mm/sec at room tem-
perature (r. t ). The spec.tra were recorded and
analyzed by a nonlinear-least-squares program
(Fig. 1). In addition, measurements at different
angles between the y ray and the z axis were car-
ried out at r. t. , where the magnetic interactions
are negligible. From these measurements on
single crystals it was found that V„&0, and thus
g& 0.

We now turn to the problem of determining the
magnetic contribution to the Hamiltonian. It is ob-
served (see Sec. III) that in the low-temperature
region (T& 70 'K) the experimental results for the
EFG could not be explained by a single-ion Hamil-
tonian alone. The exchange interaction between the
Fea' ions must be introduced. Although the 'T@.
level of Fe~' is orbitally degenerate, it has been
proven experimentally' that a Heisenberg interac-
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X)~ = —2J])S] ~
S~ .

Now, for ) n/A I
& 1, the three lowest single-ion

levels (a singlet and a doublet separated by a few
cm ~) lie well below the other levels, so that at low
temperatures the basic system .' ~ described by an
effective s = 1. In order to transform from the real
spin to effective-spin systems, the conversion fac-
tors are used: a s, =S, ; o.,s„=S„; e, s, =S,.
Then the exchange Hamiltonian for a pair of Fea'
ions, both in the ground s = 1 state, takes the form

Ko = —2n, J()s(sf —2n, J'o(s)s", +s;'sq:) . (2)

Denoting J', )~ =a„J,'~, J', =z, J',&, we see that a
measure of the anisotropy in the magnetic interac-
tion is given by n'„/n. ,'.

In Fig. 2 a„/n~ is plotted vs g/a. For QA out-
side the plotted region the admixture of upper
single-ion levels is large enough for the fictitious
s = 1 approximation to break down. It is observed
that for 6/A negative (positive), J,& J;, (J,& J„).
Thus for n/X negative the spine tend to point in the
x-y plane, while for a/A positive they point in the
g direction. We can now write the total Hamilto-
nian appropriate for the lowest s=1 state of Fe '
interacting iona in RbFeC13 in the form

X DZ (s) ) 2 [2J~~ s(s/ + Jg($)sj + sts/ )]

gII/sHpZ s~ g gggsHO Z (s~ +$~) y
(3)
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where g, and g, are the gyromagnetic factors, p~
is the Bohr magneton, and Ho and Ho are the com-
ponents of the external magnetic field. The mag-
netic interaction is assumed to be taken between
nearest neighbors (nn) only because of their proxi-
mity relative to other neighboring Fe~' ions in
BbFeC13.

The elementary excitations of the system de-
scribed by this Hamiltonian can be treated in two

ways, each applicable in a rather different regime.
The first assumes that the linear chain can be sub-
stituted by a set of interacting pairs of Fe ' ions
with no interaction between the pairs. This simple
model provides a good description of the magnetic
properties of RbFeC13 in the temperature region
above the three-dimensional ordering temperature.
It has the obvious advantage of facilitating the cal-
culation of thermodynamic functions, especially in
a case such as this, where the spin dimensionality
8 & —,

' and a single-ion anisotropy are present. It
should also be stressed that neither exact nor nu-
merical calculations are available for such sys-
tems.

The other approach is applicable for T & T~,
where the correlation length along the chains is
long. Then the elementary excitations are pre-
dominantly spin waves propagating along the
chains.

III. PARAMAGNETIC REGION

ions. This approach was utilized by Bonner and
Fisher'3 for the case of a finite one-dimensional
chain of spins with 8 = —,'. The computational com-
plications in the anisotropic case with 8 = 1 treated
here are great even for a four-spin system.

