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The self-consistent theory of Blume and Hubbard is used to calculate the time-dependent spin-pair
correlation functions for the Heisenberg linear chain at finite temperatures. Numerical solutions of the

approximate coupled integro-differential equations are presented for both ferromagnetic and

antiferromagnetic chains with nearest-neighbor interactions. The classical static correlation functions are
used as initial conditions for the spin dynamics. The validity of the results is not restricted to classical

systems, however, as it is argued that in the quantum regime the thermodynamically important coicelations

appearing in the kinetic equations are those of sufficiently long wavelength that classical statistics are

applicable. For high temperatures the theory of Blume and Hubbard is applied directly. In the

low-temperature "spin-wave" regime, however, the theory is generalized to include the presence of
long-range "short-range-order. " An order parameter is introduced which describes the local spin

magnetization against which the spin waves oscillate. Expressions are derived for the temperature and q
dependence of the magnon lifetimes as well as for the temperature renormalization of their frequencies.
Within the framework of the theory the principal mode of spin-wave damping is attributed to scattering
from fluctuations in the local magnetization. The theory is shown to be internally consistent in that it
predicts that well-defined spin-wave excitations exist only with wavelengths less than the correlation length

of the local order, and further, the magnon lifetimes are limited by the characteristic times associated with

changes in the local order. The generalized structure factor for inelastic neutron scattering is obtained from

the Fourier transform of the spin-pair correlation function and is compared in some detail with recent

experimental results on the one-dimensional antiferromagnet (CD,),NMnC1, (TMMC). The calculated
structure factors show well-defined spin-wave peaks at low temperature, the shape and position of which—
both as a function of temperature and of wave vector —agree quite well with the experimental data. There is

some discrepancy in the predicted intensities at the lowest temperatures; this may be a manifestation of
quantum effects but more likely is due to limitations imposed on the data by the instrumental resolution

function.

I. INTRODUCTION

In a recent paper' Blume and Hubbard presented
an approximate self-consistent method of calculat-
ing the time -dependent spin correlation functions
of a Heisenberg spin system in the high-tempera-
ture limit. They found good agreement with the
results of computer -simulation calculations for
the case of a simple cubic lattice with nearest-
neighbor interactions. Hubbard' later generalized
the method to include the entire paramagnetic
phase (T ) Tc), the principal additional feature be-
ing the requirement that the static correlation
functions be known as functions of temperature to
serve as initial conditions for the kinetic equa-
tions. He derived approximate expressions for the
static correlation functions by the application of
certain sum rules, and he reported the results of
the time-dependent calculations for the case of a
simple cubic lattice with nearest-neighbor ferro-
magnetic interactions. (In the following we will
refer to Reis. 1 and 3 collectively as BH.)

It is natural to consider the application of this
technique to the study of the spin dynamics of lin-
ear magnetic chains. In the first place, one-di-
mensional systems traditionally serve as testing
grounds for theories designed to treat real three-

dimensional systems. Next, one -dimensional
magnetic systems are paramagnetic for all tem-
peratures and thus may be useful in understand-
ing certain aspects of spin dynamics of systems
of higher-order dimensionality in which the per-
sistence of magnonlike modes has been observed
at and above the critical temperature. ' Further,
for the case of the classical Heisenberg magnetic
chain with nearest-neighbor interactions only,
certain static properties can be calculated exactly.
In particular, the static correlation functions are
known exactly, and hence the initial conditions for
the time-dependent correlations are known exact-
ly. Finally, but not least, there recently has been
a great deal of interest in real magnetic systems
which approximate one-dimensional behavior. ~

In such systems the magnetic interactions between
magnetic ions are highly anisotropic, being di-
rected predominately along chains of magnetic
ions. The coupling between magnetic ions located
on adjacent chains is very weak in comparison.
Thus, as far as magnetic properties are con-
cerned, the one-dimensional model serves as a
good first approximation, the precision of which
is better the weaker the transverse (cross-chain)
coupling compared with the intrachain coupling.

A typical system satisfying these conditions is
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the linear-chain antiferromagnet (CD&)4NMnC1~

(henceforth called TMMC). 8 Recently, Birgeneau
et aL. and Hutchings et al.' conducted a compre-
hensive experimental investigation of the magnetic
properties of this compound. From quasielastic
neutron scattering they observed the static mag-
netic correlations of TMMC and found that the
MnC13 chains exhibit purely one-dimensional
paramagnetic behavior down to 1.1 'K. They found

that both the spatial and thermal variations of the
static correlations can be quantitatively accounted
for by using Fisher's theory6 for the classical
Heisenberg chain. They also studied the time-
dependent cor relations using inelastic -neutron-
scattering techniques. ' The principal result was
their observation of mell-defined spin waves at
low temperature, which fit the pattern of the usual
spin-wave theory over much of the one-dimension-
al Brillouin zone. As the temperature increased,
the spin-wave peaks weakened in intensity and
broadened asymmetrically, with the scattering in-
creasing on the low-energy side.

Except for some recent calculations' using a
simple Green's-function theory ' " and interpola-
tion techniques, "'"' theor etical work on the spin dy-
namics of linear magnetic chains has tended to
focus on the case of spin- —,

' at either of two tem-
perature limits, T=~ or T=O. Carboni and
Richards " and Gersch "' have performed calcu-
lations at infinite temperature which indicate that
the scattering function is of the Lorentzian form
for long wavelengths; but at shorter wavelengths
it has a broad profile with a peak at nonzero fre-
quency which may be a remnant of the T= 0 spin
wave. I.ieb, Schultz, and Mattis' derived the
spectrum of the first excited state for the X-Y
model at absolute zero, and that for the Heisen-
berg model has been calculated exactly by Des
Cloizeaux and Pearson. Both take the form of
magnonlike states with a simple sine dispersion
law, although the coefficients differ for the two
models. Kawasaki" and Kuramoto' have con-
sidered the spin- —,

' case at finite temperature, but
the situation is not entirely clear. Virtually no
theoretical work has been done on higher-spin sys-
tems at finite temperature. The present work, in
conjunction with a computer-simulation study of
the classical spin system at arbitrary tempera-
ture by Blume, Watson, and Vineyard, ' was in-
itiated as a comprehensive effort aimed at filling
this gap. The computer-simulation studies may
be viewed as further experimental data —on purely
classical systems —mith mhich theory may be com-
pared, in addition to the experimental data of
Hutchings et al. ' on a real finite-spin system.

In this paper we undertake a study of the spin
dynamics of linear Heisenberg magnetic chains
using the technique introduced by BH as a point of de—

parture. The primary goal is to calculate the spin
correlation function C,(t) =(-,' [S., ~ S,(t)+S,(t) ~ S ]),
or equivalently, the relaxation shape function

E,'(t) =(S, S, (t)t/JS."„S,), where (A, a(t)J is the
Kubo relaxation function. Once either is known

the other may be obtained by the fluctuation-dis-
sipation theorem. %e, in fact, derive equations
for the E, (t), which via a sum over the whole
Brillouin zone, involve the correlation functions

C,. (t) for all wave vectors q'. As initial condi-
tions on the C, (t) we use the static correlations
of the classical chain. However, the validity of
our results is not restricted to the classical sys-
tem. At low temperatures, where the conse-
quences of the fluctuation-dissipation theorem are
most important, we are able to argue that only the
correlations of the long-wavelength fluctuations
are significant in contributing to the dynamics of

E, (t). It is generally believed, and supported by
a good deal of experimental evidence, that clas-
sical-spin systems represent good approxima-
tions to finite-spin (quantum-mechanical) systems
of sufficiently large spin (e. g., S= —,'), at least for
the long-wavelength fluctuations. Hence, me use
the classical limit of the fluctuation-dissipation
theorem, C, (t)= C,', E,, (t), where C,', are the
classical static correlation functions, to close the
system of equations for E, (t). The E, (t) that we
derive in this manner are thus not restricted to
the classical case, as long as only those correla-
tions C,, (t) for which the classical approximation
is valid are significant in the kinetic equations for
E, (t).

Once we have determined the .E, (t), the quantity
of greatest experimental interest is the general-
ized structure factor S, ~(&u). For Heisenberg sys-
tems having axial symmetry S, ~(~)=S,'(&) 5 ~, and

S,'(up) is related to E,(v), the Fourier transform of
E (t) byis

mhere x,' is the q-dependent static susceptibility,
P=1/T, and T is the absolute temperature. (We
take the Boltzmann constant ke and 0 equal to unity
throughout this paper. ) We note that the fluctua-
tion-dissipation theorem is accounted for in Eq.
(1) by the presence of the detailed balance factor.

%hen we apply the BH technique to the linear
magnetic chain in a straightforward manner, we
find quite reasonable results for the high-tempera-
ture regime T & JS(S+1}, where J' is the exchange
constant; there is good agreement with the com-
puter-simulation studies of Blume eg al. '7 For
low temperature T & 3 ZS(S+1); on the other hand,
there is a dramatic failure of the theory, namely,
spin waves are not predicted by the theory. This
is in sharp contrast to actual fact as the experi-
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mental res~its of Hutchings et al. ' clearly indi-
cate. We then realize that even though true long-
range magnetic order is absent for the linear
chain, there is considerable correlation among
spins in a region of the order of the correlation
length l,- m JS(S+ I}/7, which becomes very large
as T-O.

We are, therefore, led to introduce the notion
of a short-range-order parameter which, for the
short-wavelength high-frequency excitations (i. e.,
spin waves), serves as an effective local magnet-
ization. An important requirement for the valid-
ity of this concept is that the local ordering
changes slowly —both spatially and temporally-
on the scale of spin-wave oscillations. The idea
is very similar to that in the conventional syin-
wave theory of three-dimensional Heisenberg
systems: that spin-wave energies renormalize
with temperature not as the macroscopic mag-
netization but as the energy. '~ In effect spin waves
do not exist sufficiently long to see the true
Inacroscopic time -averaged background. Instead
they see an instantaneous nonequilibrium snap-
shot of the background, and it is from the instan-
taneous background that the spin-waves oscillate.
Lines utilized very similar arguments in his
treatment of the two-dimensional Heisenberg
magnet, particularly in connection with his intro-
duction of a wave-vector-dependent magnon re-
normalization.

When we generalize the theory to incorporate
the idea of a local order parameter, spin waves
appear, of course, in a natural fashion. The use-
fulness of the theory is then judged mainly by how

well it describes the damping of the magnon modes
as a function of temperature. In particular, we
can compare the line shapes calculated from the
theory for inelastic neutron scattering with the ex-
perimental results. We find that the agreement is
remarkably good and also that the theory is inter-
nally consistent in that it yields mell-defined spin
waves only for wavelengths less than the coherence
length /, . Further, the lifetimes of the spin waves
are limited by the characteristic times necessary
for appreciable changes to occur in the local
order.

In Sec. II we describe how the BH theory may be
generalized to include magnetic order. We do not
specify whether the order is local in the sense de-
scribed above or is a true long-range magnetic
order. Thus, the generalized theory may also be
applied in principle to two- and three-dimensional
systems below the critical temperature. The
principal effect of including magnetic order in
the theory is that instead of a single correlation
or relaxation function, we must consider both lon-
gitudinal and transverse correlations with respect
to the axis of quantization. We derive a system of

coupled equations connecting the longitudinal and
transverse functions, as well as the different wave
vectors of the zone. We employ essentially the
same approximations used by BH without attempt-
ing to justify them or to ascertain their validity.
Rather, their appropriateness will be determined
by comparing the results of the theory with ex-
periment.

The case of the antiferromagnet in the ordered
state is rather more complicated in detail than for
the ferromagnet, and we relegate this case to Ap-
pendix A. Also, the theory developed in Sec. II
is easily extended to include the presence of an
external magnetic field or to apply to the cases of
the anisotropic-Heisenberg Hamiltonian and of the
"truncated-dipoI. ar" Hamiltonian at infinite tem-
perature. For the sake of completeness those ex-
tensions are discussed in Appendix B.

In Sec. III we apply the theory to one-dimension-
al systems in the conventional manner, using
macroscopic ensemble averages and hence setting
the order parameter equal to zero. The resulting
equations are applicable at high temperatures
T & JS(S+ I). We then demonstrate the failure of
these equations at lower temperatures. We go on
in Sec. IV to discuss the spin-wave region making
use of the concept of local order. We address
ourselves to the question of the proper choice of
the short-range order parameter as well as to the
related questions of (i) the appropriate breakdown
of the static correlation functions into longitudinal
and transverse components with respect to the
local axis of magnetization, and (ii) the appropri-
ate spatial-averaging process necessary to de-
scribe the macroscopic sample. We study in some
detail the damping of the magnon modes within our
approximations, and we examine the internal con-
sistency of the theory.

It is always advantageous to have an exact re-
sult with which to compare the results of an ap-
proximate theory. For the classical linear chain
with nearest-neighbor interactions only, we have
already mentioned that the static correlation func-
tions are known and that we make use of these as
initial conditions for C,(t}. In principle, all the
frequency moments of C, (&u) can also be calculated
exactly for this case, as they all can be reduced
to equal-time, multiple-spin correlation functions
which can then be calculated by the transfer-ma-
trix technique. In Appendix C we present -.he
calculation of the second-frequency moment. (In
practice, the labor involved in calculating higher-
order moments is prohibitive. ) We make consid-
erable use of this exact result in discussing our
theory in Secs. III and Dt.

