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The superparamagnetic relaxation time is calculated for spherical particles with cubic magnetocrystalline
anistropy, whose easy axis is either [100] or [111] in zero applied field. Results are reported for relatively
small particles only, in which no anomaly is found. It is concluded that the experimentally observed
anomaly in this size region must be due to incoherent magnetization reversals.

I. INTRODUCTION

A magnetized ferromagnetic particle has to over-
come an energy barrier before the direction of its
magnetization can be changed. Since this barrier
is proportional to the volume of the particle, the
probability of a spontaneous flip of direction, by
thermal agitation, is negligibly small for relatively
large particles. However, if the particles are
very small, thermal agitation can cause many
changes in the direction of the magnetization in
each particle during the time of measurement. An
assembly of such particles will therefore reach a
thermal equilibrium for the statistical distribution
of magnetization orientations, and its measured
magnetic properties will be similar to those of an
ensemble of paramagnetic atoms. This phenomenon
is called “superparamagnetism’” and has been ob-
served by many workers. !

The usual theoretical study of the relaxation time
associated with these thermal fluctuations! is based
on the assumption that the magnetic moments of
the particles are always in one of the two energy
minima, and do not spend any time in between.
Such a discrete orientation model leads to a re-
laxation time  which can be approximated by

r=f;! eBB/*T, 1)

where T is the temperature, % is Boltzmann’s con-
stant, and E y is the barrier energy. Different
authors use different values for the parameter f,
but it is just taken as a constant, which varies
roughly between 10'° and 10° sec™.

This vague approach has been put on a much
sounder basis by Brown, 2 who considered the mag-
netization vector in each particle as changing its
direction continuously, in response to some random
forces. Brown still kept the conventional assump-
tion that each particle is a “single domain, ”

namely, that the magnetization vector is constant
within each particle during all the stages of its re-
versal. But he did not use any other arbitrary
assumption. By using the theory of stochastic
processes for a white spectrum of agitation forces,
he wrote a rigorous Fokker—Planck-type differential
equation which yields the relaxation time as its
eigenvalue. He also showed that for the case of a
uniaxial anisotropy in zero applied field, the as-
ymptotic value of the relaxation time (in the limit
of a very large barrier compared to £7T) is given
by Eq. (1) in which fj is not a constant. Rather,

fo=2Kyy(a/m' %/ My, @

where K is the anisotropy constant, ¥, is the gyro-
magnetic ratio, M, is the saturation magnetization,
and

a=KV/kT, (3)

where V is the volume of the particle. This as-
ymptotic formula was later shown to be a very good
approximation to the actual eigenvalue in uniaxial
ferromagnets, down to a of the order of 1, without, ®
or even with* an applied magnetic field. This re-
sult is often quoted as a proof for the constancy of
fo, which is not quite the case, although the dif-
ference is not always very significant.®

For materials with cubic anisotropy, no rigorous
computations of the relaxation time have ever been
tried; this seems necessary after many experimen-
tal studies of superparamagnetism in cubic mate-
rials have been publishéd in recent years, in which
the results are still analyzed by (1) with a constant
fo- Moreover, in a recent experiment® a case was
found in which 7 is not a monotonically increasing
function of the particle radius. This effect was ex-
plained as resulting from incoherent rotation of the
magnetization in the particle, ® which might or
might not be an adequate explanation, but its theory
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is based on Eq. (1) with a constant f, (besides
other rough approximations to be discussed in Sec.
IV). Therefore, it seems particularly interesting
to investigate the more rigorous relaxation time,
as obtained from Brown’s differential equation, for
this case of a cubic anisotropy, even though this
equation is limited only to the case of coherent
rotations of the magnetization.

II. THEORY

It is assumed that the magnetization in each par-
ticle is always a constant, so that its direction is
defined by the two polar angles 6 and ¢ measured
from one of the easy axes. For a cubic anisotropy
in zero applied field with [100] an easy axis, the
energy density for each particle can then be written
as

F =K (sin®26 + sin*0 sin®2¢), (4)

where K >0, and the second-order anisotropy is
neglected. If the easy axis is [111], the same ex-
pression can be used, with KX<0. Substituting in
Brown’s differential equation for the stochastic
process, 2 using the same transformation for the
probability function as in all other calculations, *~*
and assuming that the dissipation constant assumes
its value? which minimizes the eigenvalue 1,
Brown’s differential equation becomes

°] 9
O +A)d+ a(A - B- c)a—j; - @A+ B~ C)sind 22 =0.
(5)
Here & is proportional to the probability density
distribution function, ¢ is as defined in (3), and the
other notations are