We can show, however, that the pair system
gives comparable results for the magnetic suscep-
tibility, as does an exact expansion in a simplified
case. Consider the case of a one-dimensional
chain with a Heisenberg interaction: $C= —2J
&& g~& S~ S&. The high-temperature expansion for
the magnetic susceptibility was derived by
Rushbrook and Wood. ' Using their results we have
calculated (ksTy) ' vs ksTJ ' for the spin dimen-
sionalities 8 =-,' and 1. The results are shown in
dashed lines in Fig. 3. For comparison, the same
function is calculated using the pair Hamiltonian
(K,s= —2JS, Ss), and the results are shown in
solid lines in Fig. 3. For high temperatures (kT/Z
»1) both models tend to the same value, while
for low temperatures (kT/J-1) they 'deviate by
some 20%. However, it should be remembered
that for this region the high-temperature expansion

ISOTROPIC HEISENBERG INTERACTION

PAIRS MOOE L
———HIGH TEMPERATURE EXPANSION

(RUSHBROOK ET AL. )
In order to explain the Mossbauer effect and the

magnetic susceptibilities for T& TN we may adopt
a cluster model. ' '" Basically, such a model as-
sumes a magnetic interaction of the form given by
Eq. (3) for the ions within a cluster, and the inter-
action with the rest of the magnetic ions in the
crystal is represented by an effective field. The
appropriate cluster for RbFeC13 can be taken as a
pair of nn Fe ' ions along the chain. It was ob-
served by Davidson et aL. ' that the correlation
length between Fe ' ions along the chain is about
2-3 A at 20 K, corresponding to the distance be-
tween a pair of ions. Thus the magnetic Hamil-
tonian of Eq. (3) can be substituted by's

3Cts —D[(st) + (ss) ] [2tII sts2+ cd(siss + s ts2)]

I-
IS

X
N

IS

IQI

2—

S= 1/2

-g((ILsH (st + ss) —
2 g, IJsH (st+ ss+ st+ st)

(4)
Here H= Ha+ 8,«, where H,«(which is due to all
other magnetic ions) is proportional to the magne-
tization. In the paramagnetic region the magne-
tization vanishes, in spite of the fact that there
might be some short-range order along the chains.
This results in H,« = 0, and X,z reduces into a sim-
ple pair Hamiltonian (including a Zeeman term).
There might still arise the possibility of assuming
the basic cluster as consisting of more than two

I
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FIG. 3. N(gps) /yksT vs ksT/J for a ferromagnetic
interaction. For 8 =1 we have taken six terms in the
high-temperature expansion; for 8 = 2 ten terms were
considered in the high-temperature expansion. For
k T/J around unity, the high-temperature expansion is no
more reliable. Solid line —pairs model. Dashed line—
high temperature expansion (Rushbrook et al. ).
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is no more reliable.
In view of these considerations it is expected that

the pair Hamiltonian of Eq. (4) (with H= Hp) would

yield satisfactory results for the magnetic suscep-
tibilities and EFG in the region T& T„. We thus
proceed by diagonalizing $C&2 in the case of a mag-
netic field parallel to the crystallographic c axis
(Ho=0, HoWO). The resulting eigenvalues and
eigenfunctions are as follows:

E, =2D —2J„—2g gsHo i 0&= I » I) i

Es=2D —2Z„+2g„l/oHp, its=
I
—1, —1);

+1-1,1) I,

D+Z„+[(D+Z,)'+8m', ]'/s
I9 2 ~

+
2JJ

+
I

—1, 1)

f (D+ J [(D+J )s+ 8gs]l/s}s -1/s
c, =l 2+

J

(QyJ y[(jib J )'gag']'I') )-V'
co=I 2+

J

Es =D ».-g„/ -oHo, »s = (I I, 0&+
I 0, »);1

E4 = D+ 2J', -g „pp Ho, $4 = ( I 1, 0 ) —
I 0, 1 ));1

1Es=D —2Z +g„iL Hp, ps= (I -1, 0)+ IO, —1));

