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The effects of temperature r,{4-500)'K] and hydrostatic pressure {0-4kbar) on the static
dielectric constants ~, and &~ and on the frequencies of the four Haman-active phonons B~~,
E~, A~~, and 82~ of single-crystal rutile were investigated. The temperature and pressure
dependence of the frequency of the infrared-active soft ferroelectric (FE) mode A» were
deduced from the dielectric-constant data. The Gr6neisen parameter y of each of the modes
was determined. Particularly important are the results that y(A2„) is large and increases
with decreasing temperature —unique properties of the FEmode-and that y(Bq~) is relatively
large and negative. This latter result, which is in agreement with an earlier measurement,
may be significant from the standpoint of a pressure-induced phase transition in rutile. The
temperature and pressure results are combined with thermal expansion and compressibility
data to evaluate the pure-volume and pure-temperature contributions to the isobaric temper-
ature dependence of each of the frequencies and dielectric constants. The results yield some
important conclusions about the lattice dynamics of rutile. The pure-temperature contribu-
tion arises from cubic and quartic anharmonicities. It plays a dominant role in determining
the anharmonic self-energy shift of the FE mode and accounts for 20% of the mode energy
at 800 'K. The Szigeti effective ionic-charge ratio for rutile is found to be e /s =0.64 at
4 'K and 0.62 at 296 'K. These results are discussed briefly.

I. INTRODUCTION

The tetragonal form of titanium dioxide (Tioa,
rutile) is a crystal of considerable fundamental
and applied interest. Its dielectric, ' optical, '

and elastic4 properties have been subjects of re-
cent interest. Very recently, a detailed experi-
mental and theoretical study of its lattice dynam-
ics, based on coherent inelastic neutron scattering
measurements, was reported by Traylor et al. 5

Among rutile's most interesting properties are
its high-static dielectric constants which increase
with decreasing temperature obeying a modified
Curie-gneiss law. It is now known~' that this be-
havior is associated with the presence in rutile of
a soft long-wavelength transverse-optic (TO)
phonon (the so-called ferroeiectric mode), as in
the case of the ferroelectric (FE) perovskites.
The frequency of this mode decreases with de-
creasing temperature. However, diel. ectric mea-
surements down to -1 K do not show any evidence
for a transition, and so like some perovskites,
notably KTaO„rutile can be classified as an in-
cipient ferroelectric. Another pertinent feature
is that the Ti-0 framework in rutile is very sim-
ilar to that in the perovskites in that it consists
of Ti ions octahedrally surrounded by oxygens.

In rutile, as well as in the perovskites, anhar-
monicities resulting from interactions among the
normal modes of vibration play important roles in

the lattice dynamics of these crystals. These an-
harmonic effects cause the energies (or frequen-
cies) of the normal modes to be temperature de-
pendent. This temperature dependence arises in
two different ways. First, there is a pure-volume
effect associated with the thermal expansion of
the crystal. Second, there is a pure-temperature
effect which is present even when the crystal is
held at constant volume. Isobaric measurements
of the temperature dependence of the phonon fre-
quencies and other associated physical properties
yield changes due to the combination of the two ef-
fects. However, measurements of both the pres-
sure and temperature dependence of these proper-
ties allow a separation of the volume-dependent
and volume-independent contributions, and under
suitable conditions make it possible to determine
the magnitude and origin of the anharmonicity.

Motivated by the above considerations, we per-
formed a detailed study of the temperature and
pressure dependence of the static dielectric con-
stants and of the Raman-active phonon frequencies
in rutile. The purpose of this paper is to present
and discuss the results which yield important in-
formation concerning the lattice dynamics of this
crystal. In Sec. II we review briefly the crystal
structure and the nature of the pertinent optic
modes. Section III describes the experimental
details. The results are presented and discussed
in Sec. IV, and finally Sec. V provides an over-
all summary and conclusions.
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II. CRYSTAL STRUCTURE AND OPTICAL PHONONS
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FIG. 1. Rutile structure and q = 0 displacements,
viewed along t'he c axis, for the soft A» mode and Haman
active modes.

Rutile is tetragonal with two TiO~ molecules per
primitive unit cell and belongs to the space group
D,'~4-P4/mnm. The 15 optic modes have the ir-
reducible representations" 1A„+1Az, + 1Az„+1B«
+ 1'~+ 2Big+ lE~+ 3E„. Modes of symmetry A, ~

B&g Bzg and Eg are Raman active and mod es of
symmetry A~„and E„are infrared active. Figure
1 shows the spatial arrangement of the ions in the
unit cell along with the q =0 displacements of the
Raman-active modes and the Aa„mode.

The Az„(1",) mode is of special interest; it con-
sists of displacements of the positively charged
Ti ions against the negatively charged oxygen octa-
hedra in a manner similar to the "Slater" mode in
the perovskites. It is the only polar mode with

c axisdisplacements andis the soft FE (TO) mode
of the crystal. The temperature and pressure de-
pendence of the soft Aa„mode frequency were de-
duced from dielectric constant data and these de-
pendences were directly measured for the Rarnan-
active modes.

III. EXPERIMENTAL DETAILS

A. Samples

Measurements were made on x-ray-oriented
single crystals cut from a good quality boule pur-
chased from the National Lead Co. (South Amboy,
N. J.). Chemical analysis showed that the boule
was of high purity containing & 1Q ppm each of Si,
Zr, K, Ag, Ba, Cu, and B and & 1 ppm each of
Na, Ca, and Mg. Other elements were sought but
not detected within resolution limits of 1-200 ppm.
The samples used for the dielectric constant mea-
surements were typically 0.30-Q. 50 cm in area
and 0.06-0. 09 cm thick oriented with either the

c or a axis perpendicular to the large faces. These
faces were vapor coated with aluminum e1.ectrodes.
The sample used for the Raman scattering mea-
surements was a cube (= 0.30 cm~) cut with the
a and c axes perpendicular to the faces.

B. Dielectric Measurements

The dielectric constants were determined from
capacitance measurements (to+0. 2/o) performed
at 100 kHz using a General Radio model No. 1615-A
capacitance bridge. It is known that the static
dielectric constants of rutile, especially e„ex-
hibit substantial frequency dependence at low fre-
quency, "associated with surface effects and the
presence of oxygen vacancies. We measured the
frequency dependence of e, and e, at 295 'K for
our crystals. e, was found to decrease slightly
up to 5X 10 Hz and was frequency independent
above that, while e, showed a large decrease with

increasing frequency and became constant at fre-
quencies & 10' Hz. Consequently, all subsequent
measurements were carried out at 10' Hz as val-
ues of c, and e, at this frequency represent the
true values for the crystal. The crystals were
lightly held inside a beryllium copper (Beryllco
25 hardened to HC 39-41) cell which also served
as the high-pressure cell. Shielded electrical
high-pressure feed throughs as described by Ham-
mons' were employed. Measurements were made
either at constant temperature or at heating or
cooling rates & 0. 2 'K/min. Temperature changes
were measured (to +0. 1'K) using Cu-constantan
thermocouples down to -30'K and Cu-AuFe thermo-
couples (to +0. 1 'K) at lower temperatures. The
temperature dependences of &, and &, were mea-
sured at 1 bar over the range 4-300 'K and the
pressure dependences were measured up to 4. 2
kbar at a number of temperatures between 4 and
295 'K using helium (He) gas as the pressure
transmitting fluid. Since He solidifies at high
pressure at 4 K, the pressure was applied at high
temperature, where the He was gaseous. The
cell was then cooled to 4 'K at essentially constant
volume and the pressure decrease with decreasing
temperature in the solid phase was corrected to
constant pressure using Dugdale's9 He isochore
data. The system used to compress the He gas
is similar to that described by Schirber. '

