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An improved formalism is proposed for calculating the cross section for the magnetic scat-
tering of neutrons by itinerant ferromagnets. This procedure is based on a simple extension
of the random-phase approximation of the relevant Green’s-function equation and an interpola-
tion formalism for treating wave functions and matrix elements. In contrast to previous work,
this formalism incorporates momentum-dependent splitting of the electronic energy bands as
proposed by Hodges, Ehrenreich, and Lang as well as multiband effects. The scattering cross
section is found to depend only on parameters which are determined directly from a self-con-
sistent treatment of the ferromagnetic-band-structure calculation. The results obtained from
this formalism were found to be too complicated to treat analytically for realistic band-struc-
ture models, and therefore meaningful numerical results must be obtained from computer cal-
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culations.

I. INTRODUCTION

Over the past ten years there has been a consid-
erable amount of theoretical work on the problem
of obtaining a proper description of the neutron-
scattering cross section associated with itinerant
magnetic systems. '™ The major difficulty en-
countered in any approach to this problem is that
the neutron couples to the magnetic system through
its interaction with the “unpaired” itinerant elec-
trons. Therefore, an adequate description of the
electronic properties of itinerant systems is needed
in order to proceed. This difficult problem has
been under investigation for some 35 years, but
as yet there does not exist a good theory based on
first principles. There are, however, some pa-
rametric band-structure models that have been
proposed which seem to do a rather good job of ex-
plaining the “single-particle” properties of itiner-
ant systems, 8

Another important aspect to be considered in
connection with this problem is that even if an ad-
equate description of the electronic system could
be found, the expressions obtained for the scatter-
ing cross section are sufficiently complicated that
analytic solutions for realistic models are impos-
sible, Therefore, extensive computer calculations
are a necessity, Until recently such calculations
would have required large amounts of computer
time to get rather crude results. However, within
the past few years computer programs have been
developed which are capable of prcviding fast and
relatively accurate numerical results for many of
the neutron-scattering expressions which have been
proposed.”’ That is, a relatively complicated ex-
pression for the neutron-scattering intensity
should no longer be treated necessarily as a use-
less academic result,

A case in point is the recent work of Lowde and

1

Windsor (LW) on neutron scattering in ferromagnet-
ic nickel* which is based on the random-phase ap-
proximation (RPA). They used a generalized form
of the enhanced-susceptibility expression to calcu-
late the scattering intensity. The electronic ener-
gy bands were rigidly spin split and s-d hybridiza-
tion and the “s-band” electrons were ignored,

With these basic approximations they were able to
obtain a good over-all fit to the scattering intensity.
There were, however, several important discrep-
ancies which occurred with respect to the spin-
wave peak in the scattering cross section. First
the position of the peak (the spin-wave energy) was
found to shift much more slowly with momentum
than the experimental results indicated. They were
able to compensate for this by introducing into the
scattering expression a momentum-dependent term
I(q@) which was adjusted to provide a good fit to the
spin-wave energy. Such a momentum-dependent
term can be obtained in the theory provided certain
assumptions are made with regard to a particular
Coulomb matrix element (see Sec. IV), but the
magnitude of this term cannot be determined

a priori. Lowde and Windsor found that I(§) must
change by about 25% as { is allowed to vary from
zero to one-fourth of the distance to the Brillouin-
zone boundary in the [100] direction. The second
problem associated with the theoretically calculated
spin-wave peak was its relatively large width at
about 40 meV. This could possibly be the result

of statistical noise in the calculation. In any event
the experimental results of Mook et al.® indicate
that no appreciable broadening occurs below about
100 meV in the [100] direction at room tempera-
ture,

In addition to these points, one further problem
exists with respect to the band structure which was
used in the calculations. The approximations
which have to be made in order to obtain an en-
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hanced-susceptibility expression such as that used
by LW also require that the “d bands” be rigidly
spin split. That is, all bands are spin split by a
single splitting parameter. If one takes any of the
paramagnetic potentials suggested in the literature
for nickel and adjusts the spin-splitting parameter
to give the correct spin-only moment, then one
always finds a set of hole pockets associated with
the X, energy level. This is also found to be true
for the “first-principles” calculations of Connolly®
and Wakoh and Yamashita. ! Experimental de
Haas—van Alphen measurements!!** indicate that
this set of hole pockets does not exist. Thus we
are faced with the problem that the approximation
which leads to the enhanced-susceptibility expres-
sion also leads to an incorrect prediction of the
ferromagnetic band structure,

The work of LW does represent a significant con-
tribution to our understanding of the neutron-scat-
tering results in an itinerant system like nickel,