We present the results of the numerical solu-
tions of the kinetic equations in Sec. V considering
various regions of interest in turn: (i) the long-
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wavelength fluctuations at all temperatures, (ii)
the high-temperature region, and (iii) the spin-
wave (low-temperature) regime. For the spin-
wave region, we compare the generalized struc-
ture factor, Eq. (l), for inelastic neutron scatter-
ing predicted by our theory for an antiferromag-
netic spin system of spin- —, with the experimental
results of Hutchings eI; al. on TMMC.

II. FORMAL THEORY

In this section we indicate how the theory de-
veloped by Blume and Hubbard ' may be extended
to include systems having an axis of quantization.
In particular, we are interested in systems de-
scribed by an isotropic Heisenberg Hamiltonian
with magnetic ordering present. However, es-
sentially the same treatment applies to all cases
where the total component of spin in the z direction
commutes with the interaction Hamiltonian. The
principal added difficulty over the paramagnetic
case is that instead of a single relaxation function
(or correlation function) we must now calculate
three relaxation functions for each wave vector q,
corresponding to the longitudinal and two trans-
verse directions with respect to the quantization
axis. The set of coupled integro-differential equa-
tions that we derive couple the longitudinal and
transverse correlation functions as well as the
various q values of the Brillouin zone.

Our primary goal is to calculate certain sym-
metrized correlation functions C"a(t) = (-,' [AB(t)
+ B(t)A]). We do this by deriving equations for
the corresponding relaxation shape functions

(A, B(t)) ( {)B(t))„
fA, B) (~B)„

where t& 0, (A, B(t)) is Kubo's relaxation function~

{w, a(i)) fe' —. ( w=(t{'), s(~)])

dA. (e'"Ae '"B(t)) —P(A'B') (3)
I~~ ~

~

~ o

and (6B(t))„is the change in the expectation value
of B(t) for t & 0 due to a constant perturbation pro-
portional to A applied between t = —~ and t = 0. In
(3), [A, B]= AP —BA, (A) = Tr(Ae ~")/Tr(e ~") and

P(AoBO)=lim f dh(e "Ae "B(t)) . (4
o

The fluctuation-dissipation theorem provides the
connection between the relaxation shape function
and the corresponding symmetrized correlation
function. We shall return to this point in more
detail below. For the moment, we simply note
that for classical systems and for quantum-me-
chanical systems in the limit T- ~, (A, B(t))
= P [(AB(t)) -(A'B')] = P [c"'(t) —c"'(o)].

1 z&0"'=o . o

disturbs this evolution, causing B to evolve in-
stead into the operator B(t) = B(t)+t')B(t), where
A(t) satisfi. es the equation of motion

i
d

= [B(t), H (t)] . (6)

Here, H(t) = H+ 5H(t) is the perturbed Hamiltonian
operator. Since i dB(t)/dt= [B(t),H], we have

t —[{iB(t)]= [B(t), VH(t)]+ [t)B(t), H] .

The basic procedure is to solve this equation for
the relaxation of 5B(t) after the perturbation is
turned off. Then by (2) we obtain the relaxation
shape function and thence the correlation function
via the fluctuation-dissipation theorem.

Before proceeding to the details, we first com-
ment on the meaning of the averaging brackets in
our expressions. As mentioned in Sec. I, true
statistical-ensemble averages may be inappropri-
ate for certain fluctuations, namely, those whose
spatial extent and lifetimes are sufficiently short
that they do not "sample" a macroscopically av-
eraged background. For these excitations some
sort of local-averaging process is in order. As
we develop the formal theory in this section, we
shall leave the meaning of the averages open.
This question will be elaborated upon in some de-
tail in Sec. IV.

We consider the isotropic Heisenberg spin Ham-
iltonian

H=-- Z Z, ,S,'S,.
with J;;= 0. Since we wish to treat the case of
magnetic order, the direction of which we take to
be along the z axis, we must consider the three
total-spin-conserving relaxation shape functions:

F,'(t) =(s', s,'(t))/ts', s,'),

F,'(t) =(s, s,'(t))/f s-, s,'),

F,(t) =f s', s,(t))/(s'„s,) .
Here

s, (t) =(l/x)Z s, (t)e"' *,

In the absence of the perturbation A, the opera-
tor B evolves with time in the usual way accord-
ing to B(t) =e~a~Be . However, as shown in
Ref. 1, the perturbation

H'(t) = —A e" e( t)-,

where &=0+ and
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where the sum is over the N sites of the lattice
and S,'= S,"+iS', . From the equation of motion
S, = i [H, Sp] one finds [see Eq. (5) of Ref. 3]

8,(t) = ——Q, J„,8, (t) x S, .(t), (9)

where

(1

which shows explicitly that S,.o= 0; and from (7),
we have

5$, (t)= Z ih». (t) 5S™(t),
at0 qt

where, for the usual Cartesian coordinates,

ih,"z (t)=Z„,c „,S,",(t)

(13)

(sum over repeated indices). With an axis of
quantization, however, it is most convenient to
use the (S', S', S ) representation. In this repre-
sentation the equation of motion (13) has the same
form, but the components of the matrix h„.(t) are
given by

s,*„,(t)

h„,(t) = J»»e —~ S»» (t)

o

-s;„,(t)

S;„.(t)

—,'s;„,(t)
—S;„,(t)

(15)
[the rows and columns are labeled by (+z -) in-
dices]. To solve (13) in compact fashion we intro-
duce the 3N component vector operator 5$(t)
=(5$' 5$,*5$, 5$,' ~ ~ ~ 5$,' 5S, ). Then (13) may
be rewritten

5s(t) = ih(t) 5s(t), (16)

where ih(t) is now to be considered a superopera-
tor as in BH (a tensor in both q space and spin
space and an operator in Hilbert space). With
the aid of the S-ordering convention, the solution
of (16) is found by the usual iterative process

5S(t) =(exp, [i f h(t')dt'] 5$}, , (17)

58,(t) = ——QJ„,[58,, (t) x S...(t) —S. ..(t) x 58,, (t)],
(11)

Following Hubbard3 we introduce the idea of S
ordering, where in products of spin operators
[$,(t,) S,(t,) ~ ~ ~ S,(t, ) S,(t,) ~ ~ S„(t„)]barred operators
S are to go to the right of all unbarred operators
S. Then the unbarred operators are rearranged
according to the usual time-ordering convention
(latest times to the left), and the barred operators
are rearranged in inverse time order (latest times
to the right). Further, we define

s, (t) = —,
' [s;(t) + s,"(t)] . (12)

Then we rewrite (11) as

where exp, means the ordinary time-ordered ex-
ponential-the spin operators being subsequently
reordered by ( ~ }~.

We are now in a position to derive expressions
for the relaxation shape functions. For the mo-
ment we restrict our attention to the case of the
ferromagnet; we will return to the case of anti-
ferromagnetic ordering below. Combining Eqs.
(2) and (17), we have

E,"(t)= (((exp, [if h(t ) dt ] 5$} ), )/& 5$, &, (18)

where o. =(+, z, -) and ( ~ ~ ), means the n —q com-
ponent of the vector ( ~ ~ ). This expression is ex-
act within linear -response theory. To proceed
further, it is necessary to make simplifying ap-
proximations. First, we note that the 0 operators
in (18) are linear in the spin operators. To ac-
count for magnetic order we write S=(S)+5S,
where ( 58& = 0. Then the principal approximation
that we make, following BH, is the spin-pair de-
coupling

(~s& 5$~ ~ ~ ~ 5$„&:-Z,„„,» & 5$& 5$,&

x&5S, 5S,) ~ ~ .&5S„,5S„&, (»)
where the sum is over all possible spin pairs.
The first consequence of the approximation (19)
is that in (18) we can replace 5S by (5S&, giving

E,"(t)= ({(exp,[if h{t') dt ]}g)»»' ( 5S; &~& S» ) .
(»)

Next, since the applied field was proportional to S,
[see Eqs. (2) and (8)], we have 3 (5S,, ) =0 unless
n = n and q =q. (Note that(5S, , ) =($, , $,, }.)
Hence, we have

E, (t)=(((exp, [iJ h(t')dt']} ),", ) -=V„"(t),(21)

where V(t) =((exp, [i fo'h(t') dt ]}z&. We now use
the cumulant expansion ' for the statistical av-
erage in (21) and use the approximation (19) to
neglect all but the first two terms of the expan-
sion, i.e., all cumulants of higher order than sec-
ond vanish in the spin-pair decoupling approxima-
tion. We obtain the result

E, (t)=-( ~e,(i f dt'&h(t')&

—J dt' f dt" ([h(t') h(t")]~&»})»»' . (22)

Here ([h(t') h(t")], ), = ([h(t')h(t")], ) —(h(t') )
x)h(t )&. Note that the exponential must still be
time ordered since the h(t) are matrices, but the
S ordering is taken into the ( ~ ~ ~ ) average, since
it only rearranges the spin operators. We also
note the obvious fact that the first term does not
vanish when magnetic order is present.

We now differentiate (22) with respect to time
to obtain an equation of motion for E, (t). The
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basic idea is to obtain an equation for the relaxa-
tion shape function in terms of the correlation
function of the fluctuating internal field:

F, (t)=(Lt(@(t)) —f «([t(t)&(t )] ).]
xexpli f dt, (h(t, )}

- J' dt, f 'dt ([It(t,)tt(t,)],),))„";

and

c,'(t) = ( —,
' [s' s,'(t)+ s,'(t) s', ]&,

c,'(t) =(-,' [s- s,'(t)+s,'(t) s-, ]),
c,(t) = [c;(t)]*.

(29)

K„,=Z. . . Z. ..„=(Z, , -Z, ) (J,, -Z, , ), (28)

= ((i(t (t)) —f dt'([I (t) Z(t')], ),] V(t)„;.
(23)

For the ferromagnet the matrix V(t) is diagonal, ~'

In order to close the system of equations we
must now express the correlation functions C, (t)
in terms of the relaxation shape functions via the
fluctuation-dissipation theorem

VRlx (t) Vma!(t) 50!R (24) C (t) = x " ——coth ——F (t)
d iP d=: 2dt 2 dt

(30)

which is simply a consequence of assuming lin-
ear-response theory as well as a statement that
correlations not conserving total spin vanish.
[This can also be shown by direct expansion of
V(t) and taking matrix elements term by term. ]
The first term in (23) thus reduces to i(h„}F,(t).
In the second term we apply the "disentangling"
approximation V(t) = V(t —t') V(t') to account for
the time-ordering in the lowest-order nontrivial
manner, and, again using (24), the second term
becomes

t
dt ~ ((h™q (t) h (t )ls)c F ~ (t —t ) Fq (t ) ~

(25)
The terms in ( ~ ~ ~ ) brackets are the correlation
functions of the internal magnetic field. Magnetic
order is accounted for by letting

(S,) = S65, o, (25)

+ c,'. (t t') F. ..(t —t')] F,'—(t'),

F;(t) = iJ„sn.F,'(t)

t

-Z K'„, dt'(-,' c;,(t —t') F,', (t —t')
q& 0

+ [C',.(t —t ) —6, 0 S 4 ]F,', (t —t )] Fq(t ),
(2'7)

F,(t) = [F;(t)]*,

where

where 6 is the order parameter (n, = 1 in the com-
pletely ordered state and 6 = 0 in the completely
disordered state). Passing over the details, ex-
cept to note that upon making use of (15) for the
components of the h matrix the correlation func-
tions of the internal field can be expressed in
terms of the symmetrized spin correlation func-
tions, we have as the results

F,*(t)=-- Z K„, dt'[c, , (t-t')F,',, (t-t')
ql '0

where x,"=(S,', S,"] is the q-dependent static sus-
ceptibility. The right-hand side of (30) is an in-
finite series in F,(t) and all its even integer de-
rivatives, the first few terms of which are

C, (t)=(x, /P)[F, (t)-~P'F;(t)+ ]. (31)

Thus, although in principle the fluctuation-dissi-
pation theorem provides closure to the system of
Eqs. (27), in practice the solution of (27) is still
a formidable task in general. However, if we
take the Fourier transform of (30)

C, ((u) = (x, /P) (-,
'

P(u} coth(-,' P(q) F, ((u}

=(;/p) [1--'(-.' p )".. .]F,"( ), (32)

we see that in those cases where the frequencies
of interest are small, (—,

'
pv) «1, we can make

the approximation

c, (t)=-c™F;(t), (33)

where C, = x, /P is the static correlation function
in this case.