C. Raman Measurements

The Baman spectra were obtained with an argon
laser operating at 4880 A with incident power
-100 mw. The sample was a polished single crys-
tal with faces normal to the c and a axes. Light
scattered at 90' to the incident beam was analyzed
with a double-grating spectrometer and detected
with a cooled photomultiplier (PM). Signals from
the PM were measured using photon counting elec-
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tronics and the output was plotted on a recorder.
To obtain thetemperature variation of the Raman-

active modes, the sample was mounted in a vari-
able temperature Dewar and cooled with the boil
off from liquid helium for T & 295 'K. The tem-
perature was stabilized to + 0. 1 'K and monitored
at the sample block using either Ge or Pt resis-
tance thermometers. For T & 295 'K the sample
was mounted in an oven and the temperature was
measured with a thermoeouple.

The hydrostatic optical pressure cell used in
these experiments was similar to that used by
Brafman et al. " It was made of nickel maraging
steel and had three optic windows of fused silica
to allow a 90' scattering geometry. The pressure
fluid was Isopar H (Humble Oil Co. ). Pressure
was measured to + 20 psi with a Heise Bourdon
tube gauge calibrated against a dead-weight gauge.

D. Compressibility and Thermal Expansions

In calculating the dielectric constants (e) from
the measured capacitances (C) at different pres-
sures and temperatures it is necessary to take
into account changes in sample dimensions due to
compression and thermal expansion. Recall that
e = Ct/eoA, where t is the thickness of the sample,
A is its area, and @0=8.85&& 10 '~ F/m is the per-
mittivity of free space. The dimensional correc-
tions for an anisotropic crystal such as rutile are
easily made if the axial compressibilities and
thermal expansivities are known. The compress-
ibility and thermal expansion are of added impor-
tance to us since they enter into much of the anal-
ysis and discussion in the rest of the paper.

The effects of temperature from 4 to 13QQ'K on
the lattice parameters a and c of rutile have been
measured by Mauer and Bolz of the U. S. National.
Bureau of Standards using powder x-ray-diffrac-
tion techniques. The data were kindly made avail-
abl. e to us by Mauer. Representative values of
the lattice parameters a (c) in A are 4. 5869(2. 9536),
4. 5875(2. 9538), 4. 5888(2. 9551), and4. 5931(2.9586)
at 4. 2, 77. 3, 150, and 298'K, respectivel. y. Val-
ues of the volume expansion coeff icient P =—(B in V/BT) I,
calculated from the data wil. l be presented in Sec.
IV (see Table II). The thermal expansion of ru-
tile has also been reported by Kirby' from 100 to
'70Q'K using an interferometric technique. There
is good agreement between the two measurements.

The axial compressibilities were calculated
from the 298 'K elastic constants reported by Man-
ghnani. 4 For a tetragonal l.attice the necessary
constants are c», c,~, c&3 and c33 The eom-
pressibilities are then calculated by standard
formulas. " The elastic constants of course yield
the adiabatic compressibilities, but the small dif-
ferences between these and the needed isothermal
compressibilities are insignificant for our pur-

poses. The calculated compressibilities are
K:——(Blna/BP)r = 1.93 && 10 ' kbar ' and z, =-- ( Blue/
BP)r =0.87X10 kbar '. The volume compressi-
bility is then simply z —= —(B lnV/BP)r = 2K + K,

'73 x ] Q kbar ', a relatively small value. Man-
ghnani also measured the elastic constants at sev-
eral temperatures up to 373 'K. His results show
that v increases by -1.8/obetween 298 and 373 'K.
For our purposes we need the v's at low tempera-
tures. In the absence of low-temperature elastic
constant data we assume that v varies linearly
with temperature over the range of interest and
with the slope indicated above. On this basis we
estimate a decrease in v of -7% between 298 and
4'K. This should be a good estimate, and one can
easily show that even substantial uncertainties in
it do not significantly affect our conclusions.

IV. RESULTS AND DISCUSSION

A. Dselectrsc Constants

1. Temperature and Pressure Effects

Figure 2 shows the variation of the reciprocal.
dielectric constants with temperature at 1 bar.
The crystal is quite anisotropic with e, increasing
from 166.7 at 296 'K to 251 at 4 K, while E, in-
creases from 89. 8 to 114.9 over the same range.
These values are slightly different from those re-
ported by Parker' but the differences can be ac-
counted for on the basis of the fact that the orien-
tation of our c sample was Q. 8 off axis, and that
of the a sample was 1.5 off axis. Otherwise the
agreement with Parker's results is excellent.

The data can be very well fitted over the whole
temperature range by the modified Curie-Weiss
law

C~=A+,
—,
' T,coth(T, /2T) —To

'

which was first derived (with A = 0) by Barrett"
to describe the deviations from the simple Curie-
Weiss behavior in the perovskites at low tempera-
tures. In this equation A, C, T;, and To are con-
stants at any given pressure. We shall comment
on their values and pressure dependences, as well
as on the validity of Eq. (1), later. The equation
reduces to a =A+ C/(-,'T, —T~) -=const as T-O and
to e =A+ C/(T —To) at high temperatures. The
solid lines in Fig. 2 represent least-squares fits
of the data to Eq. (1). Values of the parameters
are shown in Table I. The dashed lines in Fig. 2
indicate the T range over which a simple Curie-
vVeiss law t = C/(T —To) is approximately valid.
We note that values of C and To determined from
these da.shed lines, namely, C=1.2x10' K and
To= —430 K for the c axis and C=9.6x10 'K and

To= —790'K for the a axis, are considerably dif-
ferent from those determined from Eq. (1) (see
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TABLE I. Values of the parameters A, C, T~, and Tp and some of their logarithmic pressure derivatives for rutile.
The parameters were determined from least-squares fits of the static dielectric constants &~ (T) and &~ (T) data to Eq.
(1). Similar data for KTa03 are listed for comparison.

C
(10' K)

d lnC
dP

{% kbar-')
Tj

(K)

de
dP

( K l bar-~)
Tp

(K)

dT0
dP

( K kbar-')

Ti02

KTa03

(c axis)

(a axis)

81.7

60. 9

48. 3

3.95
(12.o)'

1.39
(9.6)'
5. 52

—0, 5 135.4

156. 8

—0. 8 53.3

2. 0

1.9

-165, 9
—(43o)'
-178.9

-(79o).
11,8

—1 9

—4. 6

Values determined from the dashed lines in Fig. 2 based on a simple Curie-Weiss law for &(T).
Values determined by Abel (Ref. 16).

Table I).
Figure 3 shows the pressure dependences of e,

and e, at various temperatures. The decreases
are linear over the 4-kbar range of the measure-
ments.

Values of e„e„and their temperature and

pressure derivatives at different temperatures
are summarized in Table II. These values have
been corrected for the small dimensional changes
of the samples due to volume expansion and com-
pression.