It could be argued that their results might be im-
proved if a “more realistic” rigid spin-split band
structure were used. However, because of the
argument presented in the previous paragraph it
seems clear that one must go beyond the approxi-
mations which lead to the enhanced-susceptibility
expression based on a rigid spin-splitting model.
One obvious approach is to extend the results of
LW beyond the RPA. However, a rather casual in-
spection of the RPA theory indicates that it is a
Coulomb matrix approximation and not the RPA it-
self which leads to rigid spin splitting and the en-
hanced-susceptibility expression. It is the purpose
of this paper to show that a more realistic approx-
imation of these particular Coulomb matrix ele-
ments leads to an improved result for the neutron-
scattering intensity within the tractable limits of a
simple extension of the RPA which is based on a
more general momentum-dependent spin-splitting
model of the electronic energy bands. Further-
more, it will be shown that all of the terms which
appear in the theory are determined directly from
a self-consistent solution of the energy-band equa-
tions.

Section II of this paper presents some background
material which is necessary for the development of
the theory. The equation of motion and the RPA
theory are discussed in Sec. III. Matrix-element
approximations which allow the equation of motion
to be solved in closed form are discussed in Sec.
IV. The results of the calculation are obtained in
Sec. V and Sec. VI contains a summary of conclu-
sions.

II. NEUTRON-SCATTERING FORMALISM
The magnetic scattering of unpolarized neutrons

by an electronic system contains both spin and or-
bital terms. The spin-only part of the cross sec-

tion is given by the expression!

d*o___(e¥y \' kg
dndw (mc ) %y E(‘Smﬂ‘eaeﬂ)

g [ e ETOS O,

where Eo and Eo' are the incident and scattered neu-
tron wave vectors, respectively, E:Eo - Ko’, e
=q/1q1, hw= 1%/ 2m y~ K %k'3/2my is the neutron
energy loss, m and my are the electron and neu-
tron masses, respectively, and y is the gyromag-
netic ratio of the neutron. The Fourier transform
of the spin operator § is given by

5¢= [e YD) S (F) dbry, a=x,y,z (2)

where ¥¥(r) is the two-component electron-creation
operator in the second quantization formalism.

The spin-wave scattering terms are contained in
the transverse part of (1), that is the xx and the yy
terms. The remainder of this paper will be de-
voted to a calculation of this transverse-scattering
intensity within a Green’s-function formalism. The
other terms in (1) can be calculated in a straight-
forward manner within the framework of the theory
presented below, but the results will not be given
here.

The Green’s function appropriate for this calcu-
lation is defined by

GalB (-CL t) =—1 (ng(o) Si‘l‘(t» ) (3)

where T is the time-ordering operator and (A) rep-
resents the thermal average of the operator A. Let

G2s(@, t)= (S%(t)S2:(0)) , (4)
then
S ettt (s§(0)S%()yat = [ et (sg(t)s b (o)) at

=G 24(q, ) . (5)
The Fourier transform of G4 is related to G, by
Gop@, ) = [1+7(w)] A, ») , (8)
flw)= (P~ 1), Bo=1/ksT , (m

Aaa((i, =1 h'm [GOIB(q, W+ 7’5) GolB q, - 15)] (8)

As a result of Egs. (5) and (6) the transverse part
of the scattering cross section given in (1) can be
shown to reduce to

‘o - a‘y)zk" (1+ed)(1+£())

aQddw mce

1
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where A-+(ci, w) is the spectral function for the
Green’s function

A..@ w+ALG-w], (9
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G.,(@,t)=-i(TS3(t)St3(0)) , (10)
with
S§=S§xiS}. 1)

Let {B,z,(T)} represent a complete set of
single-particle states with band index n, wave
vector E, and spin ¢ defined in terms of a
scalar position-dependent set {4,z(¥)} and the
spinor x, by

Bn;a(;)zzpnﬁa(;) Xo - (12)

The components of the spinor ¥(T) can then be
written

¥o(F) = 2) B e (¥) Cpt (13)
nk

The operators CJg, and C,z, create and destroy,
Eespectively, a particle in band » with wave vector
k and spin 0,
Substitution of (13) into (2) gives
Si= L (nkt [e? T [mk+ G Cli Contr, (19)

WMy
Sh=(Sp'. (15)

It will be assumed throughout this paper that when-
ever matrix elements are calculated, the spin de-
pendence of the functions zp,,g,(f) can be neglected.
Thus,

(k¥ | e T | mk + G4) = (k| ' F | mk + §)
= [Whe@) e Ty g a@)d% . (16)

Thus the Green’s function G_,(d,#) can be written
in the form

G..d,t)= 2 (nk|e®F

k;nym

mk +§) Gluk, mk +; t), (17)

C(ngy mk + 5; t)=- i<TCIEo @) Coter (l)SIa(OD . (18)

The object now is to calculate the Green’s function
G.