The condition (—,
' pe) «1 holds for a number of

practical cases. It is obviously true for all sys-
tems at sufficiently high temperatures, and it
holds for classical-spin systems at all tempera-
tures. Hubbard has shown that the condition is
applicable with good accuracy for the case of
three-dimensional Heisenberg magnets down to the
critical temperature. In the present paper we are
primarily concerned with one-dimensional Heisen-
berg systems at low temperatures. For the clas-
sical linear chain we know from Fisher's work
that the static susceptibility is peaked very sharp-
ly around q=0 at low temperatures with a width
of the order n, q- 1/K, where K=/„/T» 1 and q is
measured in units of inverse lattice spacing.
Therefore, in this case the major contribution to
the q sums in Eqs. (27) comes from the region

I q l & 1/K. If we now assume that the classical
susceptibility is a good approximation to the true
quantum-mechanical susceptibility, at least in the
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long-wavelength region for systems of relatively
large spin, 27 then we assert that for the quantum-
mechanical case also the important region of q
space in the sums of (27) is the region I q I & 1/K,
where now K=PS(S+1)/T. Hence, the frequencies
of interest in application of the fluctuation-dissi-
pation theorem are those associated with the long-
wavelength excitations of the system. It then fol-
lows that if these frequencies are sufficiently low,
approximation (33) is valid. The sums i.n (27)
are in essence thermodynamic sums; thus at low
temperatures one expects that only the low-fre-
quency excitations will make a contribution. In
fact, as will be discussed in further detail in later
sections, if we assume that the long-wavelength
fluctuations are primarily longitudinal and diffu-

Dq 2tsive in nature, E,(t) = e ' ' for q- 0, then the
characteristic frequencies are of the order Dq
-D/K, and hence (-,' P~) - (PD/2%2)2«1, as long
as the diffusion constant D is well behaved as
T-O, i. e. , D- 7.', where e&0. The pointthatwe
are emphasizing is that in order for us to close the
system of Eqs. (2V) via the approximation (33), it
is not necessary that the condition (—,

'
P+) «1 be

true for all wave numbers, but rather it is neces-
sary for it to hold only for the region of q space
making the major contribution to the sums. This,
we assert, is the case for one-dimensional sys-
tems for all accessible temperatures.

Finally, for those cases where the approxima-
tion C, (t) = C, E, (t) is valid, it rem aine to deter-
mine the static correlation functions C, . In the
limit of infinite temperature, ( S; S~&) = —,'S(S+ 1)
x 5 ~ 5,, and hence C,'~ = (S,S,) = [S(S+1)/3N] ~

For the three-dimensional Heisenberg magnet in
the paramagnetic regime, Hubbard3 derived ap-
proximate expressions for Cq by using various
sum rules on the frequency moments. For the
classical Heisenberg linear chain with nearest-
neighbor interactions only, the C, are known ex-
actly (for the macroscopic ensemble average), and
as discussed above, we argue that the classical ap-
proximation to C, is valid with the transcription ofJ'„-JS(S+1) for the long-wavelength fluctuations
of the quantum-mechanical chain of relatively large
spin. Now, knowing C, ,

28 providing the order pa-
rameter 6 is known as a function of T—by perhaps
some self-consistent calculation, then the solution
of the coupled set of integro-differential equations
(27) is obtained by integrating forward in time
from t= 0 using the initial conditions E,(t = 0) = 1.

Up to this point we have limited our discussion
to ferromagnetic systems. In the case of the anti-
ferromagnet below the Neel temperature, magnetic
order occurs with the characteristic wave vector
Q= w. This fact requires modification of the theo-
ry developed for the ferromagnet. The principal
modification is that the matrix elements of the

quantity V(t) =((exp, [i f&f h(t')dt'])~) are no longer
diagonal in q space, as was the case for the ferro-
magnet. Now, with the magnetic ordering at Q= w,

the matrix elements P,„,and t/'„.. .are also non-
zero in general. As a consequence, instead of the
coupled system of Eqs. (27), we are led to a more
complicated system of equations in which the off-
diagonal matrix elements of V(t) as well as the di-
agonal elements are coupled. A more detailed
treatment of the antiferromagnet is relegated to
Appendix A. Here, it suffices to say that for the
one-dimensional antiferromagnet at low tempera-
ture, one can make a linear combination of diago-
nal and off-diagonal elements for given q, which
essentially is the Holstein-Primakoff transforma-
tion, and one again for all practical purposes ar-
rives at a system of equations similar to (2V) for
the transformed functions.

%Ye note that it is a simple matter to extend our
treatment of isotropic Heisenberg systems to in-
clude an applied external field. Further, very
similar treatments can be applied to the cases of
the anisotropic Heisenberg model in the absence of
an external field and of the reduced-dipolar Ham-
iltonian at high temperatures. These extensions
are discussed in Appendix B.

Before concluding this section we return to the
fluctuation-dissipation theorem and examine the
relationship between the static correlation function
C, and the corresponding static susceptibility x,
for the case where the frequencies of interest in
(32) are large, i.e., —,

' P~» 1. Setting t= 0 in (30)
gives

C, =(x,'/P) [1+~P (ar, ) + ~ ~ ~ ], (34)

where we use the definition of the nth frequency
moments of E, (+):

( QPq) ~ =J~ dM (d Eq (co)

(35)

Using (35) we rewrite (34) in a form analogous to
(32):

C,"= (x,"/t|) ( —,
'

Pv coth —,
'

Pw) (36)

We now apply the theory sketched in Sec. II to
the linear magnetic chain with nearest-neighbor in-
teractions only. For simplicity and without loss of
generality we consider first the classical chain, for

This is the required expression linking C~ and x, .
Note that if (-,' p)" (~",),«1 for all n, (36) reduces
simply to C, = x, /P, a result we have already util-
ized.

III. APPLICATION TO ONE-DIMENSIONAL SYSTEMS:
HIGH-TEMPERATURE REGIME
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ggg A

&= —~ci ~ Sr -. ~~.i ~ (37)

where the classical spin variable S, is a unit vec-
tor. The equal time-spatial correlation functions
are given by

A gag

C, =(S, S,„)=[u(K)]'", (38

where

u(K) = sgn J,l,(cothK —1/K) (39)

and K= l J'„I/T. Our convention here is that K is a
positive parameter for both ferromagnetic (J„&0)
and antiferromagnetic (J„(0) coupling, but sgn J,',
ensures the proper sign for u(K). We note that the
high- and low-temperature limits of u(K) are

which the C, are known exactly. As discussed
earlier, for the calculation of the relaxation shape
functions, the classical system is a good approxi-
mation to real quantum-mechanical systems of suf-
ficiently large spin provided only the small wave
numbers make the major contribution to the q sums
in the equations of motion (27).

The Hamiltonian is

This is an exact result for the classical model and
as such provides a useful test for the validity of
approximate theories of spin dynamics.

The equations of motion (27) for the relaxation
shape functions are partitioned into equations for
the longitudinal and transverse components with re-
spect to an axis of quantization. But true long-
range order cannot be presented in the linear chain
in the absence of an applied magnetic field; i. e.,
one-dimensional systems cannot exhibit spontaneous
magnetization at any finite temperature. (The
Curie temperature is absolute zero. ) Hence, in a
strict sense using the usual ensemble averages, the
order parameter 6 is zero, C,"=C', =Cq 3 C and

F,"(t)= F', (t) = F,'(t) = F,(t). Then Eqs. (27) reduce to
a single equation for E,(t):

E,(t)= —
3 ZKaa. C,. dt F;(t t)F, ;-(t t)F, (-t ) .

Q

(43)
For high temperatures K«1, (43) apparently

provides a good description of the spin dynamics.
First, if we expand the exact second moment (42) in
powers of E to order K we have

u(K)= sgn J„(-,'K-~K'+ ~ ~ .) (T- ),

u(xl=-sgng
~

1 ——age ~~age i + ~ ~ .)K

(T-0) .

(40)

( ada )exact = 3 Jal (1 —cosq) (1 + 3 K cosq+ 43 K ),
(44)

where the sign of the second term in parentheses is
negative for the ferromagnet and positive for the
antiferromagnet. The cor responding result cal-
culated from our approximate theory, Eq. (43), is

The transcription to the case of finite spin is made
simply by replacing J„withJS(S+1). The q-de-
pendent static correlations are given by the Fourier
transforms of (38):

C. = (S . S,) = —Z ( S, ~ S„,) e"'

1 1 —Q

I+ g —2u cosq (41)

x (1 —cosq) (1+u —2u cosq) . (42)

where the units of q are a ', the inverse lattice pa-
rameter. Finally, the fluctuation-dissipation the-
orem, providing the relationship between the time-
dependent correlation function C,(t) =(S, ~ S,(t)) and
the relaxation shape function, reduces simply to
C,(t) = C, F,(t).

The second frequency moment of C, (u&), the
temporal Fourier transform of C,(t), can be cal-
culated in a straightforward manner by the transfer
matrix method along the lines used by Fisher in
calculating the Q, . The details of this calculation
are presented in Appendix C; the final result is
(for all temperatures)

~ ~

2 2 ~( ~a) xryrox a Kaa' Ca'
L7 pl

=3 J„(l—cosq) (1+—',Kcosq+~K ) . (45)

Thus, (&u3) „,„

is exact to first order in 1/T and
yields an error of the order of 25/o only in the co-
efficient of (1/T)3. Further, as will be pointed out
in Sec. V, where we present the results of the nu-
..merical calculations, Eq. (43) produces good
agreement with the computer-simulation results of
Blume et gl. ' at high temperatures. We conclude
that (43) provides a good description of the spin
dynamics in the high-temperature regime and that
no significant local magnetic order is present.

For lower temperatures, K) 1, on the other
hand, the situation is not good. The theory does in
fact predict critical slowing down for the antiferro-
magnet for q- n. But spin waves do not appear in
the theory as T decreases, in sharp contrast to
both the experimental work of Hutchings et a$.'
and the computer-simulation results of Blurne et
al. Rather, the theory yields broadeneti peaks
for Ca(u&) centered around u& = 0 and C,(t) displays
highly damped oscillatory behavior, all completely
unlike spin-wave behavior. Further, the exact
second moment as given by (42) is obviously indic-
ative of usual spin-wave behavior at low tempera-
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ture. In fact, in the limit T- 0, (42) yields

(1 —cosq) (ferro)
sin q (antiferro) . (48)

As just noted, the solution of (48) produces broad
peaks around (d=0 even in the limit T 0, with a
second moment given by

& .'& ...,=-.'& .'&.. . (I=0). (47)

A first attempt to patch up the theory' was the
appbcation of the so-called semiclassical approxi-
mation first used by Schofield ' in neutron scatter-
ing from fluids. This approximation makes the
correspondence

Sam( ) e8&o/RScl( ) (48)

IV. SPIN-WAVE REGION

A. Local Order Parameter

At low but finite temperature —even though true
long-range order does not exist for one-dimension-
al systems-considerable order does exist over
distances of the order of the correlation length
l,- mKa. This is described by the fact that corre-
lations between spins l lattice spacings apart go

between the true quantum-mechanica1. generalized
structure factor S~(ur) and the idealized classical
structure factor S,"(v). In essence, this corre-
spondence forces the classical function to satisfy
the condition of detailed balance at low T. How-
ever, as shown by Siggia and Blume, 33 the semi-
classical approximation applied to spin systems is
valid only to first order in —,'P+. But the region of
spin-wave behavior is precisely the region —', P&u& 1.
(2pro - pJ,., = K & 1 for spin waves. ) In applying
the semiclassical approximation to the spin-wave
region we found something like spin waves were
produced which behaved in rough qualitative agree-
ment with experiment, but first, the value of
the exchange constant calculated from the "spin-
wave" dispersion was too large by a factor of & 50/o

at T=0; second, the "spin-wave" frequencies re-
normalized downward with temperature far too
rapidly; third, the linewidths were too large by a
factor of 2-3. Finally, one feels that the purely
classical spin system should exhibit spin waves at
low temperature without being forced by an approx-
imation like (48). This feeling is strongly rein-
forced by the form of the exact second moment
(48) at T =O.

It is apparent that some essential physics is
lacking in the application of (27) at low tempera-
tures. Any theory which would properly describe
the spin-wave region would have to include this
physics as input to the kinetic equations. In Sec.
IV we discuss the modification of the theory neces-
sary to treat the spin dynamics at low temperature.

like [u(K)]"', and as T-0 (K-~), lu(K)l -1
—(1/K). For the short-wavelength high-frequency
excitations, i. e., spin waves, the system does in
fact appear essentially ordered at low ternyera-
ture. The physical picture is that of spin waves
propagating in locally ordered regions. " This pic-
ture is valid as long as the wavelengths of the spin
waves are small compared with /, and the periods
of the spin-wave oscillations are small compared
with the characteristic times required for appreci-
able changes to occur in the local ordering.

We are thus led to introduce the notion of a
short-range order parameter, which for the high-
frequency, short-wavelength fluctuations describes
a local magnetization at low temperature. Into the
theory we write

«s(~, i)&&=~i (~, t), (49)

where ((~ ~ ~ » denotes a local average in some sense
to be described below, 6 is the order yarameter,
and i (x, i) is a unit vector giving the direction of the
local magnetization. (We continue to confine our
attention to the classical case without loss of gen-
erality. ) The basic underlying assumption is that
i (r, f) changes slowly with both r and i in compari-
son with the syin-wave oscillations, so that to the
spin waves i (r, i) appears to be a constant vector
to a good approximation. As T- 0 the order pa-
rameter approaches unity and i (r, i) approaches a
constant vector in the macroscopic sense, as the
scale of variation in the local order becomes long-
er, both spatially and temporally. For T large,
of course, 6- 0 and we revert to the theory of
Sec. III.

We are in essence characterizing the fluctuations
of the system as being either one of two types. The
long-wavelength fluctuations q& 1/K are character-
ized as being predominantly diffusive in nature and
longitudinal with respect to the direction of the lo-
cal magnetization. These fluctuations decay slowly
and are associated with the slow changes in the
order parameter. The shorter -wavelength oscil-
lations q» 1/K are primarily spin-wave-like and
transverse in nature; they decay much more rapid-
ly. Within the framework of these ideas it is
doubtful that long-wavelength (q & 1/K) spin waves
can be said to exist. Further, we note the obvious
fact that the size of the spin-wave region shrinks
as the temperature is increased.