The combination of the temperature and pressure

data presented above allow us to use Eq. (l) to
evaluate the pressure derivatives of the quantities
C, T&, and T'o. Following the procedure recently
outlined by Abel" [his Eqs. (3)-(5)] we obtained the
values summarized in Table I. For comparison
the table also gives the corresponding values for
the incipient ferroelectric KTa03 as determined
by Abel. Note that the pressure derivatives are
quite comparable in both sign and magnitude for
the two crystals.

The parameter A is the T-independent contribu-
tion to the polarizability (or e) and was found for

1 l I I f I I ( I I I i I I
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FIG. 2. Temperature dependences
of the reciprocal static dielectric
constants along the a and c axes. The
solid lines are fits of the data to Eq.
{1),whereas the dashed lines depict
the range where the simple Curie-
Weiss law is approximately valid.
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TABLE II. Ualues of the static dielectric constants (&) of rutile and their logarithmic pressure and temperature
derivatives. Also listed are the volume thermal-expansion coefficient (P) and volume compressibility (~). The mea, —

sured isobaric temperature derivatives are separated into their pure-volume and pure-temperature contributions.

T
(K)

p
(10-'K-')

K

(10 4 kbar &)

(),
(10 3 kbar i) (10~4 gK~f )

8 ln& 8 ln&

(10" 'K ) (10 4'K i)

4. 0 c axis 251.0
a axis 114.9

75. 6 c axis 233. 6
a axis 110.6

165.0 c axis 167.9

250. 0 c axis 175.2

296, 0 c axis 166.7
g axis 89. 8

0. 96

1.68

2. 14

2. 35

4, 40

4.48

4, 58

4. 68

4. 73

—11,8+0.3
—5, 18+0.10

—11.7+0.1
—5, 14+0, 07

-9.1 + 0. 1

-7.6+0.1

-7.2+0. 1
-3.47 +0. 04

~ 0
~ p

—18.6 + 0. 4
—11.6+0, 3

—16.3 +0, 3

—12.0+0.3

-9.9+0.3
-6.5+0.2

~ 0
~ p

2. 5
1.1
3.4

3.5
1.8

~ p
~ p

-21.1
12 ~ 7

-19.7
-15.5
-13.4
—8.3

KTa03 to be independent of pressure within experi-
mental error. " It presumably represents con-
tributions to e from the electronic polarizabilities
and lattice modes other than the soft FE mode.

Its value is quite large and substantially higher
for rutile than for KTaO, . The reason for this is
not completely understood, but an important con-
sideration must be the fact that in rutile some of
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FIG. 3. Isothermal pressure de-

pendence of ~, and ~, at various tem-
peratures.
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the oxygen-oxygen distances are smaller than
usual. ' Thus, nonpolar optic vibrations of the
crystal may lead to large electronic deformations
and hence large contributions to the ionic polnriz-
ability, despite the fact that (along the c axis for
example) only the FE mode is polar. Such effects
add an extra contribution to e. That this is indeed
likely to be the case is evidenced by the fact that
rutile exhibits much larger second-order Baman
scattering intensity than do many other crystals
having the rutile structure. This has been noted
in the literature3 and was evident in our Raman
studies of rutile.

The pressure dependence of the parameters C,
T„and To in Eq. (1) can be qualitatively under-
stood in the following way. Equation (1), with
A = 0, was derived by Barrett" to account for the
deviation of e from a simple Curie-Weiss law at
low temperatures observed for several. perovskites
with low Curie-Weiss temperatures (To), e.g. ,
KTaO~ and SrTiO, . The crystal is treated as a
system of independent ions in anharmonic potential
wells, and the ionic polarizabilities were treated
quantum mechanically. The ground state of the
ion has energy equal to kT„so that for T & T, all
ions are in their lowest energy states and lowering
7 further causes no change in polarizability or e.
Thus, one can view T, as the temperature below
which deviation from the-simple Curie-gneiss law
occurs. An examination of the dashed lines in
Fig. 2 suggests that T& should be -70'K; however,
the best fits of the data to Eq. (1) (solid lines)
yield values of T, nearly twice this large (see
Table I). This results from the fact that A has a
relatively large value. The increase in T, with
pressure is to be expected if in fact Tj is related
to the ground-state energy of the ion. Reducing
the interionic separation raises the ground-state
energy and hence T, ."

Barrett expressed C and To in terms of constants
appearing in the anharmonic potential, but they
could not be evaluated from first principles, and
are therefore treated as empirically determined
parameters. The pressure derivatives of C and

To for rutile (Table I) are quite comparable to
those observed for many perovskites. The de-
crease of T'0 with pressure is associated with an
increase in the frequency of the soft FE mode
(see discussion below) and the decrease in C can
also be qualitatively rationalized in terms of the
pressure dependences of the polarization and soft
mode parameters as discussed elsewhere. "

The Barrett treatment suffers a difficulty in
attempting to treat experimental results quantita-
tively. As was first pointed out by Abel, " the
theory predicts a relationship between the pressure
derivatives of C, T„and To IAbel' s Eq. (7)] which
was not consistent with measurements on KTa03.

The same difficulty is encountered in treating the
present rutile results.

Finally, we note that the qualitative features of
the pressure and temperature dependences of the
dielectric constants discussed above, and in par-
ticular the increase in T& with pressure, were
recently treated from a completely different point
of view by Gillis. " We shall comment briefly on
his results in Sec. IV 8.

(cine) (s i~[
)

(iiine
) (aine)

I

li(sin~) (iiine) (2a)

where P —= (9 lnV/BT)~ is the volume thermal-ex-
pansion coefficient and v = —(&1nV/SP)r is the iso-
thermal volume compressibility. Thus the con-
stant volume contribution can be evaluated from
the measured isobaric and isothermal derivatives
and a knowledge of P and li. Table II summarizes
the results for the two crystallographic orienta-
tions. It is clear from these results that the pure-
volume and pure-temperature contributions are
opposite in sign and that the pure-temperature
effect (s ine/&T)» is by far the predominant term
in determining the isobaric temperature depen-
dence of e. This is unlike the behavior of normal
ionic crystals such as the alkali halides where
(81ne/ST)» is very small and the pure-volume con-
tr ibution dominates. That the pur e-temperature
effect dominates in rutile is of course expected
since both &, and e, decrease with pressure and
also exhibit large and anomalous decreases with
increasing T. The results in Table II just make
this fact more quantitative.

The above conclusion is made more explicit by
evaluating the pure volume and pure temperature
changes in & over the whole temperature range
covered by the measurements. To do so we re-
write Eq. (2a) in the form

(2b)

In this notation (her)~ is the measured change in
e on raising the temperature from 0 to T K at
constant pressure (1 bar); (&er)» is the change in
e caused by raising the temperature from 0 to

2. Explicit Volume and Temperature Dependence of c

The measured temperature dependence of the
dielectric constant at constant pressure arises
from two contributions'~: (i) the change which
arises solely from the change in lattice spacings
or density, i. e. , the explicit volume effect and
(ii) the explicit temperature dependence which
would occur even if the volume of the sample were
to remain fixed. Writing e =e(V, T) we then have
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T'K at constant volume, that being the volume of
the crystal at 0 'K and 1 bar; -(&ez)r is the change
in & caused by raising the pressure at constant
temperature T from 1 bar to a value P sufficient
to produce a volume change equal in magnitude to
that caused by raising the I.emperature from 0 to
T 'K at 1 bar. It is readily evaluated from e(P)
data and the known compressibility and thermal
expansion. Obviously, this term enters with a
negative sign [Eq. (2a)] since the signs of the com-
pressibility and thermal expansion of rutile are
normal, i. e. , &V is positive on heating and neg-
ative on compression. The experimental e(T, P)
data yield the results in Fig. 4. These results
clearly show the dominance of the pure tempera-
ture effect at all temperatures in determining the
isobaric e(1') dependences of both e, and e,.