IIl. EQUATION OF MOTION FOR G

The equation of motion for G is given by

. 9 A, > > - +
zﬁgG(nk,mk+q;t)=ﬁé(t)([C:;,Cm;,g,,S_q])

- i(P[3¢, Clz. () Crina (9] S%2(0)),  (19)

where 3C is the Hamiltonian which describes the
electronic system. Let

K=3¢4+U , (20)
3 =To+ Vien - (21)

The operator 3¢, is composed of a kinetic energy
part T, and the ionic potential V,,,. The electrons
interact with each other through the Coulomb po-
tential U. The second quantization form of (20) is
given by

I3

= 5 (nk| 5| mk) Cly, C
nem;y0
+3 2 2 Gk, D +K|U|np, mk+K)

1hdsnym Edy RionB
X Clia Cl3.%8 Cogp CrieRa ,  (22)
(k|36 | mE) = [9%:E) 36, 0, 2F) dr (23)
@K, 71| U3, md) = [w@WiENU(r-r])

X @ " WougF) v d®' . (24)

Starting with Eq. (19), an infinite set of equations
can be generated which must be solved in order to
obtain G.® The simplest approximation is to
terminate the series by using a generalized RPA
given by'*

Cl1ClCyCy= f1(5,,4C} C3- 8,5 C Cy)

+f2(52.a C{ C, - 52,4 CIC3) ’ (25)

where “1” represents nlilol, etc., and
fi=(clcy) (26)

is the fermion occupation number, The thermal
average implied in (26) is to be calculated with
respect to the single-particle Hamiltonian which
generates the set {§,z,(¥)}. Therefore,

(C;:k'a cmp’B> = fnia 6n,m 6?,3@1,3 ’ (27)
fnioz (eﬁn[E(n‘kn)-EF]_ 1)-1 , (28)

where E(nEo) is the electronic energy and Ej is the
Fermi energy.

In order to further simplify the equation for e
it is convenient to require that the {y,z,} satisfy
Hartree- Fock equations. However, energy bands
obtained from the solution of the Hartree—Fock
equations would be unsatisfactory for the transition
metals because, for example, screening effects
are ignored, One method of going beyond the RPA
is based on a functional-derivative method which
can be used to establish an iteration procedure
based on an effective screened interaction
U (T, T'), rather than the bare interaction U. !*
The equation for U, is coupled to the one-particle
(electron) Green’s function and the equations for
these two functions must be solved simultaneously.
For example, it can be shown that if vertex correc-
tions can be ignored the Hartree—Fock equations
are valid provided that U is replaced by Uy, in the
exchange term., A generalization of these argu-
ments indicates that such a replacement is re-
quired in all Coulomb matrix-element terms in the
RPA equation for G except those terms which ul-
timately lead to the direct Coulomb term in the
electronic energy. If this substitution is made,
the equation for G becomes
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ot

+ 2 (mk+q,ip|Ulip,ik+q)fz-

73,8

i1 -2 ik, mk + §;8) = H6(t)mk + § | € VT | 1K) (frps = Frgoze) + E((ml?+q\zc0|ii+ 3
i

IZQ(mkHE, jﬁ‘Ue“ | ii+a,j§)f,;,> é(nﬁ,il;+a; t)
[

-z ((iklscolnk>+ 2 (jp,ik|U|nk,jp)fi5- 2 (fk,jﬁlve,,lnﬁ,fﬁ)n;.) Gk, mk +q;t)
1sp

FH

- (fnil_fmﬁ#af) E’ (mk+Q91’§‘UeltInk9]p+a)é(1§y]5+a;t) .

In order to simplify this equation, the states
{¢ui,} are now required to satisfy the Hartree-
Fock-like equation

Scolﬁnia(F) + Z; Bfmis lpnﬁa (F)

-,

X [Uhss @)V U7 =7 Womgs@ ) @ !