These arguments are quite similar to those used
by Lines ' in his treatment of the two-dimensional
Heisenberg magnet, in particular, his introduction
of wave-vector -dependent magnon renormalization.
He argues that magnons with wavelengths greater
than some coherence length I. have a frequency
small compared with the reciprocal relaxation time
of the background disorder and can therefore be
described in first approximation as displacements
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from the time-averaged background. This leads to
a renormalization of magnon energy according to
the magnetization (S) (which for the case of the lin-
ear chain is zero). Lines then argues, however,
that such an approximation is clearly inappropriate
for short-wavelength spin waves X«J.. These have
a frequency large compared to the background re-
ciprocal relaxation time, and can therefore, to a
first approximation, be described as displace-
ments from the instantaneous background. Using
an analogy first introduced by Keffer and Loudon, 3

the additional magnon excitations are like ripples
superimposed on the instantaneous nonequilibrium
position of the existing waves. For nearest-neigh-
bor exchange this concept leads to a magnon energy
renormalization as ((So ~ S,))'~, where So and S, are
nearest neighbors. The principal distinction be-
tween the present treatment and that of Lines is

. that we claim that long-wavelength magnons are not
present in the linear chain; the long-wavelength
fluctuations are to be associated with variations in
the local order.

Now we introduce the idea of a local coordinate
system with the z axis in the direction of the local
magnetization. The orientation of the local coordi-
nate system changes slowly with time and with dis-
tance along the chain. In order for the kinetic
equations that we derived for the relaxation shape
functions to describe the spin-wave excitations,
they must be considered applicable in the local
sense, with the longitudinal and transverse compo-
nents taken relative to the (slowly varying) local
coordinate system. Then to describe the results
of experiments on macroscopic samples, we must
perform a spatial average at the end of the calcula-
tion.

In the limit T = 0, these ideas are certainly cor-
rect and yield exact results. At absolute zero we
have complete alignment of spins; hence 6=-1,
C,'= 5„oC, , and C,"=C', = Q. (For the antiferromag-
net with magnetic ordering at wave vector Q= w,

the only change is C,'= 6, ,C, .) The first moment
of the spectral line is given by

( ur, ) = —(1/i) E,'(0)

—J',
»

= 2Z, q (1 —cosq) (ferro)
(&„„,8„,„)= 21 7„sinql (antiferro) .~ ~

~

(50)
[See Eq. (2V) for the ferromagnet and Eq. (AB) for
the antiferromagnet. ] The second moment is given
by

and hence the linewidth F„which is proportional
to ((~,) —(~,) )'~, is zero. The theory thus pro-
duces infinitely sharp spin-wave peaks over the
whole of the Brillouin zone with the usual disper-

~= ~~(A)~"' =-1 —1/uC (as Z-0) . (52)

As we shall see in Sec. V this renormalization
agrees very well with the experimental data on
(CH~)4NM„C1~, (T1VIMC), clear evidence that the
usual concepts of spin-wave theory are applicable
to one-dimensional systems —as long as the wave-
lengths are shorter than the coherence length.

sion. The real test of the theory comes as we look
at finite temperatures and consider both the re-
normalization of the spin-wave energies and the
damping of the spin waves as a function of temper-
ature.

As we extend these ideas to finite temperatures
we have several problems to consider. First, we
must make a proper choice of the "order parame-
ter" as a function of temperature, and, secondly,
we must determine the appropriate breakdown of
the static correlation functions into longitudinal
and transverse components. %e then study the
damping of the spin waves; in particular, by cal-
culating the first and second frequency moments
of the transverse fluctuations, we arrive at ex-
pressions for the magnon lifetimes (or linewidths).
Next, we examine the internal consistency of the
theory by looking at the long-wavelength fluctua-
tions, and checking to ensure that the character-
istic times associated with changes in the local
order are indeed long compared with the time scale
of the spin-wave oscillations. Finally, we consider
the appropriate spatial averaging process neces-
sary to describe the macroscopic sample.

We have defined the order parameter in terms
of a local average of the magnetization ((S(x, t)))
= b, i (r, f). Physically it is clear that b, is asso-
ciated with some sort of weighted average of the
spin density over a region of the order of f, cen-
tered around the point r. To arrive at an opera-
tional definition of b, we note from the form of the
dynamic equations (2V) that d also gives directly
the renormalization of the spin-wave energies.
That the local average of the magnetization and the
magnon renormalization are directly related fol-
lows immediately from our earlier discussion in
which we picture the short-wavelength excitations
of the system as oscillating against the instantane-
ous local background, the configuration of which
changes only slowly with space and time, It is
then natural to make use of the result of conven-
tional spin-wave theory~'3' for the renormaliza-
tion of the spin-wave energies, namely, that 6 is
given by the square root of the near-neighbor cor-
relation. (This result follows when, in consider-
ing exchange effects between neighboring spins S&

and S~, those components of each which are per-
pendicular to S, +S2 are averaged to zero. ) Thus,
for the classical linear chain we have
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(53)

This definition is the macroscopic ensemble aver-
age, which has been calculated exactly [see Eq.
(41)]. The connection with the local averaging
process is made by expressing the spins in (53) in
terms of the local magnetization and the fluctua-
tions from the local order. We write the spin at
site i as

S =((S;))+S-((S )) =& +5S (54)

where Z&-—bi (r&) and 5S, = S& —Z, . Substituting in-
to (53) we have (noting that ( Z, ~ 5S&„)= 0)

c,= —Z ((Z, Z...)+(5s, 5s„,))e"'. (55)

Clearly, the first term in this expression is as-
sociated with the (long-wavelength) fluctuations of
the order parameter; these fluctuations stem from
the fact that the local order varies slowly in direc-
tion with position along the chain. They are lon-
gitudinal in nature with respect to the local co-
ordinate system. The second term of (55), which
corresponds to transverse fluctuations around the
local mean field, is then associated with the
shorter -wavelength spin-wave modes. With these
remarks in mind we rewrite (55) as

Cq= Cq +2C (58)

with the obvious partitioning into longitudinal and
transverse components:

C, =
2

Z (58) ~ 5S)„)e"' .
l

(57)

We assume that this correspondence is valid at
sufficiently low temperature. As the temperature
is raised the concept of local order becomes hazy
and therefore so does the correspondence (5V).

In the limit 7.'= 0 we have noted that C, is a 5

function at q=0 (or at q*= m —q=0 for the antifer-
romagnet). At low but finite temperature, C, is
peaked very sharply around q= 0 with a spread in

q of the order bq= 1/K. Therefore, the important
thermal fluctuations are those of long wavelength

(q& 1/Z) and are associated primarily with the
spatial variations of the order parameter. It is
this region of wave-vector space that dominates
the q sums in the kinetic equations (27). Conse-
quently, as a first approximation in solving the
kinetic equations (for the spin-wave relaxation

B. Static Correlation Functions

We consider the static correlation functions de-
fined by

functions), we assume that all q dependence of the
static correlation functions is accounted for by the
spatial variations in the order parameter. We
neglect the transverse static correlations alto-
gether and write

c', =- c, (q& 1/~),
(58)

C, =O.
It is to be stressed that this approximation is

valid only in the long-wavelength region. In fact,
for q» 1/K the opposite condition of (58) prevails:
The transverse fluctuations dominate (on a rela-
tive basis) and we have C~~:-0, C, :—~ C, . Though
this region of q space is negligible in thermody-
namic sums at low temperature, it gs important
in calculating the generalized structure factor (1)
for neutron scattering in the spin-wave region.
Specifically, the C, determines the intensity scale
of the spectral line for momentum transfer q (see
Sec. V).

The intermediate region q & 1/E presents a much
more difficult problem, because the partitioning
of C, into longitudinal and transverse components
is obviously strongly q dependent as one goes from
(58) for q& 1/Ktotheopposite conditionfor q» 1/K.
In order to render the calculations tractable and
as simple as possible, we will apply the approxi-
mation (58) in solving the kinetic equations, as-
suming that the q' sums are sufficiently weighted
for small q that only a minor error is introduced.
This assumption will be checked (and apparently
borne out) by our comparison of the calculations
with experimental data, in Sec. V.

C. Spin-Wave Damping

We now calculate the first and second frequency
moments of the transverse correlation functions
utilizing the ideas and approximations we have in-
troduced. This will enable us to derive quantita-
tive expressions for the damping of the spin waves
as the temperature is increased from 7.'= 0. From
the dynamic equations (2V) for E',(t), we have, for
the first moment,

(~,)r = -,—. ~,'(0)

2Z„A(1 —cosq) (ferro)
2b, I Z„sinq I (antiferro) .

From the definition of the order parameter, Eq.
(52), we have the result that the spin-wave ener-
gies renormalize downward linearly with increas-
ing temperature. The second moment is given by

(~,)r = —F,'(0) =Z K„.(C, +C,.) =2 K„.C,.
(80)

on making use of approximation (58). After a
straightforward calculation, we find the results
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(antiferro)

(1 —cosq) 1 ——+ (1 —cosq) (ferro)
1 1
K 2K'

& ~.')r =4~.'i
1 1

sin q 1-— + z (1 —cosq)E 2K

to order~6 1/K2. The first term in each of these
expressions is the square of the first moment;
thus, the leading-order temperature effect in

(~,)r is simply a shift in the peak position. In a
certain sense this result corroborates our choice
of 6 with the approximation (58) that went into the
derivation of (61). Further, we can rewrite (61)
as

& ~.')r =&~.)r+F,', (82)

s/a

2K 1 —cosq

2
2K 1+cosq

(ferro)

(antiferro) .

For the ferromagnet then, cr, diverges as q-0,
and furthermore, o, & 1 for q & 1/K (o, = 1 at q = 1/K).
This is simply a statement of the fact that well-
defined spin-wave excitations do not exist for
q & 1/K, and it provides a cheek of the internal
consistency of the theory. In the spin-wave re-
gion q& 1/K, cr, is less than unity, attaining its
smallest value o, = 1/2K at the zone boundary q= w.

For the antiferromagnet these same remarks apply
if we replace q by q~ = v —q. In this case 0, di-
verges at q* = 0 and well-defined (g, & 1) spin waves
exist only in the region q* & I./K.

One may inquire as to what processes give rise
to the finite spin-wave lifetimes in the approxima-
tion C,:—C, , C, = 0. %e attribute the scattering
in this approximation to the fact that the local

where the temperature-dependent linewidth I', ,
defined by I', = ((&u~)r —(&u, )r)'~2, is given by

I",= " (1 —cosq)'~ ~= W2 T (1 —cosq)'~ ~W2 Z.,

(83)
for both the ferromagnet and the antiferromagnet.
Hence, the theory predicts a linear broadening of
the spin-wave spectral lines as T increases, as
well as a q dependence of the linewidths of the
form (1 —cosq)'~~. Thus, I', varies appreciably
with q —for both the ferromagnet and antiferromag-
net —in the region of momentum transfer 0& q& —,'p,
but relatively little for the region —,'z &q & z, in
fact, BI', /sq=0 at q=m.

The most useful way of presenting the q depen-
dence of the linewidths, however, is to look at the
quantity o;, defined to be the ratio of linewidth to
peak energy, i. e., o, =I', /(z, )r. From (59) and

(63) we have to lowest order in temperature

magnetization Z does in reality vary, both in time
and with position along the chain. Thus, a spin-
wave fluctuation —even of short wavelength-does
not see truly long-range order, and this leads to
decay of the spin waves. By attributing the long-
wavelength fluctuations of the system to the varia-
tions in the local order, we have been able to in-
corporate this mode of scattering into the theory.

The other mode of spin-wave decay that one
might suspect to be operating is, of course, scat-
tering from other spin waves. However, as is by
now clear from our arguments, spin waves with
wave vectors q& 1/K cannot be said to exist, and
it is precisely this region which makes the major
contribution to the q sums in the kinetic equations.
Thermal spin waves —in the sense of spin-wave
modes being thermally populated —do not exist for
all practical purposes in the linear chain. Spin
waves exist only above the thermodynamically im-
portant region, and the boundary (q- 1/K) between
the spin wave and thermodynamic regions in-
creases with increasing temperature.

D. Fluctuations in Local Order

%e have associated the long-wavelength fluctua-
tions of the system with spatial variations in the
order parameter. %e now examine briefly the
time dependence of these fluctuations. In particu-
lar, we are interested in the characteristic times
required for appreciable variations in Z(x, i) and
the possible relations to the spin-wave lifetimes;
we must verify that Z(r, f) changes sufficiently
slowly that our procedure for calculating spin-wave
dynamics is justified.

Thus, we study the time dependence of the re-
laxation shape functions for wave vectors q & 1/K.
For these fluctuations the concept of local order
obviously has no meaning. True macroscopic av-
erages must be used from the outset [E,"(f)=E', (f)

'E(t)], and the appropriate dynamical equation is
(43) of Sec. III. First, note that since q& 1/K and

C, is peaked sharply at low T around q= 0 with a
spread in q of the order 1/K, all the E functions
appearing in the time integral have small wave-
vector arguments and hence presumably a slow
time dependence. Thus, to obtain very quickly an
idea of the characteristic time scale for the long-
wavelength fluctuations, we iterate (43) once,
making the zero-order approximation I', = 1 for
the relaxation shape functions on the right-hand
side. %e write the result as
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F,(t)=1-- —
i7 j

where

(t& v, ), (65}

4 q'(q'+ 1/K') (ferro)
q* + 1/K (antiferro) .