A=3cosh (7cos?6 - 3), (6a)

B=1%sin?0 sin 4¢, (6b)

C =14 sin®6 cos6 cos4g, (6c)
1 8 (. 0 1 8

A= sin6 86 (sm@ %)Jr sin®6 8¢? * (6d)

The relaxation time 7 is related to the smallest
nonvanishing eigenvalue A of (5) according to

X=2VM,/(ykTT). (7

In order to solve (5), ® is expanded in the eigen-
functions of the operator A,

&6, ¢) = 20 a;, Py (cosb) e'™, (8)

lym

where P7 are the associated Legendre functions of
the first kind, «,,, are complex numbers, and !
=m 20 are integers.

Substituting Eq. (8) in (5), and shifting m indices,
the dependence on ¢ can be made of the form

2. F,(8) e'™ =0, (9)

which can be fulfilled for every m only if each F,,
vanishes. Similarly, by shifting indices and using
the recurrence relations between the associated
Legendre functions, the 6 dependence is only
through a single P}, so that its coefficient should
vanish. This leads, then, to an infinite set of
algebraic equations:

4

E [Ak(l; 7n)al+k,m+4 + Bk(lr m)ah-k,m
k= =4

+Cll, m)al+k,m-4] =0, (10)

which should hold for every integral I and m, pro-
vided I=m = 0. The values of the 27 coefficients
A,, B,, and C, are listed in the Appendix. It
should be noted particularly that X and «a appear
only in By, all the other coefficients being constant
numbers.

The actual (complex) values of a;,, do not have
any physical significance, and all one is interested
in are the eigenvalues A for which a nonvanishing
solution of the set of Eqs. (10) exists. The nec-
essary and sufficient condition for the existence of
such a solution is that the (infinite) determinant of
the coefficients of a,,, in (10) vanishes. The prob-
lem canthus be reduced to a conventional diagonal -
ization of a complex matrix, if the two indices
! and m are reduced to a single one by an appro-
priate ordering procedure. The order chosen was
to count all the allowed values of m for a given I
before jumping to the next value of /. This means
that each pair (I, m) is replaced by the single index

n=510+1)+1+m. (11)
III. COMPUTATIONS AND RESULTS

The diagonalization of the infinite matrix was
carried out by diagonalizing some finite-order ma-
trix, then increasing the order and repeating the
computations until a further increase in the order
of the matrix made a negligible change in the value
of the smallest nonvanishing eigenvalue A. For
such a computation the choice of Eq. (11) was very
convenient, because standard methods for matrix
diagonalization could be used (the actual calcula-
tion was done using subroutines available in the
computer library). However, this choice of (11)
is rather wasteful in terms of computer memory
requirements, because it calls for defining large
complex matrices, which take many memory cells,
although most of these matrix elements are zeros,
and the real and imaginary parts are actually sep-
arate. The computer on which these computations
were done (ICL 1906A) could satisfactorily handle
a complex matrix only up to an order of about 100.
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FIG. 1. Parameter g which is inversely proportional
to the theoretical superparamagnetic relaxation time T,
according to Eq. (12), for cubic anisotropy with [100] the
easy axis, i.e., Eq. (4), with K>0. The abscissa « is
defined in Eq. (3), and is proportional to the energy
barrier.

This enabled the computations of eigenvalues with
the absolute value of the parameter o, defined in
Eq. (3), not exceeding about 10. Even for these,
the standard accuracy of the 1906A was not suf-
ficient, and certain parts of the computations had
to be done with double precision. Some computa-
tions were done with a matrix order up to 135, but
it was not easy to push the computer that far, and
it would not be pushed further. Therefore, for
larger values of |a| this method is not practical,
and some transformation of the matrix must be
used.

In plotting the results it seems more appropriate
to plot w=X/lal, rather than A, since this u is
better related to the relaxation time. Actually,
according to (3) and (7),

pw=2M,/(yo| K| 7). (12)

The results for this parameter as a function of «
are plotted in Fig. 1 for a positive a (i.e., with
the easy axis along [100]), and in Fig. 2 for a
negative a (i.e., with the easy axis along [111]).
In both cases the three lowest eigenvalues are
shown in order to reveal the basic computational
difficulty inherent to this region of small |l
values, namely, that the eigenvalues are rather
close together. This causes difficulties in most
numerical methods for matrix diagonalization,
and is evidently the reason for strange behavior
in earlier attempts’ to solve this problem. More-
over, the experimental results should also, in
principle, be analyzed in this region in terms of
more than one relaxation time. Although gen-
erally it is only the smallest value of 1/7 which
affects the measurements, the case of two near-
ly equal eigenvalues is different, and they both
should be taken into account. If this is ignored,

the results might seem somewhat strange, even
though from Figs. 1 and 2 it does not seem likely
that they could yield a relaxation time 7 which is
not a monotonically increasing function of |al.