- Z‘fmﬁalpmﬁa(F)przia (F ')Ueft (F’ F ,)zl)nia (F ,)da'r !

myp

= E(nka),z (). (30)
Then
E(nko)b

nym

- (mE|ZCo|nE)+‘Z} FizalmK,ip | U |ip, nk)

e

- ZZf{Ba(mE,i§| Ue!! InEviE)
1,0
=€, (1K) + 2 [figo = (Figo P 10mK, 13| Upee | K, iD),
i,D

if n=m (31)

where e,(nﬁ) is the paramagnetic energy and f and
f*** are, respectively, the ferromagnetic and
paramagnetic occupation numbers.® Equations (29)
and (30) together with the equation for U, and the
one-particle Green’s function could form the basis
of a “first-principles” calculation of the electronic
band structure and the neutron-scattering intensity
which, at present, would be impossible to carry
out. As a means of circumventing this problem,
we could simply treat U,, as an adjustable term to
be fixed by experimental data. Equations (29) and
(30) then provide us with a method of parametrizing
the problem, This does not seem inappropriate
since, at present, we must rely on parametrized
band structures to provide a reliable description
of itinerant systems. It should also be pointed out
here that we are tacitly assuming that Eq. (30) is
general enough to provide an adequate “first-prin-
ciples” description of the electronic band structure
for some appropriate choice of Ugy,.

If the complex transform of G is defined by'?

80)- 5 D ez,

Zv: WV/(_ iﬁo),
then substitution of (31) and (32) into (29) gives

(32)
v =odd integer

(29)

1,439

[
[7z - E(mk + af) + E(nlzﬁ)] Gk, mE+a; Z)

nl:) (fn'l?t - m?oaf) - (fn'l;i _fml?-l»a')

X T3 (mK+q,i| Usye Ink, 5+ ) 66D, 79 + 43 2) ,
14439 (33 )
where G(Z) is the analytic continuation of G(Z,).
Equation (33) represents an approximation of (19)
which can be solved exactly provided certain as-
sumptions are made concerning the matrix ele-
ments, There is, however, one special case cor-
responding to d =0, where (19) itself can be solved
exactly. It is straightforward to prove from (17),
(19), and (22) that

=(mk + q| e'¥F

6., @=0,2)=(n,-n,)/Z , (34)
nﬁﬁ?fnﬁa - @35)

Thus, from (8),
(36)

A_,(d=0,w)=278(w) .

This is nothing more than a statement that it costs
no energy to turn over-all spins in the system at
the same time in zero field or, put another way,
the spin-wave energy must go to zero as 5»0.

Equation (33) can also be solved exactly at =0
provided one uses

E(fiﬁo—fl‘p’s)(mi;’is'Uetflnizyig)zo7 n#m (37)
i

which follows from (31). The ultimate result for
G., is exactly the same as that given in (34) with
the modification that », is to be calculated with re-
spect to the single-particle Hamiltonian which gen-
erates the {y,z,} instead of the one given in (22),
This result is important since it guarantees that the
solution of (33) has built into it the feature that the
spin-wave energy, which is obtained from the po-
sition of the spin-wave peak in the scattering inten-
sity, must go to zero as — 0. It should also be
noted that the above argument is independent of the
choice of the paramagnetic energy s,,(nl?) defined in
(31).

IV. MATRIX-ELEMENT APPROXIMATIONS

Equation (33) cannot be solved without an explicit
knowledge of the band and momentum dependence
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of the matrix elements of U, and e!f This type

of calculation would be very difficult since it would
require a detailed knowledge of the band wave func-
tions which are not readily available at the present
time,

An alternative approach is to try to extract the
band and momentum dependence in some realistic
fashion. The usual approach to this problem is to
expand the Bloch functions in terms of Wannier
functions which can in turn be used to obtain a
multicenter integral expansion of the matrix ele-
ments, On the basis of this type of expansion,
Englert and Antonoff'® suggest that

(niky, nok, l Uext'”aks,"4k1+kz - Ky) = Ag(ny, 15, m5,7,)
+A1(E3 - El;"n”z,”ay"‘;) , (38)

where A, and A, can be used as adjustable param-
eters. Then the U, matrix element in (33) be-
comes

(MK +,1D | Ugy| 7k, 50 + Q) = Ag(m, i, 7, §)
+A1(_ q; m,i,n,j) . (39)

Since this approximation removes the k and E de-
pendence of the matrix element, (33) can be con-
verted into an Ny XNy matrix equation, where Ny
is the number of bands considered. This is essen~
tially the path followed by Yamada and Shimizu®*

in their paper on spin waves in ferromagnetic met-
als.

The approximation given in (38) also has con-
sequences as far as the ferromagnetic band struc-
ture is concerned. If the U, matrix element which
contributes to the spin-dependent part of the ex-
pression for E(nEG), given in (31), is calculated
using (38), it is found to have no momentum depen-
dence at all, Thus each band is rigidly spin split
but the splitting depends on the band index. This
represents a generalization of the rigid-splitting
model to include multiband effects. Unfortunately,
in a realistic multiband calculation the number of
parameters {4,} and {4} could be large and they
cannot be calculated a priori,

If the e'TF matrix element in (33) is expanded in
terms of Wannier functions, and the overlap of
these functions on different sites is neglected,
then'

(mi+a|e'3".'

nk)=~F, (q) (40)

and the k dependence is removed.