Es=D+2J.+g ~sHo, So=, (I —1, 0& —I» —»);1

and eigenvalues

&7=2D+2J(i ~

Es o
= D+ J„+[(D+J„) +8J,]'

w ith eigenfunctions

&7= — (I 1, - »+1-1,»),1

g =c II1 —1&+-D+ „-[(D+&„)'+«'1"'
IO 0&8

2N 2 2D —2J„
x» I ep-o=

~ T (g,i~e» exp—
B B

where

+ e / "er cosh -' g, (6)
2JJ
kBT

Z 4~-2D/&Br cosh ii +48 ~B~ cosh2J„ 2J
kBT kBT

( 2B+2J)xp

D+ ~» „[(D+~ii)'+ 8~J"'
+ 2 exp — " cosh

B kBT

The energy-level scheme for a pair of nn Fe2' ions
is shown in Fig. 4. The parameters D, J„, and
J, used to calculate the energy levels are those ob-
tained by the best fit to the experimental results.
For zero external field there is no magnetization
as expected, since there is no long-range order.
The parallel susceptibility at zero field is given by

Eg (a)
E (d)

52.7

54.4
34.2

0=12.2 cm-'

J = 5cm-'
II

Jz- 11cm-I

.In Appendix A we have calculated the perpendicu-
lar susceptibility using the perturbation theory,
for the case 00-0. In Fig. 5 the calculated sus-
.ceptibilities were compared with the experimental
data of Ref. 4.

The quadrupole splitting in an axial symmetric
EFG is given by

DOUBLET
(a)

SINGLET
(I)

Eq ~ (d)
12cm-s

Ocm-I

Eq5 (d)

Eq (I)

14,4 cm-'

-98cm-&

-18.55

SINGLE
ION

ENERGY LEVElS OF
THE PAIR

SINGLE
ION

FIG. 4. Energy levels for a pair of nn I"e2' ions. The
numbers indicated correspond to the levels given in Eq.
(5) ~i'-h H, =o.

«o = v~ "0&rs,'&.««.'-2)r+ s "Qm.„,
where (rs,s),« includes both covalency and anti-
shielding corrections. We have calculated the
thermal average of L2 —2 for the lower thre~ lev-
els using Hamiltonian (2). The results are given
in Appendix B. (rss)„, assumes the value of
3.Vao by fitting the experimental results with q
=0.21 b. 'o If we assume a larger g-0. 24 b, then

(r,,s)„,- 8. 24aps, so that from an experimental
point of view only the product can be determined.
The lattice contribution to the EFG was evaluated
following Ingalls" and was estimated to be - 0.03
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FIG. 5. Parallel and perpendicular susceptibility vs
temperature. Experimental data —Ref. 4. Solid line—
theoretical fit (present work).

than the interchain interaction, the magnetic prop-
erties are predominantly determined by excitations
propagating along the chain. In the three-dimen-
sional ordered state the spin waves propagating in
directions perpendicular to the chains are expected
to have energies much smaller than those along the
chain. Such behavior is expected to be found in all
one-dimensional magnetic systems that undergo a
phase transition at low temperatures (e. g. ,
RbNiC13 and CsNiCI3, recently treated along these
lines" ).

The Hamiltonian (1) is written in the crystallo-
graphic coordinates. Since the equilibrium direc-
tion of the spins along a given chain is perpendicu-
lar to the crystallographic c axis, the Hamiltonian
should be transformed into the local spin coordi-
nates. Also, since the spins along the chain order
ferromagnetically the dipolar interaction should be
introduced. Generally, it is smaller relative to
other sources of anisotropy, but in the present
case it brings about a finite energy gap in the spin-
wave spectrum at k = 0. The dipolar interaction
is given by'

2 2

Kg =Z p [s( ' sg —3t(g (s( ' r(J) (sg r(~)] .

After transforming to the local spin axis (g, q, t;)
and using the Holstein-Primakoff approximation,
one obtains

X=Ep+~A„aqa„+ &~B,(a~a ~+a„a „),Y

mm/sec.
In Fig. 6 the experimentally observed Q. S. as

a function of temperature is compared with calcu-
lation. The contribution of the ground (s = 1) state
was computed by using the formulas of Appendix
B. The contribution of the higher single-ion states
is calculated without magnetic interaction. The
total calculated Q. S. is shown by the solid line.
By fitting the susceptibilities and Mossbauer mea-
surements, the following values are obtained for
the ground-state interaction parameters: D= 12.2
+1 cm ', J~, =5~1 cm ', J, =11+2 cm ', g), =3. 52
+ 0. 10, gi = 2. 90 + 0. 25.