As has been mentioned in the foregoing, com-
putations beyond the region plotted in Figs. 1 and
2 call for impractically large matrix order. How-
ever, some values were computed, and from them
it seems that the lowest eigenvalue continues to de-
crease smoothly, and there is no crossover similar
to the one seen in the two upper eigenvalues in Fig.
1. Atany rate, evenif suchacrossover does occur
eventually, it canlead only to anincontinuous deriv-
ative of the smallest eigenvalue, which will still
be a monotonically decreasing function of a.

IV. DISCUSSION

Afanas’ev ef al.® have measured at different tem-
peratures the fraction of stable and superparamag-
netic particles for various samples of fine parti-
cles made of the Fe-Ni alloy with 37-at.% Ni. The
fraction of superparamagnetic particles usually de-
creases with increasing particle size, but they find
that in changing from an average diameter of 120 to
190 f\, there is anincvease inthe fraction of super-
paramagnetic particles at several temperatures.
This increase is quite small, being hardly above
the reported experimental accuracy. It might be
just a manifestation of slightly different physical
properties of the samples with 120- and 190-3
average diameters, since these properties are
very sensitive to the exact composition of the alloy®
in the vicinity of 37-at.% Ni. It is also possible
that the increase is due to a somewhat different
shape of the particles in the two samples, because
they cannot all be quite spherical, and elongation is
known® to cause a very significant change in the
fraction of superparamagnetic particles. However,
a very similar anomaly has already been observed
by Weil in fine particles of Ni as one of the earliest
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FIG. 2. Same as Fig. 1 for the case of a cubic
anisotropy with the easy axis along [111], i.e., Eq. 4),
with K <0.
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studies of superparamagnetism.!® The results were
then interpreted in terms of a gap in the distribution
function of particle sizes, which is of course possi-
ble but somehow does not seem very likely. When
asked about that strange distribution in the discussion,
Weil® claimed that it was “undoubtedly” due to the
particular sample preparation and that it would be
interesting to study differently prepared Ni parti-
cles by the same method. Inthe meantime, another
and more pronounced gap in the distribution was
found necessary in order to account for the super-
paramagnetic behavior of some nickel-lead alloys. u
Again, it is possible that such a gap exists, but it
seems more reasonable to assume, as Afanas’ev

et al. do, that the distribution function is smooth,
but that there is a region in which 7 decreases witu
increasing particle volume. This will cause cer-
tain small particles to behave as if they were much
larger, and will lead to the experimental results of
Weill® or Miiller!! without the gap in the distribu-

tion function.

For the alloy with 37-at.% Ni, Afanas’ev et al.®
report a positive K, of the order of 10* erg/cm?®.
Even though by comparing to data® on similar alloys
one expects this K to vary quite considerably with
temperature, the region in which the anomaly was
observed must be within the region plotted in Fig.
1. Since the theoretical curve does not show this
anomaly, it must be caused by something neglected
in the theory, and the argument of Afanas’ev et al.
about the reversal of the magnetization by the
curling mode seems very plausible. It is known'?
that for a sphere whose radius is small enough,
the state of lowest free energy, in zero applied
field, is that of a uniform magnetization. But this
does not mean that during the magnetization rever-
sal the state of uniform magnetization is conserved,
and thermal agitation might excite some nonuniform
state before causing a complete reversal. This
has also been noted by Dunlop and West® who real-
ize that magnetization curling, or other nonuniform
processes, might take place in a certain size re-
gion, although their® conclusion is that this range
is sufficiently narrow so that its effect is usually
not very great. Still, the treatment of this prob-
lem by Afanas’ev et al. is not satisfactory because
they assume (1), with a constant f;, which is a very
poor approximation to Fig. 1. Moreover, in order
to use (1) they express the energy barrier in terms
of the anisotropy constant K to which they transfer
the exchange and magnetostatic terms by using the
formulas for static nucleation. This can hardly do
in the dynamic problem of a random walk, and the
linearized theory of nucleation cannot be used to
calculate an energy barrier since such a barrier
is mainly determined by its maximum at which the
linearization might not hold.!® One thus needs a
more rigorous theory for the energy barrier for
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incoherent reversals, preferably worked out to-
gether with the stochastic processes* involved.
The region plotted in Figs. 1 and 2 is only that
where the energy barrier (which is*® 3KV for K
>0, and{s |K|V for K<0) is far from being large
with respect to 7. Therefore, one does not ex-
pect the asymptotic formula (1) to hold, even ap-
proximately, and in fact it does not hold. However,
one can use for this region a much simpler formula
for the relaxation time. Actually, for |als1 the
eigenvalue ) is 2to a very good approximation, both
for the cubic anisotropy discussed here and for
uniaxial anisotropy which was treated® before.
Therefore one obtains from (12) and (3) that in this
region the relaxation time is