(66)

[Note that F,(t) is essentially Gaussian for small
times. ] As q & 1/K (or q* = m —q & 1/K for the anti-
ferromagnet) we have

K /J, q (ferro)
K/J, q (antiferro) (67}

as the characteristic time scale of the long-wave-
length fluctuations and hence of Z(x, t). We point
out that the corresponding results for a real sys-
tem of spin S are v, = K '/J [S(S+1)]'t ' for the fer-
romagnet and v =K/J [(S+1)]'tm for the antiferro-
magnet.

Returning to Eq. (68) we see that the spin-wave
lifetimes 7',~ = I', ' are of the order of 7, or less
(much less for ferromagnetic magnons of wave
vector q» 1/K). Equality, 7',"= v„is obtained
at q = 1/K for the ferromagnet and at q* = 1/K for

the antiferromagnet. In addition for the well-de-
fined spin waves q» 1/K, for which o, «1, we ob-
viously have the reciprocal spin-wave frequencies
co,'«7, . Consequently, the theory is consistent
in that the time scale for the (well-defined) spin-
wave oscillations is ig.deed much less than the
characteristic time for changes in the local order,
and further we have the result that the spin-wave
lifetimes are limited by v, . This corroborates
our conjecture that spin-wave decay results pri-
marily from the fluctuations of the order param-
eter; i.e., our model predicts that spin waves
exist for a time not greater than the time over
which the local order remains relatively constant.
%'e have therefore demonstrated that the physical
picture of our model is valid and consistent, in the
temporal sense as well as in the spatial sense.
%e will have more to say in Sec. V concerning the
long-time (t» v, ) behavior of the long-wavelength
fluctua, tions.

E. Spatial Averaging Process

First, we compare the result for the transverse
second moment in the spin-wave region q& 1/K
computed from our approximate theory, Eq. (61),
with the exact second moment (42). At low tem-
perature ( a&,'),„„,is to order 1/K',

(1 —cosq) (1 —3/2K+ 1/4K )+ (1/2K ) (1 —cosq) (ferro)
sin'q(1 —3/2K+ 1/4K') + (1/2K) (1 —cosq) (antiferro) . (68)

On comparison with (61) we see that the tempera-
ture factors multiplying the term (1 —cosq) for
the ferromagnet (and sin q for the antiferromag-
net) are different for ( &u,)„„,and (~~)r, the pri-
mary difference being that the coefficient of the
linear term in 1/K is ——,

' for the exact second mo-
ment, whereas it is —1 for our approximate ex-
pression. The discrepancy, however, does not
necessarily indicate that the approximate theory
is incorrect. For we have only calculated the sec-
ond moment of the transverse correlation function
from our theory; we have said nothing about the
moments of the longitudinal correlation functions.
The exact second moment, on the other hand, cer-
tainly contains contributions from both. This
point leads to the discussion of the appropriate av-
eraging process that should be performed in order
to describe experiments on macroscopic samples.

Qfe have argued that for the spin-wave excita-
tions the kinetic equations (27) are applicable in
the local sense, and the results of Sec. IVD, indi-
cating that the local order changes slomly on the
time scale of the magnons, substantiate our as-
sertions. Clearly, then, the macroscopic observ-
able time-dependent correlation function C, (t)

=(S, ~ S,(t)) is given by

C, (t) = C, F, (t) + 2C, F, (t),
where F, (t) and F, (t) = Re[F,'(t)] are the local re-
laxation shape functions obtained by the solution
of (27) and C, and C, are the local static correla-
tions [see Eqs. (56}and (57)]. Hence, as long as
we are in the regime of mell-defined local order
(i. e., low T) and if the local longitudinal and
transverse components C~ and Cr are known, (69)
contains all the information necessary to describe
the dynamics of the macroscopic system.

Consider, for example, the second moment of
the macroscopically observable spectral line,

c,(o)
q

(69)

(7o)

where ( &u, )z, = —F~
(O), ( ur, ) r = -F, (0), n, = C, /C„

and p, =Cr/C, . (Note that n, +2 p, = 1.) We have
argued previously, at least implicitly, that in the
spin-wave region q» 1/K the major contribution
to the spectral line is due to the transverse fluc-
tuations, or spin waves, and therefore ~,=0 and

P, = —,'. Furthermore, using the long-wavelength
approximation (58) in the "thermodynamic" q' sums
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in (2V), we have ( (u,'}~= 0 and ( (o, )r given by (61).
If we now assume that the long-wavelength approx-
imation (58) is good to a high degree of precision
at low T (it is rigorously true in the limit T= 0),
we can determine the lowest-order temperature
corrections to ~, and P, in the spin-wave region
by simply forcing the equality of the second mo-
ment computed by (VO) with the exact second mo-
ment (68). We find the results

(71)

Thus, the relative proportion of spin-wave compo-
nent decreases linearly with increasing tempera-
ture, with a corresponding increase in the relative
amount of longitudinal component. In this descrip-
tion the spectral function C, (+) for the macroscopic
system would exhibit two strong spin-wave peaks
at &u =+ e„where &, is given by (59), and a weak
central component. The spin-wave components
shift downward and broaden as 7.' increases. The
intensity of the central component, which is a 6
function at &o = 0 in the present model [( u, )z, = 0
within the long-wavelength approximation (58)j, in-
creases linearly with 7.

' relative to the spin-wave
components.

We expect, of course, that the central compo-
nent also broadens with temperature. In order to
account for this with our theory, however, it would
be necessary to improve upon the approximation
(58) for the long-wavelength region q& I/K. In par-
ticular, we would in some way have to incorporate
q dependence into the partitioning of C, into longi-
tudinal and transverse components in this (thermo-
dynamically important) region. Then (~~)~ is in
general nonzero. However, the experimental work
on the antiferromagnetic linear chain TMMC
shows no evidence of a central component at low T.
In fact, to anticipate somewhat the discussion of
Sec. V, the essential features of the experimental
scattering are described very well with the present
theory using the simple approximation (58). In
this connection it should be pointed out that TMMQ
is a "real" quantum system of spin- —,', and hence
the neutron scattering is related to the generalized
susceptibility, Eq. (1), which contains the factor of
detailed balance Pa&/(1+e ~"). For low tempera-
tures in the spin-wave region, P&»1, and this fac-
tor is very important, serving to amplify greatly
the spin-wave emission peak relative to the central
component (and to the magnon absorption peak).
Thus, even if a central component is present in
real systems, it would be difficult to discern ex-
perimentally. Therefore, even if we attempted
theoretically to treat the central component with

Returning to the dynamical equations (2V) we re-
write them in the "memory kernel" form

E;(f)= j' df—
'
a,'(t f') E;-(t'),

(72)
E;(t) =~i~, E', (t) j, —dt'a,'(t-t') E,'(t'),

where &, is the transverse first moment given by
(59) and the memory functions k, (t) are defined by

u,'(f) =Z Z„,C,, P,, [E;, (t) E ,' , (f) + E,', (t) E, , (t)] ,

(73)
a",(t)=Z, Z„,C,, —,'P, , E,'. (f)E,', , (t)

Here K„,is defined by (28) and C,, is given by (41);
for generality we have written C,', = o,, C,, and Cr,
= P,, C,, where n, + 2 P, = 1. For the antiferromag-
net with local order occurring at wave vector Q = v
these same equations are applicable except that the
E,'(f) are replaced by the transformed functions

f,'(f) (see Appendix A) and 5, o- 5, , We solve
these equations for high (KZ 1) and low (Ã» 1)
temperatures. We are unable to say much quanti-
tatively about intermediate temperatures E-1, but
this is presently the least interesting region physi-
cally.

As discussed in Sec. III, at high temperatures
we have 6 = 0, o,, = p, = —,', and E,'(t) = E,'(t) = E,(t).
Then Eqs. (72) reduce to the single equation

E,(f) = jdt' u, (t t'—)E,(f'), — (74)

where

We note that for E«1,
1 2K 2K

C, = —1c cosc+ (Scosc —1)), (76)

where the plus sign is for ferromagnetic coupling
and the minus sign for antiferromagnetic coupling.

At low temperatures we distinguish between the
long- and short-wavelength fluctuations. For long
wavelengths (V4) is in fact the appropriate equation
at all temperatures, as the concept of local order
is not applicable. Further, as only the J functions
with wave vectors q& I/K contribute significantly to
the sum in (75), there is no coupling to the spin-

more sophistication (i. e., by including the q de-
pendence of the partitioning of C, ), we still would
be unable to compare theory with experiment. This
is sufficient grounds for not going beyond the sim-
ple approximation (58) at this time.

V. RESULTS AND DISCUSSION

A. Numerical Calculations
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wave modes in the first approximation. For the
spin-wave region q» 1/K we apply the discussion
of Sec. D'I: b,2= ~g~ =1 —1/K and n, 1, p, :-0.
Then k,'(t) = 0 and consequently F,'(f)= 1 on the time
scale of the spin waves. For the transverse fluc-
tuations we make the A~sate

Fd(t) dj (d t E r(t) (77)

k, (t) = [A,(t) —(u~] E r(t),
where

A, (t) =Z K,g C,.E;.(t) .

(so)

(81)

The equations of motion —either Eqs. (V4) and

(V5) or (78) and (79)—are solved numerically by in-
tegrating forward in time from t = 0 using the ini-
tial conditions E,'(0) = 1. Time is measured in
units of 2J„for the classical case or 2Z[S(S+1)]'~2
upon making the transcription to the quantum-me-
chanical case; temperature is given by the values
of the parameter K=/„/T (or ZS(S+1)/T); and the
wave vectors q are measured in units of a, the in-
verse lattice spacing. Sometimes we will refer to
normalized wave vectors defined by Q = q/2m so that

Q = 0. 5 corresponds to the Brillouin-zone bound-

ary. The computations were performed on a CDC
6600 computer using for the high-temperature solu-
tions a 25-point grid of q values evenly spaced be-
tween 0 and m and a time step in the time integra-
tion of 0. 04. For the low-temperature solutions a
201-point q grid and a time step of 0. 1 were used.
The finer q mesh was necessary in this case due to
the sharpness of the q integrands around q =0.

Once the relaxation shape functions E, (f) are
determined, the time-dependent correlation func-
tions are given (for the classical system) simply
by C, (t) = C,"F,(t) and the spatial time-dependent
correlations C, (t) = (S,. ~ S;„(t))by

c,(t)=BC, (t)e*" . (s2)

The neutron-scattering cross section is related by

and we take advantage of the fact that C,. is peaked
sharply around q =0 by setting F... (t)=-E, (t) and

, =- v, in k,'(t). Then we find that the envelope
function E, (t) for the spin-wave oscillations satis-
fies the equation

F;(t)= fdt'-k,'(t t') E,'-(t'), (78)

where

2

d,'(~)-ESC„.C,, d",, (~)- d(d')))", ((). (7S)
qt ql

[5(q') = 5,, o for the ferromagnet and 5(q') = 5.. .for
the antiferromagnet. ] The E,', (f) appearing in (V9)
must be obtained from the long-wavelength solu-
tions of the kinetic equations, i.e., from the solu-
tion of (74). We note that (79) may be rewritten

Eq. (1) to the Fourier transform of E, (t), which
can be computed directly by

F,'(~)= f dte '"'E, (t) =2( dtcos&utF, (t),
(ss)

or, for the cases where F, (t) goes to zero slowly,
by Eq. (93) of Ref. 1~7:

Here

2 k,
"'

((u)

[k, '((o)]'+ [(u+k, "((u)]' ' (84)

k, ((d) = kq ((u) + ik;" ((o),

where

k,' ((o) = f dt cos(ut kq (t),

k,
"

((d) = —f dt sin(dt k,"(t),
and k, (f) is computed either by (V5) or (79).

B. Long-Time Long-Wavelength Solutions

(s5)

d, =d LK„C,I dt F, (t) (td). (87)

We now expand P, in a power series in q (or q* for
the antiferromagnet) and retain only the leading-
order nonzero term. We consider the cases of
ferromagnetic and antiferromagnetic coupling sep-
arately.

For the ferromagnet the leading-order nonzero
term is of order q . A straightforward calculation
leads to the diffusion-law result (t), = Dq, where the
diffusion constant is given by

Before presenting the results of the numerical
solutions in detail, we look more closely at the
time behavior of F,(t) for small q. We examined
this question briefly in Sec. IV where we essential-
ly made a small-time expansion of the equations at
low temperatures in order to determine the char-
acteristic time 7, over which the order parameter
varies significantly. We found the result that
z,-K'/J„(~K'/J [S(S+1)]'~'for a real system) for
the ferromagnet and v, -K/J„f-K/J [S(S+1)]'~ ] for
the antiferromagnet. Now we ascertain the be-
havior of E,(t) in the limits t-~ and q-0 (or q*
= m —q-0 for the antiferromagnet), using Eqs. (74)
and (V5), which are valid at all temperatures for
long wavelengths.