The above results for rutile are very similar
to those obtained for many paraelectric perovskites
and incipient ferroelectrics. For such materials
it is customary to discuss the temperature depen-
dence of e in terms of either (i) a "near" polariza-
tion catastrophe, ' whereby on lowering the tern-
perature the polarization fluctuations become
large and the local fields increase faster than the
elastic restoring forces or (ii) a "soft" TO phonon
whose frequency decreases with decreasing tem-
perature. These two approaches are, in fact,
two different ways of saying the same thing, and
they are related via the Lyddane-Sachs-Teller
(LST) relation. I

In terms of the polarization catastrophe, the
static and high-frequency (e ) dielectric constants
are related via the local fields at the various lat-

tice sites to either macroscopic or to microscopic
polarizabilities of the individual ions. ' ' Using
the resulting generalized Clausius —Mossotti re-
lationship, measurements of the pressure and
temperature dependences of the dielectric con-
stants can be combined to evaluate the explicit
volume and temperature dependences of the polar-
izabilities.

The pressure and temperature dependences of
the e„'s of rutile are known and are much smaller
than those of the static constants~~: The logarithmic
pressure derivatives at 295 K are 8. 5&&10 5 kbar '
and -34 && 10 kbar ' and the logarithmic temperature
derivatives at 1 bar are -- 3. 5 X10 ' 'K ' and-—5. 3 ~ 10 ' 'K ' for e, and e „respectively.

Making use of this and following earlier pro-
cedures, we find that it is the explicit T depen-
dence of the lattice (or infrared) polarizability
n„, i. e. , (Bo.', „/BT)~, which makes the dominant
contribution to the T dependence of the static di-
electric constants at constant pressure. This
explicit T dependence of &„arises from anhar-
monic terms in the crystal potential and relates
directly to the T dependence of the phonon fre-
quencies, hence the question of "soft" TO phonons
which will be discussed below.

B. Relationship between e and the Soft-Mode Frequency

It has been shown ' ' that for a uniaxial crys-
tal such as rutile, the generalized LST relation-
ship can be written (for the c axis)

(q=o)

20—
I I I I I I I I I I I I I I I I

-(~&p)
P T

0—

-20—

-40—

-60—

FIG. 4. Changes in the static di-
electric constants &, and &~ of rutile
due to the pure-volume —(De&)T and
pure-temperature (&~~)z effects.

C~

I I I I I I I I I I I I I I I I

100 200

TaePERATURE ( K)
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(4)

As is generally true, e and &«should be nearly
independent of temperature and the large tempera-
ture dependence of e, should be associated with
that of ~To(—= +&, where the subscript f indicates
the FE mode) in such a manner that

&,& = const. (5)

That the large increase in e, on cooling is almost
completely due to a decrease in & according to
Eq. (5) is shown in Fig. 5 where we plot &@a& vs T.
The data points represent the recent results of
Traylor et al. ' determined directly from inelastic
neutron scattering measurements. The solid line
is deduced from our e, (T) data and the use of Eq.
(5), where the constant was evaluated from the
known room-temperature (300'K) values of e,
= 166.2 and ~z = 172 cm '. Within the + I /p uncer-
tainty of the neutron-determined frequencies the
agreement between the two results is quite good.
We note briefly that unlike SrTio„where &a&(T)

is linear over a relatively large T range above- 5P 'K, rutile exhibits a large deviation from lin-
earity at high temperature, and in this respect
it resembles more closely KTaO~. 4' This is of

with a similar expression for the a axis. Here
+» and &uTo are the long-wavelength (q = 0) longi-
tudinal- and transverse-optic phonon frequencies.
The product is taken over all of the optic modes
i. As mentioned earlier (Sec. II) rutile has only
one pair of LO- TO polar modes with displace-
ments along the c axis, namely, the FE mode of
symmetry A~„. The c axis expression then reduces
to the simple form

TABLE III. Values of the soft-mode frequency &
and the logarithmic pressure derivatives of ~f and the
c-axis static dielectric constant ~, of rutile at different
temperatures.

4
75. 6

165
250
300

(cm-')

142
148
159
168
172

(% kbar x)

—l. 18
1Q 17

—0. 91
—0. 76
—0, 72

{%kbar )

0.59
0. 58
0. 45
0.38
0, 36

'Values taken from Ref. 5.

course also manifested by the fact that e, (T) does
not obey a simple Curie-Weiss law. We shaH
come back to a discussion of the &uz(T) dependence
later.

From the above considerations it is seen that
measurements of e, give us essentiaHy direct in-
formation on +&. We make use of this fact in de-
ducing the effect of pressure on &u& from the e, (P)
data. This was necessary because the A2„mode
is not Raman active and we could not measure
~&(P) directly. From Eq. (5) it follows that

8ln& ~ ~ln6~
(6)

Table III gives values of these two quantities as
well as & at different temperatures.

The increase in ~& with pressure is to be ex-
pected. An examination of the displacements as-
sociated with this soft mode (Fig. 1) suggests that
& should increase as we decrease the interionic
distances. As in the case of the perovskites,

3.0—
[ i

/

&

/

}
f

I
J

I
/

I
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I
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2. 6

2.4
3

2. 2

FIG. 5. Comparison of the tem-
perature dependence of the soft-mode
frequency squared from neutron scat-
tering and dielectric constant measure-
ments. The dashed curve represents
a fit of the neutron data to Eq. (7).

2. 0
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40 80 120 160 200 240 280 320

TEMPERATURE ( K)



PRESSURE AND TEMPERATURE DEPENDENCE OF THE STATIC. . . 1139

the magnitude of the increase is relatively large
considering the fact that the increase in crystal
density is only =0.05%kbar ' for rutile. This
feature and the increase in 8 Into&/8P with de-
creasing temperature are manifestations of the
unique properties of the FE mode. The frequency
~ of this mode is determined by a balance between
short-range and Coulomb forces. The short-
range forces increase more rapidly with in-
creasing pressure than do the Coulomb forces,
and thus a small variation in crystal volume leads
to arelativelylarge change in ~&, and this effect be-
comes fractionally larger as & becomes smaller.

The pressure and temperature dependences of
& and ~ of rutile can also be qualitatively treated
in a manner similar to that recently employed by
Gillis. ' Using a model paraelectric crystal with
nearest-neighbor anharmonic short-range inter-
action and a harmonic dipolar interaction and em-
ploying a self-consistent renormalization proce-
dure for the frequency spectrum, he was able
to qualitatively reproduce the increase in f and

Tj with pressure observed for KTaO3. " His re-
sults should be equally applicable for rutile. The
increase in ~& with pressure can be understood on
physical arguments similar to those advanced in
the above paragraph. The increase in T„on the
other hand, can be understood by observing that
the theory shows that the degree to which the lin-
ear temperature dependence of && extends into

the low-temperature regime is strongly dependent
on the density of occupied q = 0 soft modes with
k&u/kT & 1. The density of such modes decreases
with increasing pressure leading to an increase
in T, (see Sec. IVA).