One way to further simplify the calculation is to
consider only a single-band system, in which case
all band indices can be dropped. If (39) and (40)
are substituted into (33), the equation can easily be
solved to give

%@, Z)

G-.(E,Z)=ﬁlF(a)|zﬁW, (41)

F. COOKE 1

- fﬁs"fiﬁ'
x°(q,Z)=§ﬁZ_ ER-aD-ERY)

I@)=Ag+A,(-q) . (43)

This result was proposed and examined by Thomp-
son'® and it reduces to the Izuyama et al.® result if
A, is ignored. Since ¥, is the susceptibility for a
noninteracting system of electrons [I(q)=0], Eq.
(41) is usually called the enhanced-susceptibility
result,

A slight generalization of (41) was made by LW*
in order to extend the result to the multiband case.
Since it is known for a multiband system that

(42)

XoMB(E,Z)aE I(mE+a|eﬁ'? nE)]a
Esnym
fnil"fmiﬁe ) (44)

“wz E(mk +q4)+ E(nk+) *
LW assumed
Xo MBQ; Z)
1+IQ)| F@| X0 @, 2)

where F(q) is the magnetic form factor. The et®?
matrix element was calculated using an interpola-
tion approach which will be reproduced later on in
this paper. This result is consistent with (33) pro-
vided all band indices and the k and P dependence
of the U,, matrix element are ignored. This as-
sumption also requires that all paramagnetic en-
ergy bands must be rigidly spin split by the same
amount, As has been pointed out before, they
found that the d dependence of I, represented here
by A,(- q), could not be ignored in their calculation,

The major difference between the theory pre-
sented by LW and the theory presented here is that
the interpolation formalism is to be applied to the
U,y matrix element as well as the e!TT matrix ele-
ment. The use of the interpolation formalism en-
ables us to include the k and D dependences of the
Ugy matrix element and, therefore, it represents
a step beyond the approximation given by (39).

The interpolation formalism® is based on an ex-
pansion of the Bloch functions given by

G..(2)="1 45)

o) == D aua@eFHeE K, 40)
where the {a,,,(K)} are expansion coefficients with
n representing the band index and p the symmetry
orbital index. The {¢%} are atomiclike symmetry
orbitals and ﬁ, is a lattice vector. The first five
orbitals are chosen to be d-like symmetry orbitals
and the remaining orbitals could be related to
orthogonalized plane waves.® Three of the d-like
orbitals have #,, symmetry and the remaining two
have ¢, symmetry. It is further assumed that the
d-like ¢, located on separate sites do not overlap,
that is, ¢ ()¢ o(F - R,)=0 for p,v=1,5 unless R,
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=0. This particular approximation allows for the
overlap of predominantly d-like Wannier functions
on separate gsites since, in this case,

- - - 1 =Py e,
wtm(r)wma(r - Rﬂ)u FE E e“k' )Ry elk 'ﬁp

rod Ky, B

X a:uu(i;) amvo(i;’)@z*(F‘ R.l ) ¢g(;— -R.l) ’ (47)

where

w,,(F-R;)= 317 ety o () (48)

-

k

is the Wannier function associated with the lth site.
Clearly, if the momentum dependence of the {a,,,}
could be neglected in (47), the momentum sums
would yield 83,,o and the Wannier functions would
not overlap.

If we calculate the Uy, matrix element within the
interpolation formalism as outlined above, the re-
sult is (neglecting spin dependence)

("kumkz‘ Ue!fl zka,ﬂ‘h +kz ks)"’ 2 anu(-l)amv(ka)

nvné

X‘.ain(ka)”je(kﬁkz‘ks) Uere(p,v,m,8), (49)

Uete (b, v,m, )= ‘]1\7213 ¢ﬁ(f‘ﬁ1)¢:‘(F'-ﬁz)Uen(f,ﬂ'

x/¢,,(1?' -R) ¢, C-R,)drd®" . (50)

Since U, is undetermined, the matrix element in

(50) cannot be evaluated and thus the following sim-
plifying assumption is made:
Uete (1, v,m, £)=NU:f-ld 8uwdu,nduye, K=1,...,5

=0, otherwise. (51)
This approximation takes into account only an av-

eraged “diagonal” interaction between “d electrons”

and ignores the s-d and s-s effects which also con-
tribute to the matrix element. This does not mean,
however, that s-d hybridization has been neglected,
since such mixing terms are present in 3G. It does
mean that exchange splitting of the s-like Bloch
states has been ignored. Such terms could be car-
ried along in the analysis but there is some doubt
as to what form the s-d spin coupling should actual-
ly have.®