We follow the arguments of BH. As I;-~ the
memory function k, (t) goes to zero much faster
than F,(t), as k, (t) is quadratic in the F functions.
Thus, we can replace E,(t ) in the time integral of

(V4) by F,(t) and remove it outside the integral.
The solution of (V4) as t-~ is then

F,(t)= e "~',

where
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2K
0

E,(t) for several values of q. The characteristic
behavior is a relatively slow decrease for small
q, becoming more rapid for larger q, with highly
damped oscillations setting in for q & &7I. In Fig. 2
we plot the spatial-correlation functions —the self-
correlations nearest-neighbor, and next-nearest-
neighbor correlations-against time. We note the
appearance of plateaus, especially noticeable in
Co(t). Further, we note the slow decay for all
three functions at long times. We attribute this to
the slow decay of the long-wavelength diffusive
modes. Indeed, converting (82) to an integral and
substituting C,"(t) = (1/SN) e ' ' for long times—
such that only the long-wavelength fluctuations re-
main —we have

In the limit t - Ci(t) - I/2(mDt)ii~ for all values of
l. Substituting D = 0. 345 we find excellent agree-
ment with the long time behavior of Fig. 2. The
Fourier transforms of E,(t) are shown in Fig. 3.
The point of note here is that E,((u) for the larger
q values exhibits a broad flat profile with a relative-
ly sharp shoulder at co-2J.

As we lower the temperature nothing very strik-
ing occurs. For practical purposes the results
are virtually the same down to T - 2. For T & 1 the
oscillations in the E,(t) increase somewhat in fre-
quency but they remain highly damped. There is
a corresponding broadening of the Fourier trans-
forms, but the broad flat profiles with the sharp
shoulders persist. As we pointed out in Sec. ID,
even as T becomes very small this same pattern
continues, and no real evidence of spin waves ap-
pears. This, of course, served as the impetus
to introduce the idea of local order at low tempera-
tures. For T-1 differences do appear between the
ferromagnet and the antiferromagnet, primarily
the manifestation of "slowing down" in the anti-
ferromagnet for wave vectors in the interval 2m
& q &m. The differences are quite evident in the
spatial correlations C,(t), which we show plotted in
Figs. 4 and 5 for the ferromagnet and antiferro-
magnet, respectively, at T = 1. As expected, the
earest-neighbor correlation is initially negative

in the antiferromagnet. We note the continued hint
of plateaus for the ferromagnet, whereas definite
oscillatory behavior occurs in the C, (t) for the
antiferromagnet.

We point out in passing that the high-temperature
solutions-as well as the low-temperature solutions
to be discussed below, agree quite well with the
results of the computer simulation studies of Blume
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8t Ql. Detailed comparisons will be presented in
a future publication.

D. Time-Dependent Solutions-Spin-Wave Region

Here we present the time-dependent solutions
E, (f) for the case of the classical chain at low tem-
peratures. The envelope functions E, (f) of the
spin-wave oscillations satisfies Eqs. (78) and (79),
and the full relaxation functions E,'(t) are then re-
lated to F, (f) via (VV). In particular, F,"(f)=E,'(t)
= (S" S,"(t))/(S~Sq) is related to F, (f) by

TEq(t) —cos~gE, (f),
where &u„ the first transverse moment is &= 1 —1/
2K in reduced units. In Fig. 6 we plot the spin-
wave relaxation functions E,"(t) for the wave vectors

This fi uis figure simply serves to illustrate that well-
defined spin waves exist and that their lifetimes
are sufficiently long to contain a number of oscil-

lations.
Figures 7 and 8 show the envelope functions

Eq (f) for a series of Q values at two temperatures
&=0. 3 and 0. 1. for the ferromagnet and antiferro-
magnet, respectively. These figures depict both
the q dependence of the fluctuations at fixed T as
well as the variations with temperature. If we
define the spin-wave lifetimes as v' —~ ' h

is i
s v, =, , where

is given by (63) [so that 7 ~2K/(I cosp)ii& in
reduced units]„ then we find that in general Eq*(t)
=0. 6 at t = vq and at f = 27, , E, (t) is reduced to
approximately 0. 1. We find E, (t) generally goes
negative in the vicinity of t-2. 57, and that the be-
havior for longer times is one of a slowly oscillat-
ing small™amplitude damped motion. However, for
long times, say for t &27'„wedo not expect our
equations to be valid, since variations in the local
order become appreciable for t &v„where v, is
given by (67). Hence, the long time behavior of

«'
&
~is verylikelymeaningless. We note that the
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relation function for q& 3/K.
On the other hand, in the spin-wave region q

» 1/K we do not expect the classical approxima-
tion to Q to be valid. In fact, for systems of finite
spin the frequencies of interest in the spin-wave
region are such that —,'p~» 1. Then, from our gen-
eral discussion of the fluctuation-dissipation theo-
rem in Sec. II [see Eq. (36)], we have that x, is
related by C~ by

x, Cq 99
P (~zP+ coth~zP&g )r

where the averaging brackets refer to the frequen-
cy moments of E', (f) as defined by (35). [Note that
only even order moments appear, so that (99) is
true for both magnon emission and absorption. ]
But we are in no better shape with (99) as the un-
known static correlation C~ still appears.

Summarizing, the dynamics of the long-wave-
length fluctuations (i.e. , of the local-order pa-
rameter) is classical in nature, but the same need
not be true for spin waves, the quantum-mechani-
cal aspects being manifested, however, only in the
static intensity factor in (9V). We are therefore at
an apparent impasse if we attempt to predict the
intensities of the neutron-scattering lines for finite
spin systems unless the C, are known for all q.
However, we find that the simple classical approx-
imation~ xr/p= Cr = —,'C, , where we use the classi-
cal result" for C, with K= J'S(S+ I)/7, provides
remarkably good agreement with the experimental
intensities, except at very low temperatures Z
& 30, where there are also additional difficulties
in making comparisons with experiment (see Sec.
VE. 2). This is a rather surprising result. It
seems to imply that the classical correlation func-
tion is a good approximation in TMMC to the static
susceptibility xr/p, but not to the correlation func-
tion C, in (99).

2. Comparison with Experiment

We make a direct comparison of our theoretical
calculations with the experimental data of Hutch-
ings et al. on TMMC. Thus, we take 9= —,

' and use
the value of J they40 found from the spin-wave dis-
persion, namely, J=14.1 K. Consequently, our
reference temperature is JS(S+1)= 124 'K. We
make comparisons at the K values 3, 6, 10, and
28, corresponding to the temperatures 41, 21, 12,
and 4.4 K, respectively. We recall that for finite
spin time is measured in our calculations in units
of 2J[S(S+1)] ~ and frequency in units of
2J[S(S+1)] ~, the factor p~ in (98) becomes 2K'/
[S(S+I)]'~, where &u is measured in the reduced
units. 4~

One difficulty in making a detailed comparison
of theory with experiment is that the experimental
results do not give directly the scattering function

TMMC T = 4.4 oK

EXC I TAT ION I N TENSI T Y VS WAVE VECTOR
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PIG. 9. S~~ (~) vs co at T=4. 4'K for TMMC (from
Fig. 8 of Ref. 10).

S, (+). Rather, the observed intensity at momen-
tum transfer q and energy transfer m is given by
the convolution of the true scattering function with
the instrumental resolution function. For the low-
est temperature at which experimental measure-
ments were made, T= 1.9 'K corresponding to Z
= 65, the spin-wave linewidths are quite obviously
limited by the resolution function, the intrinsic
linewidths evidently being smaller. The theoreti-
cal calculations at this temperature do in fact pro-
duce very sharp spin-wave peaks with widths of the
order 1/K in reduced units. The theoretical line-
widths are considerably smaller than the observed
linewidths. At 4.4'K, however, the intrinsic line-
widths have broadened to the point that they are be-
coming manifested in the experimental results,
and at higher temperatures the observed linewidths
are probably very close to the intrinsic linewidths.
Thus, we compare the calculated line shapes with
experiment for temperatures T &4. 4'K, keeping
in mind that the instrumental resolution function
may still be fairly important at 4. 4 'K but much
less so for 7=12 K and higher.

In Fig. 9 we reproduce the experimental results
for the scattering intensity for several wave vec-
tors q at 4. 4 K and in Fig. 10 we give the corre-
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FIG. 10. S,"(co) vs (u at 4. 4 o K (theoretical).

syonding results of the theory. The curves are
labeled in terms of the reduced wave vector Q*
= (m —q)2p (so that Q*= 0.25 corresponds to the
antiferromagnetic zone boundary). The energy co-
ordinates for the experimental plots are in meV
units, whereas the theoretical curves employ the
reduced frequency units. As is apparent, there is
good qualitative agreement between theory and ex-
periment. We note that even at this temperature
a small asymmetry is discernible in both the the-
oretical and experimental line shapes, the inten-
sity being slightly larger on the low-frequency side
of the peaks.

To compare the line shapes on a quantitative
basis, we determine o, , which we define here as
the ratio of the linewidth at half maximum to the
peak energy, for both the experimental and theo-
retical curves. In Table I the values of o, are
listed for several va.lues of Q*. We consider the
agreement between the experimental and theoreti-
cal o, values to be quite good; even with the uncer-
tainty associated with o,'""for the larger values of
Q", it is clear that the theory gives a good repre-
sentation of the line shapes for all wave vectors.
We point out that the theory predicts a slight de-
crease in the actual linewidth F,~ for increasing
Q*. The variation occurs primarily for the larger
Q* values (Q* = 0. 20 and 0.25) and is of the order
of 30%. On the other hand, the experimental line-
widths are approximately equal for all the Q* val-

ues shown in Fig. 9. While it is apparent that
there is a good deal of uncertainty associated with
the experimental data for the larger values of Q*,
it is in fact very likely that at 7=4.4 K any de-
crease in the linewidth may not show up due to the
limitations imposed by the instrumental-resolution
function. This would be particularly true if the
line-widths for smaller Q* are just at the verge
of the resolution width.

Also listed in Table I are the peak intensities
I„where for the sake of comparison we have
normalized both the experimental and theoretical
intensities to 100 at Q*= 0.05. There is a good
match between I;~' and I,'" for Q* = 0. 10 and 0. 15,
but a significant discrepancy exists for the larger
values Q*=0.20 and 0.25. This discrepancy may
be due, at least in part, to the limitation of the in-
strumental resolution. Indeed, if the real line
shapes are sharper than can be resolved, then the
resolution function serves to broaden the lines as
well as to smooth the peaks, and hence reduce the
peak intensities. However, we cannot dismiss the
possibility that the discrepancy may be due in part
to quantum-mechanical effects in the static corre-
lations for large q*.

For completeness we plot in Fig. 11 the disper-
sion curve obtained from the theory at T = 4. 4 K.
The agreement with the experimental dispersion
curve is essentially exact. That there is agree-
ment is not really surprising in view of the manner
in which we formulated the theory and since we
used the experimental value of the exchange con-
stant to set the temperature scale. But that the
agreement is exact would seem to confirm the
correctness of our approach to calculating spin-
wave properties of linear chains.

Next, we consider the temperature dependence
of the scattering. In Fig. 12 we show the temper-
ature variation of the Q* = 0.05 line, part (a) of
the figure reproducing the experimental results for
the temperatures 4.4, 12, 20, and 40'K, and part
(b) showing the corresponding theoretics. l curves.
Figure 13 shows a similar comparison for the line
Q*= 0. 125. Again, it is clear that the theory pro-

TABLE I. Linewidth-to-peak energy ratios and peak
intensities at T=4. 4'K.

0. 05
0. 10
0. 15
0. 20
0. 25

&expt

0. 30
0. 14
0. 10
0, 1
0. 1

0. 30
0. 16
0. 12
0. 085
0. 065

100
44
23
11
7

gth
a

100
39
27
21
18

The scatter in the experimental data for these values of
Q enable one only to make a rough estimate of 0,'" and
yexpt

q e
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I.O TABLE III. Temperature dependence of the peak
intensities normalized to their values at T=12 K.

0.8 Q =0. 05
Iexyt 1th

Q =0.125
Iexyt y th

0.6

4, 4
12
20
40

140
100

65
30

253
100

65
28

147
100

60
37

282
100
62. 5
33

0.4
~Noise levels subtracted from experimental intensities

{10for Q = 0. 05 and 25 for Q = 0. 125).

0.2

O.o'
0.0 0.2 0.4 0.6

sin q"
0.8 I.O

FIG. 11. Dispersion curve co vs sin q at T=4. 4'K
{theoretical). The points are determined from the peaks
in the theoretical calculations of F,{~).

vides a good description of the temperature depen-
dence of the scattering, both in the broadening of
the lines as well as the increasing asymmetry of
the line shapes with increasing temperature. As
before, to make a quantitative comparison between
theory and experiment we list in Table II the o,
values for temperatures 4.4, 12, and 20 'K. (It
is obvious that it is meaningless to ascribe a val-
ue to o, at 7=40'K for either experimental or
theoretical curves. ) There is excellent agreement
between cr,

'" and o,'""for the Q* = 0. 125 line. We
note the very nearly linear increase in oo ~25 with
temperature in accordance with the theoretical
prediction [Eq. (64)]. For the Q*=0.05 line there
is (exact) agreement at T = 4.4 'K, but a sizeable
discrepancy develops at the higher temperatures,
with the theory predicting larger damping of the
magnons on the order of 30% at these tempera-
tures. This is not surprising, however, as our
physical model of the spin-wave region is strictly
valid only for wave vectors q~ » I/Z, and hence the
theory is expected to begin breaking down first for
the smaller values of q* as the temperature is
raised. As can be seen from Table II, oo o~ is

becoming of order unity for T & 12 K and the spin-
wave mode is no longer a well-defined excitation
for this wave vector. We cannot say, though, why
the observed broadening is less than the theoreti-
cal prediction.