Finally, we comment that the excellent fit of
the e(T) data to the Barrett expression [Eq. (I)]
indicates that the ~z(T) data can also be well fitted
by a similar expression appropriately related to
Eq. (1). However, in view of the question raised
earlier as to the interpretation of Eq. (1), which
is based on an anharmonic oscillator model, it is
worth noting that the ~&(T) data can be very well
fit by the quasiharmonic model expression

N&
——(do+ f p((d)n(&d, T) d(d

B(&8g/T I)-1 (7)

suggested by Worlock. 3' Here o is the value of
~& at 0'K, p(&u) is a density function which ac-
counts for the anharmonic interactions (related to
n, defined later), and n(&u, T) is the phonon occupa-
tion number. The second equality in Eq. (7) fol-
lows from assuming an Einstein spectrum for
p(~). The dashed line in Fig. 5 is a fit to the
neutron data with B= 1788 and 8~ = 48. 9 'K. Un-
fortunately, the fit is not unique as B and 8~ are
highly correlated, and the physical significance of
the fit remains uncertain-a circumstance also em-
phasized by Worlock.

TiO& 296K

2. 0 kbar

100
I

400 500

FREQUENCY SHIFT (cm )

I

700

FIG. 6. Haman spectra taken at 2. 0 kbar and 296 K showing modes of symmetry A&, B~ tz4x)y], and E~ [z(xz)y).
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C. Raman-Active Phonons

l. Effects of Temperature and Pressure

Typical Raman spectra for different scattering
geometries obtained in the pressure cell are shown
in Fig. 6. The spectra show clear evidence for
strong second-order scattering. The measured

shifts of the phonon frequencies with temperature
and pressure are given in Figs. 7 and 8 and Table
IV. The table also includes the corresponding
values for the soft Az„mode for completeness.
Our values of the frequencies at 1 bar and 296 'K
are in good agreement with those of Porto et al. 3

The temperature dependences of the Raman fre-

TABLE IV. Values of the frequencies () of some of the optic phonons of rutile and their logarithmic pressure and
temperature derivatives and mode Gruneisen parameters (y). The measured isobaric temperature derivatives are
separated into their pure-volume and pure-temperature contributions.

296

(cm )

(
8 1tlQ3)

BP

(10-' kbar)-')

—2. 38+0, 2
—(2. 1) '

—5. 03

(10-'K-')

0, 60+0.4

(10-'K-')

11.82

8 ln~ 8 ln~

(10-'K-')

11.22

A2

A2u

296

296

250

165

450

612

826

168

159

1.15+0.2
(1.0) '
0.75+0. 2

(P. 67)'

3, 6+0.1

3.8+0.1

4. 5+0.1

5.8+0.1

2.43

1.59

7.61

8. 12

9. 82

12.95

-6.30+0.4

0.60+0.4

49, 5 y1, 5

60, 0+1.5
81.5 +1.5
93.0 +2. 0

-5.71

30 72

—17.9
—17.3
—16.4
—12, 4

—0.59

4.32

77.3

97.9

105.4

13.32A2g 4 142 ~ p

Values reported by Nicol and Fong (Ref. 28).
"This mode was not well resolved and exhibited such small shifts that accurate measurements of the pressure

and temperature dependences could not be made.
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quencies apparently have not been reported earlier.
Our pressure derivatives of these frequencies are
in agreement with the recent results of Nicol and
Fong s (see Table 1V). Our data are more accu-
rate than theirs because of the presence of some
pressure gradients and uncertainty in the value of
the pressure in their apparatus; however, these
effects appear compensated for by their ability to
cover a larger range of pressure.

Although the Raman modes in general exhibit
relatively weak pressure and temperature shifts
compared with Az„, the results in Figs. 7 and 8
and Table IV contain a number of interesting fea-
tures worthy of comment. In addition to A~„, the
modes B„and A„exhibit anomalous T dependences
in that their ~' s increase with increasing T, though
the changes are very small. Mode B,~ is especially
anomalous in that unlike all of the other modes its
frequency decreases with increasing pressure.
We shall comment on this later, Mode E, is the
only mode studied which exhibits the kind of behav-
ior usually expected in "normal" ionic crystals,
namely, ~(E~) increases with increasing pressure
and decreases with increasing temperature. The
scattering intensity of the B~, phonon is relatively
weak and its temperature and pressure shifts so
small that they could not be measured accurately.

It is quite instructive to examine the isobaric
temperature derivatives of the frequencies in
terms of their pure-volume and pure-temperature
contributions. Following the procedure used in
Sec. IV A to examine the e (T, P) results [ see Eq.
(2)j, we obtain the results summarized in Table
0'land evaluated at 296 'K. ' As expected, for the
FE mode A~„ the isobaric frequency shift is heavily
dominated by the pure temperature contribution
(&in~/e T)„which arises from high-order anhar-
monic interactions, and which is opposite in sign
from the Pure-volume contribution —(P/z) (& ln&/BP) r.
In the case of B&~ the pure-volume and pure-tem-
perature contributions are both large and about
equal but opposite in sign leading to nearly perfect
cancellation, and thus the weak isobaric tempera-
ture dependence of v(B„). The same is true of
A, , but here the signs of the two contributions are
reversed and the pure temperature contribution
determines the anomalous positive sign of the iso-
baric derivative. Mode E, exhibits "normal"
ionic crystal behavior: Its pure temperature con-
tribution is small and the isobaric shift is domi-
nated by the pure volume term.

On of the interesting features of the results in
Table IV is the sign of the pure temperature con-
tribution. It is large and positive for A~„and rela-

i
I
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FIG. 8. Pressure dependenees of the

frequencies of the &fg @g and
Haman-active modes measured at 296 K.
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tively large and negative for B„. It is also rela-
tively large and positive for A„. The differences
in sign may imply differences in the origin of the
anharmonicities for the various modes as will be
discussed in Sec. IVD.

2. Node Grii neisen Parameters

The mode Griineisen parameters, or so-called
mode gammas (y;), defined by

81n&
&

~ ln&;

can be readily evaluated from the pressure deriva-
tives. Values of the y s at 296 'K for the Raman-
active modes and for the soft FE mode at several
temperatures are given in Table IV. The values
for E~ and A.,~ are typical for normal ionic crys-
tals. As expected, ~6

y(A2„) is large and positive
and increases with decreasing temperature —prop-
erties unique to soft FK modes. For the Raman
modes the y, 's should be very weakly T dependent.
The anomalous behavior of B„is here reflected
by its relatively large and negative y. Some pos-
sible consequences of this are discussed in Sec.
IV E.

D(ei ', ~~) = &(qadi ', i~) —fF(ei, ~), (io)

where the real part 4 measures the anharmonic

D. Anharmonic Self-Energy of the Optic Phonons

In the above discussion it was shown that for
several of the optic modes the isobaric tempera-
ture dependence of the phonon frequency is domi-
nated by the volume-independent, or pure-tem-
perature, frequency shift. This shift arises from
high-order anharmonicities in the crystal poten-
tial. In order to understand its origin we must
resort to the lattice dynamical theory of anharmon-
ic crystals. Although detailed treatments of an-
harmonic lattice dynamics are very complex in-
volving the techniques of many-body theory, there
are some approximate models, such as those of
Maradudin and Fein ' and of Cowley, ' which are
useful for our present purposes.