As a result of (51) the U,,, matrix element takes
the form

(nkl,mkz | Uess |2k3;1k1 +k2 - ka)"’ Ut Zi a:u(il)

x ak, (&) alu(i;!i)alu(k.l*"ﬁz-i;a) , (52)

and in particular

(mﬁ"':la ip | Uets I"E,ﬁﬁ' )

5 > - > - - ->
~U§;;‘Zla,’:u(k+q)a"u(k)a;"“ (p)a,,,(p +q), (53)

(nﬁy lE‘ Ueﬁ I"E’ nE) = (nE ZEI Ua!l' HE, Zﬁ)

Z;?Ela,w ©)[2a,,(0)]2. (54)

The matrix-element approximations above repre-
sent a step beyond previous work in that they re-
tain the k and p dependence.

The e'¥% matrix element can also be calculated
within the interpolation formalism. The result is

(mk+q|e'¥F|nk) > 2 aX,&+q)a, K) Fu,@), (55
uwy

Fu@)=[oiF)e' T, @)d%r . (56)
Following LW, * we assume

F @)~ F@)5,,, (57)
with F(q) as the magnetic form factor. Thus,
(mk +3 | ¥F|nk)~ F@) D ay, € +3) a,,®) . (58)
o

Note that there are two types of sums that ap-
pear in (58) and (52). The one in (58) is over all
symmetry orbital indices p, while the one in (52)
is only over the d orbitals (L =1,5). In order to
avoid confusion and to simplify notation, the follow-
ing convention will be adopted:

Z’ E (59)
p=1
E“—' sum over all u.
V. SOLUTION FOR G.+(q, Z)

If the matrix-element approximations developed
from the interpolation formalism in Sec. IV are
substituted in the expression for & given by (33),
the result is

[7Z - E(mk + q4) + E(k¥)] G(nk, mk +q ; Z)

= th(a)Za::u(E“‘a) anu.(E)v(anl - miqa')

= ULt (futs = Futor) & 20 a8, & +Q) @,,(K)
15:% u
X afu(ﬁ)a,u(5+a)@(i§,j§+a; Z) ) (60)
where from (31),

E(nko) E,(nk)‘*' Ueu ,I anu(k.)|2 [fu.-u_ (fu.-o)p“a] ’
(61)

fu,a= E' ‘anu(a)‘zfnw ’

P

(furo?= (Fu, "= 2 |[a

5]

(62)
u(p) para‘ )para .
The function f, , represents the “number of elec-

trons” with symmetry orbital index p and spin o.
It follows from (62) and some group theory that

fl,a:fz,u:f:i,u ) (63)
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2 - -> ->
f4v‘7:f5v° ’ (64) Z; [Gu,u"’U‘:;g I"“,,(q,Z)]X,,(q, Z)= Eruv(qyz) )
v v
where 3f, is the number of “4;, electrons” and 2f,,
is the number of “e, electrons” with spin 0. These p=1,5 (67

relations also hold for f*2™,

The electronic energy-band model which has
emerged from the theory is precisely the one sug-
gested by Hodges et al.® (HEL). The most impor-
tant feature of this model is that the spin-dependent
part of the energy given in (61) is, in general, mo-
mentum dependent. For example, HEL found that
in their energy-band calculation for nickel the #,,
and e, splittings were roughly 400 and 100 meV,
respectively. At an arbitrary point in the Brillouin
zone where the Bloch function is a mixture of e,
and ¢,, symmetry, the splitting will be somewhere
in between these limits depending on how much e,
or f,, character the wave function contains. This
is an important feature since G, and therefore G.,,
depends on energy differences. Thus we should
expect to get a different answer for G calculated
on the basis of the momentum-dependent spin-
splitting model than we would from the rigid-split-
ting model. Another important feature of this
model is that it is in general very easy to eliminate
the X, hole pockets in nickel and the particular
band structure proposed by HEL was chosen so
that this was the case,

It should be emphasized that it is the band-struc-
ture model proposed originally by HEL which has
emerged here and not any particular band struc-
ture. The interpolation scheme suggested by HEL
to treat this model can be used to obtain an appro-
priate band structure for any particular system
and also to provide an efficient means of gener-
ating the electronic energies and the expansion co-
efficients a,,(k), which will ultimately be required
to calculate G (or G). This method also requires
that U%? be fixed to give the correct spin-only mo-
ment for the ferromagnetic system under consider-
ation and, therefore, there are no adjustable pa-
rameters in this theory once an appropriate band
structure has been determined.