Table III shows the temperature variation of the
peak intensities, where we have normalized I,'""
and I,'" to 100 at T=12 'K. This particular nor-
malization was chosen because, as apparent from
the Table III, there is quite close agreement be-
tween the experimental and theoretical intensities
for the temperature range 7&12 'K. But there is
a large discrepancy between I,""and I,'" at 4. 4

K for both wave vectors. Again, if the resolution
of the measuring instrument is sufficiently impor-
tant at 4. 4 'K, the experimental peak intensities
may be chopped to the extent of the discrepancy
in Table DI. Also, it may be that quantum effects
are playing an important role in the statics at low

temperatures, whereas classical statis are ade-
quate at the higher temperatures. The really sur-
prising result is that the simple classical approxi-
mation ~r/p= —', C, works so well.

Finally, we consider the renormalization of the
peak energies with temperature. In Table IV we
list the positions +,(T) of the peaks for the spec-
tral lines shown in Figs. 12 and 13. The &u, (T)
are normalized to their positions at 1.9 'K. (At
40 K we take the shoulders of the spectral lines
to be the peak position. ) For the Q*= 0. 125 line,
the theory is essentially in exact agreement with
the experimental values for all temperature val-
ues. For Q* = 0.05 we have the same pattern as

TABLE IV. Renormalization of peak frequencies with
temperature normalized to their values at T= 1.9 'K.

TABLE D. Temperature dependence of the linewidths
for Q =0. 05 and 0. 125. Q =0. 05

exyt ~th
Q =0.125

~exyt ~th

12
20

0. 30
0. 53
1.0

0. 30
0.74
l. 22

Q =0. 05
&exyt ~th

0. 12
0. 28
0. 54

0. 13
0. 32
0. 53

Q =0. 125
&exyt &th 1.9

4. 4
12
20
40

1.0
1.02
1.0
1.1
1.4

1.0
1.02
1.09
1.24
1.6

1.0
0. 98
0. 99
0. 96
0. 94

l. 0
0. 99
0. 99
0. 97
0. 93

1.0
0. 98
0. 95
0. 92
0. 84
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for the spin wave damping, while there is agree-
ment at low temperature, a sizeable discrepancy
exists for higher temperature. Again, this is not
unexpected as discussed above. - Further, the scat-
tering profiles are so broad for T& 20 'K that the
placement of the peak positions is ambiguous.

At first glance there is one surprising point con-
cerning the peak renormalizations. That is that
the peak frequency actually renormalizes upward
with increasing temperature for @*=0.05, both
experimentally and theoretically. For Q* = 0. 125
there is essentially no renormalization with 7 un-
til T-20 K after which w, definitely decreases.
These results may be surprising in view of our
general discussion of the order parameter in Sec.
IV in which we argued that the spin-wave energies
should renormalize down with T according to 6
= I —I/2K= I —T/2ZS(S+ I). But this is how the

fief moment of E,'(&u) renormalizes according to
our arguments, and ~08 how the peak position of
the generalized structure factor S;(+) should re-
normalize. In fact, the frequency dependence of
S;(~) involves the product of E;(~) with the factor
of detailed balance [see Eg. (98)]. It is this fac-
tor, P&u(l —e 8") ~, which accounts for the renor-
malization described by Table IV. In the last col-
umn of this table we give the renormalization of
~, for E;(&u) that results from our choice of 6; this
would also be the renormalization of the scattering
peaks for a classical system where the detailed
balance factor is unity.

The reason that the actual renormalization of the
scattering peak, where the detailed balance factor
is included, is significantly less-or of opposite
sign —than for ~," is not hard to determine. For
P~ » I, S',(~) becomes
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so we have a situation where the observed peak is
given by the maximum of a function xf(x), where
f(x) has a characteristic resonance maximum at
x = xz and goes to zero rapidly for 1x- xo ) & 5x.
It is not hard4~ to see that the peak of gf(~) occurs
at x& xo. We conclude that the almost precise
agreement between the renormalization of ~,'""
and &ut" for the larger wave vector Q* = 0. 125 ef-
fectively confirms our choice of the order param-
eter as being the correct one physically.

3. Discussion

We have seen that the frequency dependence pre-
dicted by the theory compares very favorably with
experiment, both as to the q dependence and the
temperature dependence. The only real discrepan-
cy that we found is in the behavior of the small q*
line (@*=0.05) as the temperature is raised. And

this discrepancy itself serves to confirm our cri-
terion for the existence of propagating spin-wave
modes, namely, that q*»1/K In fact, we may
use the comparisons of theory with experiment to
sharpen our criterion for well-defined spin-wave
behavior. From the comparisons of Tables II and
IV we see that an appreciable discrepancy develops
for the Q* =0. 05 line between theory and experi-
ment for T&12 K (or K&10). Since q"=0.31 we
are led to the conclusion that our theory of one-
dimensional spin waves is valid to fairly good
precision for wave vectors q&3/K, and that it is
only qualitatively valid for I/K& q*& 3/K. For q*

& 1/K it is meaningless to speak of spin waves.
Along with these remarks it is understandable

that the experimental results did not indicate the
existence of two-magnon scattering in TMMC. As
pointed out in Ref. 10, two-magnon scattering, if
significant, would manifest itself in one dimension
as a logarithmic singularity in the longitudinal-re-
sponse function S;(a&) at the single spin-wave posi-
tion. This singularity occurs if one assumes the
existence of spin waves for all wave vectors, be-
cause it becomes infinitely easy to create pairs
of magnons, one at [q*, &u(q*)j and the other at
[q*-0, &u(q*)- 0]. But as we have again just
emphasized, spin waves with wave vectors q*-0
and corresponding energies &u(q*)-0 do not exist
for the linear chain, and hence the singularity in

S;(&u) does not exist. The only possible magnon-
magnon scattering processes are those in which
the wave vectors of both magnons are greater than
I/K Since these fluctuations are not thermally
excited, the resulting intensity is expected to be
extremely weak. The spin-wave modes are of
course coupled to the long wavelength longitudinal
fluctuations of the system, i. e. , those associated
with the variations of the order parameter. This
coupling is precisely what gives rise to the damp-
ing of the magnons, and is quite mell described by
our theory.

Finally, the classical approximation to the
transverse susceptibility g, /p= —,'C, works sur-
prisingly well. It certainly yields the correct tem-
perature dependence of the peak intensities for T
&12'K. To be sure, at lower temperatures there
are some significant discrepancies between experi-
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ment and theory. We have argued that the discrep-
ancies may be traced to the limitations imposed
on the experimental measurements by the instru-
mental resolution function. But we cannot rule out
the possibility that quantum-mechanical effects may
be important in the static correlations at low tem-
peratures for the shorter wavelengths q~ » I/K.

In summary, our simplified theory of the spin
dynamics of linear chains provides quite satis-
factory agreement with experiment. Once the no-
tion of a local-order parameter was introduced and
one realized that the kinetic equations should be
solved in a loca,l sense for the spin-wave excita-
tions, the essential feature of the treatment is the
approximation (58)—Ci~=- C, and Crq=o —for the
long-wavelength static correlations appearing in
the kinetic equations. This simple approximation
led to the analytic expressions for magnon damping
presented in Sec. IV and, as we have just seen,
provides an adequate description of the experi-
mental results for spin waves of wave vector q*
&3/K The adequacy of this approximation implies
that to a good approximation the thermodynamical-
ly important fluctuations at low temperature are
indeed those associated with variations in the local
order and that these fluctuations are predominantly
responsible for the damping of the shorter-wave-
length magnon modes. It is possible that the pres-
ent treatment may be extended within the same
theoretical framework by improving upon the ap-
proximation (58), in particular by including q de-
pendence of the partitioning of C, into longitudinal
and transverse components. This might be neces-
sary in order to quantitatively describe fluctuations
of intermediate wave vectors 1/Z& q* & 3/K par-
ti.cularly at higher temperature where this wave-
vector region covers an appreciable portion of the
zone.
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V(t)=((exp, [tf dt't(t')]], ) (Al)

is no longer diagonal in q space as in the case of
the ferromagnet. In addition to the diagonal ele-
ments F, (t) = V„"(t),we must also consider the
off-diagonal elements G, (t) = V~„,(t) [and G~, ,(t)
= V,"„,(t)]. In what follows we are mainly inter-
ested in the classical antiferromagnet, though we
let the magnitude of 9 be arbitrary for the sake of
generality.

First, consider the limit T=0, where the ground
state is precisely the Nedl state. This case will
give us insight into the problem as well as provide
us with a point of departure for the case of finite
temperature. By direct expansion of (Al) and tak-
ing matrix elements term by term, where we take
(8;)= S5, , in the Nedl state and we use Eq. (15) of
the main text for the matrix elements of 5„,, we
find for the diagonal elements

F,'(t) = 1, F,'(t) = cos~,t, (A2)

where tg, = 2JS(sinq(. The nonzero off-diagonal
matrix elements in this limit are

G;(t) =0,
. t'1+ cosq

G*(t) =+i i---. q sinr& t .
t, (sinq(

(A3)

Clearly, all the dynamic information of the sys-
tem is contained in the set of functions F*,(t), F,'(t),
and G,'(t), so we can restrict our study to this set
Now we form the transverse linear combinations
f;(t), of the functions F,'(t) and G,'(t) such that

f,'(t) =+ t~.f,'(t) . (A4)

Then the f;(t) represent the elementary excitations
of the system, i.e. , antiferromagnetic magnons.
From (A2) and (A3) it is clear that the required
combinations are
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APPENDIX A: EXTENSION OF THEORY TO ORDERED
ANTIFERROMAGNET SYSTEMS

for them we have simply f;(t) = e""~'. This is es-
sentially the Holstein-Primakoff transformation.
We note that it is but a simple matter to go a step
further and include the presence of an external
magnetic field of Zeeman frequency (d~ and an an-
isotropy field „of wave vector Q = m. We can then
make solid contact with the usual T= 0 spin-wave
theory of antiferromagnets. The diagonalizing
transformation is

We briefly sketch here how the theory developed
in Sec. II may be modified in order to treat the
antiferromagnet below the ordering temperature,
in which case magnetic order sets in with the
characteristic wave vector Q=w. The principal
modification is that the quantity

s8 1/2
f+(t) F +(t) P [( A) q] G +(t)1+cosq+ ~~

and the eigenfrequencies are

Mq = K 0 + [(1+ 0)~) —cos q]

(A8)
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where the frequencies are measured here in units
of (2ZS) ~. In the limits ~0-0 and ~„-0, (A6) re
duces to (A5) and +,'-+ ~,.

We now make the extension to finite temperature
(for simplicity, without external and anisotropy
fields). First we derive equations of motion for
the functions F', (t), F;(t), and G;(t) in a manner

similar to the development in Sec. II. In particu-
lar, we take (S', )=S46... where b, is the (local)
antiferromagnetic ordering parameter; we make
the cumulant expansion of (Al); and we use the
spin-pair decoupling and the "disentangling" ap-
proximations. The results are [corresponding to
the system (27) of the text]

t t

F ',(t) = —
2 Z,.K„dt[C,.(t —t )F,'; (t —t') + C;.(t —t') F. ..(t —t')] F ',(t'),

F',(t) =i/, „,S&G'(t) -2,
~

dt'( ,'K„.C;—.(t —t')F', , (t —t')F,'(t'),
"0

+[C;.(t —t') —5.. .S 6 ][K,F,'~ (t- t')F'(t') +K, ;„G,';„(tt)G'-(t')]), (A8)

G;(t) =tv.„,St F,'(t) —Z
~

dt'I, ,'K„...C-;, (t —t')F', ,„,(t —t')G;(t')
"0

+[C;,(t-t')-5..,S' '][K...,,„G;,, (t t')F",(t-')+K,„,,F;,„,(t-t')G;(t')]},

where we recall

K„,=(Z,, -Z. ..)(Z,, -Z, ) . (AO)

The corresponding equations for F,.(t) and G;(t) are
the complex conjugates of the equations for F;(t)
and G;(t), respectively. Thus, we have a highly
coupled system of equations linking the F- and G-
functions as well as the different wave vectors of
the zone. We note that the initial conditions in
(A8) are F, (0)=1 and G, (0)=0. We note further
that in the limit T=0 (b =1) we recover the solu-
tions (A2) and (A3), and in the limit T- ~ (4 = 0),
we have G,'(t)- 0 and Eqs. (A8) reduce to the single
equation (43) of Sec. III. For intermediate tem-
peratures we must in general solve the full sys-
tem of Eqs. (A8). Even though we are interested
in the time-dependent correlation functions C, (t),
which are related to the F functions simply by

C, (t) = C, F, (t) for the classical case, we must also
solve for the G functions along with the F functions.