Following Cowley, the renormalized frequency
cur (qj} of a mode of wave vector q and branch j
can be written

r (e}'= &0(qj)'+ 2~0(e)D(qfj', 0),
where +o(qj) is the strictly harmonic frequency of
the normal mode and D(qjj, Q) is the anharmonic
contribution to the self-energy of the mode. It de-
pends on the applied frequency &~ whose value
can vary depending on the measuring technique;
for example 0 = 0 for measuring the static dielec-
tric constant, and 0 —&ur(qj) for measuring neutron
scattering properties The sel.f-energy D(qjj, 0)
is a complex quantity which can be written

frequency shift and the imaginary part I is the the
reciprocal of the phonon relaxation time. The real
part of D can be written

r (qjj', 0) =b.ebb. + 6 + ~ ~ =&e+ 6"

The contribution 4~ involves the thermal strain
U &

and represents the anharmonic frequency shift
due to thermal expansion. It can be written

(12)

Of the higher-order anharmonicities, designated
by 4", we will explicitly consider only the anhar-
monic self-energy shift arising from the cubic &,
and quartic 44 terms. These contributions are of
the same order, and the leading term from cubic
anharmonicity is

18gp~ (
~

+8 + + +

1
0+ (d&+ c0& Q —co&

+ ' ' — ' "' (13a)0

which results from the cubic interaction taken to
second order. The first-order term in the quartic
interaction yields

h4 ———P V(A. I A(Aq) (2nq+ 1) .4 (13b)

In Eqs. (12) and (13), && ——(q,.j,), & =(-qj), and
A. = (qj ); &; = (q, j,) is the phonon frequency and

n; = n(q; j;)= (e""~~~ —1} is the Bose-Einstein
phonon occupation number.

From Eq. (13b) we observe that b4 is frequency
(0) independent and enters the expression for
b (qjj, 0) with a positive sign so that its contribu-
tion to the anharmonic self-energy can be either
positive or negative depending on the sign of the
quartic potential. The contribution 4„on the
other hand, enters with a negative sign and in-
volves the square of the cubic potential. This
term is negative for low values of A but can be-
come positive for large ~. Calculations by Cow-
ley' have shown that 4, is negative for the q=0
TO modes of SrTi03 for 0 &14&&10' sec ' and can
become positive for higher frequencies. Thus, under
suitable conditions, the sign of the measured
higher-order anharmonic frequency shift allows
us to deduce the origin of the anharmonicity, as-
suming that the series for 4" converges rapidly.
The assumption should be valid in TiOz, where,
as will become clear shortly, the anharmonic con-
tributions to the renormalized frequencies are
much less than the harmonic contributions at all
temperatures.

We now wish to relate the different contributions
in 4(qjj, 0) to measurable quantities. Ae and b"
can be separately determined for each measured
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FIG. 9. Pure-volume —(A~z) z and pure-temperature
(&~) ~ contributions to the shift of the soft A2„mode
frequency of rutile with temperature.

mode from the pressure and temperature depen-
dences of the phonon frequencies . Since
= &(V, T), we can write, as before, '9

(14)

where the 6's are defined as in Eq. (2b). They
are evaluated from the (u(T, P) data as follows.
Our experimental data consist of u&(T) from 4(= 0)
to 300 'K and &(P) at different T's from 4 to 300'K
for the soft FE mode, and &(T) from 4 to 500'K
and ~(P) at 296 'K for the Raman modes. What is
lacking is ~(P) data at different T's for the
Raman modes. Considering the small variation
and nearly linear &u(T) and ~(P) behavior of the
Raman modes (see Figs. 7 and 8) and the small
compressibility and thermal expansion of rutile,
we shall assume that for each mode the Gruneisen
parameter y is independent of T and has its mea-
sured 296 'K value given in Table IV. Any small
uncertainties introduced by this assumption should
not affect our later conclusions. Thus, we have
all the information needed to evaluate (h&r)» and

(&~~)z, as functions of T for each of the modes
investigated. The results are summarized in
Figs. 9 and 10.

The quantities (&&~)r and (&~r)» are related to
h~and 6", respectively, in Eq. (13) in the fol-
lowing way. &~ is simply given by

different than zero due to anharmonic effects as-
sociated with zero-point motion. Since at suffi-
ciently high temperatures the volume and the
phonon occupation numbers n(qj) and (A&or)„
are expected to vary linearly in T, an estimate
of -4~ can be obtained from an extrapolation of
the linear (4~r)„response back to O'K. Once
this is done, 4~ can be simply determined from
(i~r)». Although our present measurements on
rutile extend only to temperatur s considerably
below the characteristic Debye temperature
(8D = 750 'K), ' we still find a nearly linear («ur)»
response for some of the modes at the high-tem-
perature end of our range (see Figs. 9 and 10),
and thus we are able to estimate - 4~O. We note
in passing that some considerations of the lattice
dynamics of the perovskites similarly indicate
high temperature response at temperatures much
lower than 8D.

We now turn to some observations and conclu-
sions from the results in Figs. 9 and 10. Consid-
ering first the FE mode A~„we note that the
thermal expansion causes a negative frequency

0

0
I

E

~ -6

-12

12

F 0

b, s= —(~~~)r . (15)

If b." is not too large comPared to &r (qj) for a
given mode, we can write, following Lowndes, "

-12
0

I

100

I I I I I

200 300
TEMPERATURE ('K)

I

400

(g~ ) gA ~A gA (18)

where 4" is written as shown on the right-hand
side to indicate that its value at 0 K, 4~, may be

FIG. 10. Pure-volume —(E(dz) z and pure-temperature
(&z)~ contributions to the shift of the frequencies of the
+fg +g and A.~g H aman-active mod es of rutile with
temperature.
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shift 4~ amounting to 3. 5% of the phonon energy
at 3QQ 'K, The volume-independent shift (&~r)»
is large and positive and it is approximately linear
in T above -2QQ K making it possible to deduce a
value of —4& as shown. Although this value of
h~ (-- 2 cm ') may be in considerable error be-
cause the linear portion of (&~r)» does not extend
over a large T range and because we are at T's
substantially below OD, it is clear from the re-
sults in the figure that 6~0 is relatively small and
negative. Using the indicated value of 40 we de-
duce the &g(T) dependence shown. This anhar-
monic self-energy shift is small and negative at
low temperatures and becomes large and positive
at high temperatures amounting to -20% of the
phonon energy at 300 K. Since in the approxima-
tion discussed above, cubic anharmonicities (&3)
lead to a negative b" at low frequencies (&), the
results in Fig. 9 show that above -50 'K the self-
energy shift of the FE mode is dominated by quar-
tic anharmonicities (b4) and these are positive in

sign. It appears that the cubic terms, become
important below -50 'K.

It is worth noting here that a similar recent
analysis by Lowndes" of data on the weak soft-
mode crystal T1Br similarly reveal that quartic
anharmonicities dominate &~ in this material. In
this crystal, however, 4~ appears to be positive
at all temperatures.