T=MV/ (v, kT). (13)

Here as before, ¥, is the gyromagnetic ratio (typi-
cally about 2x107 G sec™) and M, is the saturation
magnetization. The anisotropy constant does not
enter at all.

The region of validity of (13) is outside all prac-
tical magnetic measurements for which the “mea-
surement time” is® of the order of 10% sec. For
the MOssbauer effect, for which the measurement
time which counts is'® very close to 10™ sec, Eq.
(13) might well be applicable. In fact, in the re-
gion of the Afanas’ev et al. experiment, (13) should
be a much better approximation than (1). But the
experiment for which (13) should be especially ap-
plicable is the one mentioned by Roth!” and dis-
cussed before in this context, ® namely, to study the
magnetic scattering of neutrons from fine ferromag-
netic particles. In this case, if one considers
neutrons whose velocity is 5000 m/sec, they spend
1072 sec in a particle with a 50-A diameter. The
theoretical relaxation time, inasmuch as non-
coherent rotations can be neglected, is then just
(13).

However, when such short measurement times
are concerned, one should be careful not to push
this theory too far. Formally, the theoretical
relaxation time in (13) tends to zero when the par-
ticle voluine V approaches zero. But this should
not be taken too literally because the theory starts
with the basic a.ssumption2 that the response time
of the spin system is very long in comparison
with the correlation time of the random forces
responsible for the fluctuation from the mean.,
Therefore, if this theory does not break down be-
fore, due to some other reasons, it will certainly
break down when the time approaches the value
for which the spectrum of the thermal agitation
forces can no more be considered as “white. ”
According to the estimation of Brown, 2 this spec-
trum may be considered as “white” down to cor-
relation times of the order of 107! sec.

The problem of noncoherent rotations discussed
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before is probably not important for the very small
particles. However, for these one should be care-
ful in using the concept of :he saturation magne-
tization M. Since its value at a given tempera-
ture is obtained by averaging some spin ampli-
tude, this averaging might not be allowed for the
thermal processes giving rise to superparamag-
netism, for which the instantaneous rather than
the average value should be used. According to

a recent estimation, '® Brown’s theory, assuming

a constant M, is valid for low temperatures but
not for relatively high ones.

It is thus not clear at all if one can actually en-
ter into the region of validity of (13) without the
whole theory breaking down beforehand. In order
to find that out, it should be particularly interest-
ing to try and do the neutron-scattering experiment,
as suggested by Roth, which has never been done
as far as this author could find out.
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APPENDIX

The matrix elements, as defined in Eq. (10),
are

I+m+4+k)! 3F .
Tomyt - L E=m=9),
(using the convention that an empty product, for
k=4, is 1)

A, =(-1)¢c,

l+5
(21+3)(21+5)(21+7)(21+9) °

C,=
.o i
37 (21+3)(20+5)(20+7)°

21+13
(22 -1)(21+3)(21+5)(21+7)’

Cp=—

Conm 3i
1T T er-1)21+3)(21+5)°
Co- 15

0T (21-3)(21 -1)(21+3)(21+5) ’
.- 3i

17 (21 -3)(21 - 1)(21+3)’
C.o 1-4

“" T (-2 -5)@21-3)(21-1) "’
C. - 21 -11

27 (21-5)(20~3)(21 -1)(21+3)°
Cus= :

@ -5)@-3)@i-1)’
By=(4/a)A~10+1)]+2Cy[30-1)1(2+1)(1+2)
-5 m*(61%+ 61 - Tm? - 5)].
For £>0,

T+m+k)!

e

Dk’
with
D,=14, Dy=14m,
D,=-2[1(1+3) - Tm?),
Dy=-2m(3B -Tm?+61-2).
For k<0,
B,= Ckaﬁ-k (1 -m=-3),
i=0
with
D.,=2m(3 1% - Tm?® - 5),
D =2[tm? - (1 -2)(1+1)],

D_s = —14m, D_4 = 14.

*Work done while the author was on Sabbatical leave at the
Department of Metallurgy, Oxford University, England.
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