Another important aspect of the U, matrix-
element approximation is that it has separated the
k and D dependences so that (60) can be solved to
obtain an answer in closed form. In order to sim-
plify the solution of (60), define

X,@,2)=+= 2 _af®a,,E+q)

n,m.k

h'F( )
XGmk,mk+q;Z) . (65)

Then from (58) and (17),
6..q,2)=rlF@*Z x,G,2) , (66)

and from (60),

2)=2T1,G2-U0%2'T,.4,2)X,4,2) ,
v v

L>5 (68)
r.@,z)

= Z; anu(ﬁ mu(l;‘*'q mv(ﬁ'*q)am/ )(fnkt—' mE-td')

nym;& "z - E(mk+q+)+E(nki) (69;

The sum in (69) runs over all bands and over the
entire first Brillouin zone, Thus in order to ob-
tain G., we must first solve the set of five equation
given in (67) for X,, k=1,5, and then substitute
this result into Eq. (68) to obtain X, p >5.

The solution of (67) can be obtained quite simply
by first defining

A"'V(a’ Z)zruv(ayz)y p'=1,5’
Then from (67),
2)=5% [1+U% A@, 2))L.T,..(, 2),
14 v

v=1,5. (70)

p=1,5 (71)

where I is the 5% 5 unit matrix. This result can be

simplified further by noting that
2" 1+ UG 0@, 213 T, @, 2)

ve

=[1+UGIAG, 2)] 5 (72)

my— éu,v ’
and therefore
X,@ 2)=-1+2" [1+ U4 7A@, 213,
14

+ L2 1+ UGG, 2,6, 2),
14 v
p=1,5. (73)
Since the scattering intensity is proportional to the
imaginary part of C, and thus X, the - 1 term in
(73) is of no consequence.
With X, (b =1,5) determined by (73) and X,

(i >5) determined by (68), the transverse neutron-
scattering cross section is given by

d3c

dQdw mc

<——‘z> B (14 ¢%) [1+ /0] | FG+ )2

X%E[ImXu(ay w = i€)+ II’I]XM(— aa -—w- Ze)] ’
“ (74)
which follows from (66), (9), and (8). In order to
put this result in standard form, the replacement
d-7+q has been made where 7 is a reciprocal-
lattice vector and § is restricted to the first Bril-
louin zone, The identity

X,(7+4,2)=X,4,2) (75)

has also been used,
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VI. DISCUSSION AND CONCLUSIONS

In Secs. I-V a result for the transverse neutron-
scattering cross section has been derived within
the framework of a simple extension of the RPA
and an interpolation formalism. The latter approx-
imation allowed us to solve the equation for the
scattering intensity without having to ignore the E,
P, or d dependence of the U, matrix element,
given in Eq. (33), as has been done in previous
theoretical treatments. This theory also leads us
directly to the ferromagnetic-band-structure model
proposed by Hodges et al.® which involves a mo-
mentum-dependent spin splitting of the electronic
energy bands. Thus Eqgs. (74), (73), and (68) rep-
resent a generalization of the scattering theory
which incorporates momentum-dependent exchange
effects as well as multiband effects. This result
reduces to the expression used by Lowde and
Windsor in the limit that all paramagnetic energy
bands are rigidly spin split by the same amount,

In this limit the results also reproduce the single-
band theory of Thompson'® and Izuyama et al.!

Since a “first-principles” calculation based on a
properly screened Coulomb interaction is beyond
our capabilities at the present time, it appears
that we must rely on a parametric description of
the scattering intensity based on model band-struc-
ture Hamiltonians such as the one proposed by
HEL. In their treatment, the paramagnetic Hamil-
tonian which gives the e,,(nﬁ) in (61) is parame-
trized and the parameters are chosen to give agree-
ment with known single-particle paramagnetic
properties of the itinerant system under investiga-
tion. Once this has been accomplished, the ferro-
magnetic band structure is generated self-consis-
tently with U%;? being chosen to give the correct
spin-only moment. One advantage of this model
over the rigid spin-splitting model is that it is rel-
atively easy to produce a reasonable ferromagnetic
band structure for nickel which does not predict X,
hole pockets.® Their theory also provides us with
the expansion coefficients a, u(ﬁ). Looking back at
the result for X, given in Sec. V, it is clear that
there are no other undetermined parameters in the
theory. Thus, once the ferromagnetic band struc-
ture is determined the scattering intensity follows
automatically.

The momentum-dependent effects of the U,y, ma-
trix element are carried by the interpolation co-
efficients a,,(k). They occur in both the numerator
and the denominator of the function I',, and thus
their ultimate effect on the final result for X, is
difficult to determine a priori. It is clear, how-
ever, that as a result of the momentum dependence
they impart to the spin-dependent term in the elec-
tronic energy expression, there will be a larger
number of low-lying spin-flip excitations (Stoner
excitations) than that predicted by the rigid spin-

splitting model, which in turn should produce no-
ticeable changes in the spin-wave energy and life-
time. In fact, it could be argued that the effects

of the I(q) which Lowde and Windsor used have been
incorporated in this theory in a self-consistent way.