For mode B„the anomalous pressure depen-
dence of the frequency leads to a positive self-
energy shift 4~ due to the thermal expansion (Fig.
10). The figure shows very clearly: at h~ is
counterbalanced at all temperatures by a very
nearly equal but negative shift (4&r)» due to the
cubic and quartic anharmonicities, thus accounting
for the very weak isobaric T dependence of &(B„).
As for Aa„, n~o is small (-—3 cm ') and negative.
The shift ~~~ is negative at all temperatures, and
in this case it is not possible to say anything about
the origin of the anharmonicities. Note that 4~ is
much smaller in magnitude here than is the case
for Aa„.

As we mentioned earlier mode E, exhibits be-
havior typical of normal ionic crystals in that the
isobaric T dependence of +(E ) is dominated by
the thermal expansion term. This is clearly shown
in Fig. 10. The pure temperature shift is smaller.
40" is again negative and 4~ is relatively small and
negative at all T, leaving the origin of the anhar-
monicity ambiguous.

As for B„, the weak isobaric T dependence of
for mode A„ is caused by the fact that the shifts

due to thermal expansion and higher-order anhar-
monicities are nearly equal but opposite in sign.
The signs of these shifts are, however, opposite
from what they are for B, . Unlike the other
modes, the shift ~o is positive for A„, and this

causes 4~ to be positive at all temperatures. The
fact that it is positive suggests that &~ may be
dominated by the quartic anharmonicities in this
case.

In the case of the mode Bz, the temperature and

pressure shifts of u&(B3,) were not determined ac-
curate1. y enough to allow a meaningful separation
of the different contributions. However, from the
experimental data it was clear that the anharmonic
self-energy shifts are small.

In conclusion, the results of this section quan-
titatively show that for ~odes E„A&„and Ba, the
self-energy shifts are small and thus the renormal-
ized mode frequencies &~ are strongly dominated
by the strictly harmonic frequencies &'o. (This
conclusion is not materially affected by the ap-
proximations and assumptions made in the data
analysis. ) The same conclusion is approximately
valid for B„, although here u&(B„) is small making

and 4" fractionally larger, and furthermore
the sign of 4 is anomalous. For Aa„, of course,
the anharmonic self-energy shifts are large and
appear dominated by the positive quartic anhar-
monicities responsible for the soft-mode behavior.
The strictly harmonic contribution to &(A~„) is
144 cm ', while the total anharmonic contribution
to the renormalized frequency is -28 cm ' at
room temperature. The anomalous positive iso-
baric temperature derivatives of ~ for modes
A», B„, and 8&, simply reflect the fact that &~
dominates over 4 for Az„and A& and that & is
large and positive for B«.

E. 8& g and the Pressure-Induced Phase 'fransition

The relatively large decrease in & '(B«) with
pressure has important implications relative to
the known occurrence of pressure-induced phase
transitions in rutile as well as in other crystals
having the rutile structure. Evidence for such
transitions in rutile has come from shock-wave
stress vs volume measurements3~ as well as from
quasihydrostatic x-ray diffraction33 and Raman-
scattering ' measurements. The shock results
indicated a transition with a large volume change
commencing slightly below 2QQ kbar, whereas the
Haman work showed a transition at pressures
above -26 kbar. It is not known if the high-pres-
sure phases are identical. The crystal structure
of the high-pressure phase(s) and other properties
of the transition(s) are not sufficiently known at
present to allow anything but speculative comments
about the lattice dynamical nature of the transi-
tion(s).

Nicol and Fong ' suggested that the transition
they observed above 26 kbar may be to the
orthorhombic (D~~4 —Pbcn) structure. Recently,
Nagel and O'Keeffe34 argued against this assign-
ment and suggested instead that it may be an ortho-
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rhombic (DP„—Pnnm) CaC1~ structure, and further-
more that this phase is made stable in the experi-
ments by the presence of nonhydrostatic stresses.
A transition to the CaC13 structure is attractive
from the standpoint of the observed softening of
B,~ with pressure. An examination of the rutile
and CaCl~ structures ' suggests that the pattern
of ionic displacements associated with B„(see
Fig. 1) can lead to a transition to the CaClz struc-
ture as &(B«)-0. There is no requirement, how-
ever, that the soft-mode frequency precisely van-
ish for a transition to take place if the transition
is of first order. ' ' Theoretical considerations
show that only for a second-order transition does
the frequency of the pertinent mode vanish at the
transition, and furthermore, for such a transition
only one normal mode can be involved. For a
first-order transition, on the other hand, generally
more than one mode may be involved and none of
their frequencies vanish at the transition. In
rutile our hydrostatic pressure data show that the
decrease of & (B„), although relatively large, is
only 0.24% kbar-'. Nicol and Fong obtained a de-
crease of -0.21%kbar ', so that any nonhydrostatic
effects in their experiments do not appear to sig-
nificantly affect this shift. The experimental re-
sults show that a rather high pressure is needed
for &(B,,) -0. Nonetheless, the observed pres-
sure-induced transition may indeed by to the CaCl2
structure and driven by the softening of B„. If
so, the transition is of first order. It appears
spread over a range of pressure in the Nicol and
Fong experiment possibly due to the presence of
pressure gradients and a slow rate of transforma-
tion.

Reference to Fig. 1 shows that the ionic dis-
placements associated with B„consist of a rota-
tion of the oxygen ions about an axis (c axis) through
the Ti ions. The mode softens with both increasing
pressure and decreasing temperature, though only
slightly in the latter case. It is of interest to note
that rotations of octahedral groups in the perov-
skites are known to play important roles in the
temperature-induced phase transitions that are
observed in these crystals. '6 For example, the
105 K transition in SrTi03 is caused by the soften-
ing of the I"z, phonon mode at the [111]zone bound-
ary, and similarly the 184 and 88 'K transitions in
KMnF3 result from the softening of I'» and the
[110j zone boundary phonon M~, respectively. 7

Both 1"» and M3 involve rotations of the octahedral
groups about an axis through the central ion. Such
rotations are also believed to play a role in the
transition in the antiferroelectric perovskites, 3'3
such as PbZrO3, although in these cases the tran-
sitions are more complicated than that in SrTi03.
It is noteworthy that the pertinent modes in these
crystals soften with pressure as evidenced by an

increase in the transition temperature T,. For
example, for PbZr03, T, =507'K and d1', /dP
=4. 5 Kkbar-'. Writing

~'- (r T)-
yields

8 ln& 1 8 ln1', = —0.44/o/kbar,

4w(Ze')' (1 1
)(e +2)

'

(19a)

where the right-hand side is denoted by p. Here
E —E„ is the lattice contribution to the static di-
electric constant, v is the volume per molecule,
&u» is the ir resonance frequency in rad/sec
(= the soft-mode frequency &uz in rutile for mea-
surements along the c axis), Z is the valence (= 4
for rutile), m, and m2 are the masses of the Ti
and 0 ions, respectively. Equation (19a) is de-
rived in the harmonic approximation. For rutile,
as seen earlier, the anharmonic contributions to
the e are large for T» 0 (see Fig. 4). In the high-
temperature limit, these anharmonic contributions
(denoted by G) can be accounted for by rewriting
Eq. (19a) in the form

& —&„=g+G

The contribution G is given by

(19b) '

(20)

and can be evaluated directly from the data in
Table II. All of the quantities in Eqs. (19) are
thus known or can be evaluated from experimental
data except e* which can then be readily calculated.