In this regard it is instructive to consider the
moments of the spectral functions C,'(~). From
(A8) and the initial conditions on F, (t) and G, (t),
we find that the first and all odd order moments of

C,'(co) vanish, which simply implies that the spec-
tral functions are even functions in ~g. For the
second moment, given by {co2),= —F,'(0), we find

{(u,),=Z,.K„(C;.+ —', C;, ) . (A10)

The sole effect of the G functions is to produce
(2J'Sh sinq)' when we differentiate the first term
on the right-hand side of the equation for F;(t), .

which cancels the contribution arising from the
term g.. .S~4~ in the second expression on the
right-hand side. The result (A10) is precisely of

the same form as for the ferromagnet, for which
case the G functions are identically zero. (The
second moments are of course not the same for
the ferromagnet and antiferromagnet as the static
correlations C, differ in the two cases. ) Thus, ex-
cept for the cancellation mentioned above, the G

functions do not enter explicitly into the calcula-
tion of the second moment. However, they do en-
ter explicitly in the fourth- and higher-order mo-
ments, which may be seen easily by iterating Eqs.
(A8) once.

At, low but finite temperatures such that K
=

t J„l/T»1, matters simplify to a great extent.
In fact, we can derive equations for the antiferro-
magnet which are of exactly the same form as the
Eqs. (77)-(81) of Sec. V, which were derived there
for the ferromagnet at low temperature. We make
use of the fact that at low temperature the system
does not depart far from the Neei state {in a local
sense). Therefore, we begin by assuming that the
diagonalizing transformation (A5) for the T=O case
is also a good first approximation at low but finite
temperature. We take advantage of the fact that
the static correlation function C, = (S,. S, ) for the
antiferromagnet is peaked sharply around q = g with
a spread of the order b.q- 1/K, and analogous to the
ferromagnet at low temperature, we take C,':-0
and C; = C, for the long-wavelength fluctuations
lq —n I &1/K. Making the Ansatz

fk(t) ek IM~tF T(t) (A11)

where =2JSAIsinq~, we find the resulting equa-
tion for the envelop function Fr(t), subject to the
requirement that the approximations we make pre-
serve the second moment (A10). [Note that the
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We note again that our diagonalizing procedure
for finite temperature correctly produces the first
two moments of the spectral function [correct with-
in the framework of the general theory Eqs. (A8)].
Thus, at low temperature where the magnon lines
are sharp and are adequately characterized by the
first two moments, our procedure is justified.
Only as the temperature is raised and the spectral
lines broaden sufficiently do the higher order mo-
ments play a significant role in determining the line
shape. Then errors arise from using (A12) rather
than the general system of Eqs. (A8). aut then
the whole concept of local order as discussed in
this paper begins to break down also. It is prob-
ably safe to conclude that the use of (A12) is justi-
fied as long as the concept of local order is valid,
particularly in view of the agreement between our
theory and experiment.

APPENDIX B: OTHER EXTENSIONS OF THEORY

The formal theory of Sec. II was developed ex-
plicitly for the case of an isotropic-Heisenberg ex-
change Hamiltonian with magnetic ordering pres-
ent. However, essentially the same formalism
applies with only minor modification to any system
having an axis of quantization. Here, for the sake
of completeness, we discuss briefly the modifica-
tion necessary to treat three such cases of practi-
cal interest.

a. IsotroPic Heisenberg system saith aPplied ex-
temal magnetic field. In addition to the spin .inter-
aciion Hamiltonian H= ——,

'
g& J S,. S&, we have the

Zeeman term H, = —~0$, S', , where ~o=gpeh'"',
with h'"' being the magnitude of the applied exter-
nal field, g the gyromagnetic ratio, and p,~ the
Bohr magneton. The direction of the applied field
is taken to be the positive z axis, as is, of course,
the direction of any magnetic order present in this
case. It is easily found that the effect of H, is to
simply add the contributions vi~obs,'(t) to the equa-
tions of motion for 5S,'(t). [See Eq. (11).] These
additions are incorporated without change in the
formal structure of the theory by letting

z„,s'. ..(t)- -~,5. ..+z„,s'. ..(t) (al)
in the h matrix [Eq. (15)] in the final results for
the coupled equations of motion for the 5' functions

second moment of F;(t) is also the second moment
of f;(t). ] After a rather lengthy but straightfor-
ward calculation, we find in a manner similar to
the corresponding derivation for the ferromagnet
that Fr(t) satisfies the equation

F:(t)= —f, dt' g(t —t')F,'(t'), (A12)

where

(A13)

[Eqs. (27)], the equation for F', (t) remains the
same but the terms via&OF,'(t) are added to the
right-hand sides of the equations for F,'(t).

b. Anisotxojic Heisenberg Harniltonian. For
the case of axial symmetry around the z. axis the
Hamiltonian is

H= ——Z [J' S)s~+J (S(s~+S",S~~)] .1
(a2)

The only difference now in the development is that
we must keep track of the components of the ex-
change interaction. Again, we can write the equa-
tion of motion for 5S,"(t) in the same manner as
Eq. (13), but where the components of the matrix
h, ,.(t) are now

where

~;;,s; „(t)

0 J„S,, (() —4,, 8;,, (t))
(as)

(a4)

The resulting equations of motion for F, (t) are

F';(t) = ——Z,, Z,(9
Jp

dt' [C,.(t —t')F,'q. (t —t')

+ c;,(t - t')F;,, (t - t')] F', (t'),

F;(t) = W,", St F;(t)
(a5)

-Z.. .
dt'I-', z,",!c;,(t- t')F;,.(t- t')

4p

+ z,",,' [c,', (t - t') —5,, ,s't"]

x F', ,, (t —t')}F;(t'),

F;(t) = [F;(t)]*,
where

(1)
qq' q. ,q - q'

(2) LT TT
&qq =~q.q-"~q-", q ~

(3),TL TL
qq'.

(a8)

c. Reduced diPolar Harniltonian. For a system
of pure interacting dipoles, it has been shown43 44

that with the application of an external magnetic
field the Hamiltonian can be put into the form

H = Hg + H„+H ', (a7)

where H, is the Zeeman Hamiltonian, H„is the so-
called truncated or reduced dipolar Hamiltonian,
and H' contains the truncated off-diagonal terms
of the dipolar interaction. The reduced Hamil-
tonian is of the anisotropic Heisenberg form (a2)
with
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g ((1 Secs 8(g (( r y (1 —6cos 8(y

(aS)
where y=gp~ and L9&,- is the angle r,&

makes with the
direction of the ayylied field. If the strength of
the dipole interaction is weak compared with the
Zeeman energy splitting, then the effect of H„is to
broaden the transitions between adjacent Zeeman
levels (as induced for example in magnetic reso-
nance experiments with an alternating rf magnetic
field of frequency -0 applied perpendicular to the
static field). The effect of H' enters only in sec-
ond order in perturbation theory and leads primari-
ly to "forbidden" transitions between the zero-or-
der Zeeman states; it is seen in resonance experi-
ments as weak satellite lines separated by +0 from
the primary Zeeman transition at = +0. Thus, if
we are interested only in calculating the shape of
the primary resonance line, we can omit 0' from
the Hamiltonian (87). We are then led to a com-
bination of the two previous cases. In particular,
in E(is. (85), we need only add the terms + i&uoF,'.(t)
to the right-hand sides of the e(luations for F,'(t).
We note that an isotropic-exchange Hamiltonian
may be added to (B7) without changing the discus-
sion, and hence exchange narrowing can be in-
cluded.

APPENDIX C: CALCULATION OF EXACT SECOND
MOMENT FOR CLASSICAL CHAIN

We compute the second moment of the spin-fluc-
tuation spectrum of the classical chain directly
from its definition

g) iid E,(t) C,(0)dt, () C,
(Cl)

where C, = (S, S, ) is given by E(l. (41). We con-
sider only the case of the isotropic-Heisenberg
chain with nearest-neighbor interactions,
H= —J'„g,S, ~ S,.(. As all directions are e(iuiva-
lent for the macroscopic-ensemble average, we
write (Cl) as

(~,') = —c;(o)/c;. , (C2)

where C'= 3 C, and C', is given in terms of spatial
correlation functions as

C'= Z (S~S' )e "

=-—Z (S'[[S' HJ H])e '"1

where we have utilized the equations of motion i9~
= [ S~, H]. From the e(lual-time spin commutation
relations, we find that the (luantities (S;Sg~ ) can
be expressed in terms of certain four-spin correla-
tion functions of the general form

((y6(rt r i r ) = (St Sl+rS(+t'+ r'slur +r'+r" ) i
(c4)

where n, p, y, 5 denote the indices +, e, —and r,
~', g" are non-negative integers denoting the rela-
tive spin locations along the chain. Without loss
of generality we have labeled the first spin in (C4)
as one, and we close the chain with periodic bound-
ary conditions so that S„,1= S1.

The quantities (C4) can be computed exactly-for
the classical case only-using the transfer matrix
technique4 '4 along the lines used by Fisher in
calculating the two spin-static correlations. Using
the abbreviated notation C' ' = C,'~„(r,r', r") we
write (C4)

1C' = — dn dn
Z 1 2

-gH e g y 6
X dN S1S1+rS1+r+r'S1+r+r'+r''

dQ1 d02 ~ ~

zg

Sl slur 1+~+v' 1+r+t" +r"

where 0, is the solid angle corresponding to the
direction of S, , Z is the partition function

z= fan, fan, "fan„e
= fan, fan, "

&&f dnN A(s(, S2)A(S2, Q) A(S„,Sq) (Cs)

and A(s, S') is the transfer matrix defined by

A(s S&) eEs ' s'

=2 x 1 "(s)y""(s') (c7)

Here, K= pZ„, Y'( (S) are the spherical harmonics,
E & 0 and I is summed from —E to + l, and the
eigenvalues X, are given by X, = (-1)'j,(iK), where

j, (iK) are the spherical Bessel functions having
purely imaginary arguments. (For convenience
we differ somewhat in notation in this appendix
from the main text by letting E be a signed param-
eter, the sign being that of J„.) We can carry out
immediately all angular integrations in (C5), ex-
cept those over F1, d01+r, d01+r+r' &

and

dQ„„,„,,„„,using the orthonormality of the Y, ' s

fdn r", *(n)1 „'(n)= 5„,5 „, (cs)

to obtain

C(4) 1 ~r ~r' ~r" yN- r - r' -r"
Z l 1l2l3l4 l1 l2 l3 l4

m1m2m3m4
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X QQ Ymi S~Ym2 yg Yma*S~ Yms
l2 l3

d&YSSY4ls (cs)

(Clo)

contribution reduces to

r +rtt
gfi(2(&)() '1

S S ( 1)(2+)
t

Upon making use of the facts

t'1 1 2 ~ 2

&0 o o =is'

{ci8)

As N- ~, the ratio (A,, /Ao)"-0 for f & 1, and we
have Z = Xg and X,4- g in (CS). Hence C'4' becomes

C'd=Z (~) ( ) ( (

dQF 2" F ~

QQ Ym&*S~ Ym2 QQ Ym2*S~ Ym3
l3

ek

1 1 2 = 0 unless m = —(n+ P),n p m

we have as our result for C'4'

+ r
( (4& 2 ~(2(&2'6 ~ ( 1)(2d 2 S9 I)» g |y»5

ILQ

did Y)))g12 g6 Y 0 (Ci])

Making the correspondence +-1, z- 0, and -- —1
we note that S is given in terms of F& as

S =f gf~ Y;(n), (ci2)

where f&~=-&2, ho=i, 5 ~=a 2. Substituting
(C12) into (Cll) and using Yoo= 1/v'4», we can
carry out two more of the angular integrations,
again using the orthonormality condition (C8), ob-
taining

rlI
c(4& =—&T Bngy6Z (- 1) Xl2

9 l gmg 0

((a 2 -(++2)) (C1S)

With this definition and evaluating the correspond-
ing Wigner symbols, the matrix D is given ex-
plicitly by

To express our result in a more compact form, we
introduce a 3x3 matrix D whose elements D .~ are
defined by

X dA Yi Y~i Y", & dQ Y~qY'Y "a
2 (C13)

1
D=ms +2 (C20)

We then have

r +rsr
A.C"&=a~"' ~ 2 (-i)"(2f+1) ~

A.0
l, m

0

But

000~nz000y5 —rn

(Cl 5)

000 =0

(corresponding to the fact that fdQ YP& YP~Y$3= 0),
and therefore the 5=1 terms drop out. The I=0

where 8 ~'=5"5~5"5' and la is summed from zero
to two.

The two remaining angular integrals can be ex-
pressed in terms of the 3 n-j symbols of Wigner in
the following manner4~4:

(2)~+ () (2(~+ 1) (2)~+ 1))'~

lg l2 lg li lz s l~ (C14).
0 0 0 mg mg ma)

A.&/Q=u(Ã) = cothZ-1/K,
(c22)

~, /~, = i —su(&)/A-.

We note in passing that (C21) applies equally well
when one or more of the y's are zero.

It is now quite straightforward to combine Eq.
(CS) with the result (C21) to produce the correla-
tion function C':

~ . 4Z'„u(lf), (c28)

We note that the contribution from the l &2 terms
of the series in (CS) cancel exactly t( zero, i.e. ,

with the rows and columns labeled in the order +,
0, —. Our final result for C'4' is

r +r''
C."„',(~, r', r")=pa""' -1 (- i)""s. ,s„,

0.2(-))-
(
—") C.,C„2.., „,,

(c2i)
where, from the definition of the eigenvalues X, ,
we have
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(C23) arises solely from the terms ( S', S't) and

(StS'„t) in (CS). Finally, from (C2) we obtain
the exact second moment of the classical chain

(tc, ),„„,=44„, a (1-cosq) (1+ua —2ucosq) ."E(1 —u

(C24)
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