The scattering cross section given by Eq. (74) is
dominated at low q by spin-wave scattering which
will contribute a large peak at the spin-wave ener-
gy corresponding to that . The spin-wave energy
at low g is therefore equal to the lowest energy at
which the real part of the determinant of the ma-
trix [7+ U%A({, w —ie)] vanishes [see Eq. ( 71)].
The lifetime of the spin-wave state is related to the
inverse of the width of the spin-wave peak, which
in this theory is a very complicated expression.
Thus we can no longer rely on the enhanced-sus-
ceptibility result that the lifetime of the spin-wave
state is simply related to the Stoner band density
of states.

Because of the termination of the Green’s-func-
tion equation, the results presented in this paper
should be restricted to low temperatures. If the
scattering cross section can be described reason-
ably well at low temperatures by Eq. (74), it is
tempting to investigate the temperature dependence
suggested by this theory as was done with the LW
result, The first problem which must be consid-
ered in order to do this, however, is connected
with the temperature dependence of the electronic
band energies. For example, should the paramag-
netic band structure be considered as temperature
independent, should U%? have a temperature de-
pendence, etc. A temperature analysis of Eq. (74)
and comparison with experimental results may help
to answer some of these questions within the con-
text of this particular theory.

The expression derived for the scattering cross
section is clearly of such a complicated nature that
analytic results for a system such as nickel are
apparently not possible, even at very small . The
result is not, however, purely academic since
computer programs do exist which can treat the
HEL ferromagnetic-band-structure model and
which can also calculate the function I',,(J, w - 7€)
and, therefore, the scattering cross section. Ex-
tensive computer calculations based on this model
are now under way for the case of nickel. Pre-
liminary results indicate that the spin-wave dis-
persion curve as obtained from the calculated scat-
tering intensity agrees extremely well with exper-
imental data. The results of this calculation will
be reported in a later paper,
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Formal methods of field-theoretic scattering theory are employed to present a simple formalism for the
problem of s-d exchange scattering in dilute magnetic alloys. The single-particle scattering equations
obtained include all multiparticle intermediate states and are exact in the thermodynamic limit. The effect
of the multiparticle intermediate states leads to a natural redecomposition of the Hamiltonian and is easily
realized as the familiar renormalization process common to scattering phenomena in field theory.
Boundary conditions to be satisfied by the scattering amplitudes in the thermodynamic limit are invoked
to obtain determining equations which fix the essential nature of renormalization. Although we have not
been able to obtain exact solutions to these equations, it is shown that if the conduction-electron
exchange-correlation energy is considered a slowly varying function of the momenta in the narrow region
of interest around the Fermi surface, an approximation which may be expected to hold fairly well for
narrow conduction bands, then the two determining equations reduce to a simple set of transcendental
equations which may be easily solved numerically. Finally, we check our results against previously obtained
results in the appropriate limits.

mulations., We employ the concepts of formal
theory of scattering, developed in the context of

I. INTRODUCTION

The theory of s-d exchange interaction in dilute
magnetic alloys has been the subject of intensive
investigation since Kondo’s! explanation of the phe-
nomenon of resistivity minimum. Fairly complete
and extensive review articles? now exist and pro-
vide a very good idea of the theoretical as well as
experimental status of the field. The methods of
double-time Green’s function and S-matrix theory,
pioneered by Nagaoka? and Suhl, % respectively,
have been used by many workers in the last few
years and it appears that one has reached the limit
of their practical utility. Thus the tendency in the
more recent past has been to go over to functional
integration methods. ®

The present paper deals with another formula-
tion of the problem which we find to be straightfor-
ward, physically intuitive, and immensely less
complicated mathematically than the previous for-

field theory, to provide a formulation of the theory
of s-d exchange interaction in dilute magnetic al-
loys. It is significantly different conceptually, as
well as in its mathematical content from the S-
matrix formulation, although there are many points
of contact with it and with the formalism of Green’s
functions. Thus many results of these well-estab-
lished formalisms can be used to our advantage.

Before we present our formalism, a few words
on some conceptual points seem in order. As is
usually done in describing physical systems, we
also start by characterizing the nonmagnetic host
plus the magnetic impurity system by the Hamil-
tonian

= ﬁo + I}s-d ’
where Ay and I-AIS_,, are the usual free-electron and
s-d-exchange Hamiltonians.? In the usual consid-