The uncertainties in these parameters indicate
the ranges over which a good fit is obtained. We
obtain, in turn, for the single Fe ' ion —g/X-0. V5

-0. 80, X=78+5 cm '. The calculated ratio of the
conversion factors is n„/n, =0. 52, yielding j„n,- J,n„, as expected.

IV. ORDERED STATE

At low temperatures (around T„)the correlation
length along the chains (parallel to the c axis) is
long enough to make a one-dimensional spin-wave
theory applicable. Since the magnetic interaction
between Fe2' ions along the chain is much stronger

2.0— Rb FeCI&

-ZX) ™0.7'5

I

100
I

200
I

3000
'K

FIG. 6. Quadrupole splitting vs temperature. Dashed
line —contribution from ground state (s =1) with magnetic
interaction. Solid line —total Q. S. including perturba-
tion from excited states.

Eo= DN- ~csin 8 —+g, ) p,~IIocose

NgJpeH p sin8 + 4N(Jg cos 8 + J, sin 8)

-&&(0) (2- ~ sin 8),
where 8 is the angle between the f and g axes and
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N is the number of spins in a particular chain.
Here also

2

E(O)=(1.2O2 ") (~'", )
y'

where

Ao = D+ 8Jg 4 cosQ (Jg + cT~~) p(Eo) E(0)

Bo =D+4cosQ (J~- J„)—3Eq .
and y is the distance between magnetic atoms along
the chain.

Further, here we have

Ap = —8(J„cosP8+J, sinP8)

+4cos(kv) [J„sinp8 + J„(cosp8+1)J

+gij pl+H 0'cosa + 3D sin 8 —2D +g, p~H 0 sine

+2Ep(-,' ——', sin 8) —E(0) (sin 8 —2 cos 8),

Ep = 2ZEp)e'

1 (g,ps)
3

B„=D sin 8 - 4 cos ()pr) (J, —J„)sin 8 -3E, sin 8 .

The minimum energy condition (minimum in Ep
with respect to 8) is obtained for sin8= 1 when H'
=0. Linear terms in at and a do not appear since
their coefficient is identically zero (a result of the
minimum imposed on Ep) P.

The Hamiltonian (6) is disgonalized using a
Boguliubov transformation':

With the values of gg D Jii and J~ found in Sec.
III we obtain

(s')r p=(2. 2~O. 2)ps

(the integral is computed numerically).
Recently, neutron scattering measurements

made by Davidson et al. P gave a value of (1.6- 2)ps
for the magnetic moment of the Fe ' ion extrapo-
lated to 0 'K. Although the calculated value is
larger than the experimental one it indicates the
importance of the zero-point spin deviations in re-
ducing the magnetic moment from its maximum ex-
pected value (s') „=2. 90',s.

We conclude that RbFeC13 is an example of a
compound where ferromagnetic interaction between
pairs of neighboring ions affects considerably the
magnetic properties over a wide temperature range
(above T~). Below Ts the magnetic properties are
predominantly determined by spin-wave excitations
propagating along the chain.
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&=Ep-2 ZA, +Be, (c',c, +-', ),1

(8)

APPENDIX A: CALCULATION OF PERPENDICULAR
SUSCEPTIBILITY (s = 1) FOR A PAIR OF

INTERACTING SPINS IN THE LIMIT Hh ~ 0

ep= (Ap —Bp)'

with the conditions

&a'o &a' &a

All the thermodynamic properties can be derived
from the partition function

E, l L (w. —c.),)—g= exp—

xD1 —exp~ —
& & . (9)kaT

The magnetization (perpendicular to the chain) is
given by

V= (-,'I) (sf+s', +s, +s,),
where g=g, p,,a0'.

Only terms of the form

(nl Vl nx) (ml V In' )
ttt

g0 g0

(Al)

contribute. The first-order terms are zero. Af-
ter doing the calculation we obtain the following
energy eigenvalues:

We will use perturbation theory for the calcula-
tion of the eigenvalues of the pair Hamiltonian
with spin equal to 1 in the yresence of a yerpen-
dicular magnetic field. Since there are degenerate
levels, we will use perturbation theory for degen-
erate levels. It is possible to apply perturbation
theory since we are interested in the limit H0- 0.