At 4 'K the only anharrnonicities contributing to
the measured values of a~ and su& of rutile are those
associated with zero-point motion, and, as seen
earlier, they are quite small. Thus, to a good
approximation, the measured values of a, and ~&
can be taken to represent the strictly harmonic
values, and Eq. (19a) can be used to calculate e*.
Using the 4'K values, a, = 255, E„,= V. 2, ~ v
= 31.05 A~ (—= —,

' the unit cell volume), &u&- 142 cm ~

a value quite comparable to the present —0. 24/o
kbar-' for ~(B«) of rutile, especially when account
is made of the fact that PbZrO3 is over twice as
compressible as rutile.

F. Effective Ionic Charge e*

On the basis of the results and data given in this
paper it is possible to calculate the effective ionic
charge e* in rutile. For ionic crystals, e* is
generally calculated from the Szigeti equation,
which for a triatomic crystal with two identical
ions, such as TiOz, takes the form
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= 2. 68&&10~3 rad/sec, we obtain e*/e = 0. 64, where
e is the electronic charge (=4. 80&10 ' esu).

At higher temperatures G becomes finite and
e* can be determined from Eq. (19b). Equation
(20) for G is a high-temperature approximation
and should be valid only for T~HD; however, since
our earlier discussion suggested that rutile ex-
hibits "high-temperature response" at T«QD, let
us for the moment assume that Eq. (20) is valid
at 296 'K, the highest T for which e,(T) data are
available. Qn this basis the data in Table II yield
G = —66. This represents the total anharmonic
contribution to &, —&, with the exception of the
anharmonic effect associated with zero-point mo-
tion (assumed small) and the effect of thermal-ex-
pansion contained in g. The appropriate value of
4Jf to use in the expression for 7i in Eq. (19b ) is
not the measured value at 296 'K (= 172 cm ) but
the strictly harmonic value &uz „(neglecting zero-
point motion effects) modified by the effect of
thermal expansion, This is evaluated from the ~&

value at 4 'K (= 142 cm ) and the b, data in Fig.
9 to yield 136 cm ~ for && „at 296 K. Using these
values of ~& „and G along with &, =166. 7, &„,
= 7. 2, and v =31.20A3, Eq. (19b) yields e*/e
= 0. 58. This is substantially smaller than the
above value of 0. 64 determined at 4 K. However,
in view of the assumptions invoked in determining
G, some uncertainty exists as to whether the indi-
cated T dependence of e~ is real.

A more accurate way of determining e* at high
temperature for soft-mode materials such as
rutile is suggested by our earlier discussion.
In Sec. IVB it was shown that, via the I ST rela-
tion, &, = k'/a&2&, where k' is a constant independent
of T. Thus, the anharmonic contributions to &,
should be reflected faithfully in +& and e* can be
accurately determined at any 7 from Eq. (19a)
using the measured values of E, and && at that T.
At 296 'K the measured values are c, = 166.7 and
~&= 172 cm ~. Equation (19a) then yields e*/e
=0. 62. This is also lower thanthe 4 K value,
and we believe that the decrease in e* with increas-
ing T is real. A qualitative explanation follows.

In the ideal case of deformable ions which do
not overlap, e*/e is unity. In real crystals, how-

ever, the ions overlap, and the concept of an ef-
fective charge was introduced into the theory to
account for tb polarization effects associated
with this overlap. o'~ Deviations of e*/e from
unity arise from two effects: (i) short-range re-
pulsive interactions between the electron clouds
on adjacent ions which modify the electronic dipole
moments and (ii) redistribution of charge and over-
lap when the ions move in the course of lattice
vibrations. Both effects are apparently large in
rutile leading to the relatively small value of e*/e.
This conclusion supports our earlier remarks con-

cerning the possible explanation of the large value
of A in Eq. (1) (see Sec. IV A1). Increased an-
harmonic interactions with increasing temperature
can be expected to result in additional distortion
of the electron clouds and thus a decrease in e*
as indicated by the above calculations.

The present values of e*/e can be compared
with recent determinations by other authors. Tray-
lor et al. , by fitting their room-temperature
neutron scattering data of the complete phonon
dispersion curves to either a shell model or a
rigid-ion model, obtained e*/e = 0. 63 and 0. 55,
respectively. Neither model provided a good
over-all fit, but the shell model was better for
some modes. Katiyar and Krishnan fit q =0 data
for the optic modes to a rigid-ion model and
found e*/e = 0. 62. We also note in passing that
Szigeti's early calculations using Eq. (19a)
yielded e*/e=0. 65. This result is fortuitous how-
ever, since it was obtained by using the then avail-
able, and inaccurate values of &f = 200 cm ', E,
= 173, and g „,= 8. 42. As shown above, the cor-

'rect values of the parameters yield e*/e =0. 62
at 296'K.

The agreement in e*/e reported by different
authors is quite good with the exception of the 0. 55
value from the fit to the dispersion curves assum-
ing a rigid-ion model. Differences of the magni-
tude indicated are not surprising because both the
rigid-ion and shell models are in reality rough
approximations to a complicated lattice dynamical
system. We also emphasize that our present val-
ues of e*/e represent the so-called Szigeti effec-
tive charge —a "transverse" effective charge in
that it relates to a transverse mode.

V. SUMMARY AND CONCLUSIONS

The main results and conclusions of this work
can be summarized as follows.

(i) The static dielectric constants c, and e, of
rutile are large and decrease with increasing tem-
perature obeying a modified Curie-Weiss equation
of the form first derived by Barrett. The param-
eters in this equation and their pressure dependence
are evaluated and discussed. The temperature-
independent parameter A. is found to be large, and
this is attributed to large electronic polarizabili-
ties and to contributions to the ionic polarizability
from nonpolar optic vibrations.

(ii) Comparison of the dielectric results with
recent neutron scattering data shows that the large
increase in e, on cooling is almost completely due
to a decrease in the frequency of the soft optic
(ferroelectric) mode A2„. The pressure dependence
of ~(A3„) is deduced and the Gruneisen parameter
y of this mode calculated. It is found that y(Az„)
is large and increases strongly with decreasing
temperature —unique properties of the FE mode.
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(iii) The pressure and temperature dependences
of the frequencies of the Raman-active modes B&~,
E„and A„were measured. In addition to A2„,
the modes Bj, and A«are anomalous in that their
~'s increase with increasing T, though the changes
are very small. 1Vlode I3&, is especially anomalous
in that, unlike all of the other modes, &u(Bt~) de-
creases with pressure resulting in a relatively
large and negs. tive y(B„)= —5. 0. The possible
connection between this result and the pressure-
induced phase transition in rutile is discussed.

(iv) The pressure and temperature dependences
of the dielectric constants and frequencies are
combined to evaluate the pure-volume and pure-
temperature contribution to each quantity. The
latter contribution arises from cubic and quartic
anharmonicities. It dominates the anharmonic
self-energy shift of the soft A~„mode and accounts
for 20% of the mode energy at 300'K. The two

contributions are nearly equal in magnitude but
opposite in sign for modes B~, and A, ~, thus ex-
plaining the very weak isobaric T dependence of
~ for these modes.

(v) The Szigeti effective ionic charge ratio for
rutile is determined and found to be e"/e = 0. 64
at 4 K and 0. 62 at 296 K. These results are
discussed briefly.
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