The perturbation term is

For the single-ion magnetic moment at zero tern-
perature we have

e s giMp AodQ(s )r=p-pg»s 2 (Ap —Bp)i/p ~ (11)
7l Q Q

Eg =2D —2J,'+
D —2J„+2J

h
E3 = D —2J~+2
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2h C, (D+J„- [(D+eT) + 8J1]' ' + 2eTJ
(- 2J1-J'„- [(D +J„)'+8 J1] }4J1

2P2C 2[D+J [(D+J )2+ 8J2]1/2+ 2J }2

4eT ~(2Je+ Je + [(D + J()) + 8eT e]

2h'Cga+ J„+f(D+ Je) +SJH' '+2J,}'
4tfjf 2eT/ eTe +[(D+Jp) +SJ,]'

h
—D —2' —2J

E4=D+2J, ,

Eg = D+ Jj, —[(D+J„) + 8J,]
2h C (D+ J;, + [{D+J„) + 8J,]'/ + 2J,}

4J',(2J, + J„-[(D+J,)'+SJ',]"}
C1 and Cg are given in Eq. (5).

The partition function is given by

2' D+ 2Jii

h
Ez = 2D+ 2Jii +

D+ 2J + 2J
Eg=D+ J„+[(D+J„) +SJ ]

/

(A2) Z E/2

where

- Ee/ 1eET

&=1

Then we obtain for the magnetization

(A3)

M(T) = T2ET
0

2e-~~"~' 4e -E)/k~ Z'M(y): + 2a &-Eg//eET + 2g &-Eg/2ET
2 Z D+2J +2' D —2Ji, +2J~

(A4)

where

—2' —D+ 2Jii D+ 2Jii+ 2'

2(D+ Je [(D+Jj~) +SJ~] +2Je}
18J,+(D+ Jj, —[(D+J„) +SJ„]' ) }(-2J,—Jj, —[(D+J„) +8J'„]' Q

2]D.J„.[(D.J, )'.SJ,']' "2J,}'
(SJ,+(D+J„—[(D+J„) +8J,] ) }I-2J,—J„+[(D+J~~) ~SJ2] /q

The susceptibility is obtained from

M(T)
X& J.+0 Ho~& 0

,q A~+A~ —A3 —A4 —A5Xi= ~(g~Pa) Z

Z=2exp
k T 2

k T

+2exp —.
k T +exp

k T

D+ Jg [(D+Jti)'+ SJH'"
(+2exp —

k
&" cosh

B B

a1 D+ J„+[(D+J„) + SJ,]'/

D+ ~ii —[(D+Jii)'+ SJ~i]"
2 8

I 2D —2J„exp—

1 1 ag bq
—2J, —D+ 2J„2(D+21„+2J,) 2 2

/' D —2J'
xexpj-

a

2D+ 2J„
2(D+ 2J„+2', ) T2ET

APPENDIX B: CALCULATION OF 3d ELECTRON
CONTRIBUTION TO EFG

In axial symmetric field the EFG is given by

V„=(—,'28) (T ')„,&L,2—2), ,

(P, +P )X+QY
~g 2 T Z
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T,r '
~ T,r p

'BJ'+ID+ J -[(D+J )'+BJ']'T']'

D+ Jll+ [(D+Jli) + L Jl D+ Jii —[(D+Jii)'+ BJH'"

D+ 2' D —2J~ fD+ J„—[(D+J„) + BJ~] ) D+ J'„+ [(D+J ) + BJe]

(D+J„+[(D+J„) + BJ~] ] D+ J„-[(D+J ) + BJ ]'

With E,=E, and Eo denoting the energies of the three lowest levels of the single-ion Hamiltonian X= —~
2&&(L, 2) —XL—~ S the numerical factors P and Q assume the values

3x 2x22' @ +2
—2(&+Eo+ X) + 6X

(&+En+ A.) +6k.
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