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A self-consistent calculation of energy bands in ferromagnetic nickel has been made using
the tight-binding method. Eighty-nine points in ﬁ;th of the Brillouin zone were used to deter-
mine the charge density in the final stages of an iterative procedure. The Kohn—Sham-Gaspar
exchange was employed. The approximately self-consistent potential was used to compute
energy levels at 505 regularly spaced points in Z‘gth of the Brillouin zone plus certain extra
points close to the Fermi surface. Results are given for the density of states, the Fermi
surface, the charge density, and the spin density. A magneton number of 0.58 was deter-

mined.

I. INTRODUCTION

This paper is an extension of a previous calcula-
tion of energy bands in ferromagnetic nickel using
the tight-binding method' (Paper I). The work de-
scribed in I was based on a crystal potential con-
structed from a superposition of overlapping neu-
tral-atom charge densities, the atoms being in the
d® s! configuration, The present calculation ob-
tains an approximately self-consistent potential
based on a sampling of the charge density at 89
points in 4 th of the Brillouin zone. The procedure
for achieving self-consistency has been described
elsewhere,? Exchange has been included accord-
ing to the Xo method of Slater, Wilson, and Wood,?
however, it was found that the Kohn—-Sham-Gas-
par*’® value of the coefficient a(%) appeared toyield
the most satisfactory results for the Fermi sur-
face and other properties. This resultis in marked
contrast to the non-self-consistent calculation, in
which it was found that a value of ¢ close to that
proposed by Slater (¢ =1)°® was more satisfactory.

Separate exchange potentials are obtained for
electrons of majority and minority (4 and ¥) spins
and energy bands are computed separately for the
two spin states. This calculation is a test of the
ability of such a procedure (the spin-polarized
method) to account for the magnetic and electronic
properties of a ferromagnetic metal. The results

are found to be in reasonable agreement with a
variety of different experiments.

II. METHOD

The calculation employed the tight-binding
method as reformulated by Lafon and Lin.” The
following set of basis functions was used: Atomic
wave functions for all states except 3d (e.g., 1s,
2s, 3s, 4s, 2p, 3p, and 4p) were represented by
the linear combinations of Gaussian-type orbitals
(GTO) determined by Wachters from a self-con-
sistent-field calculation for the free nickel atom.®
It appears to be important to allow the d wave func-
tions sufficient freedom to distort in the crystal-
line environment. To accomplish this, we used a
set of five separate radial GTO for each type of
angular dependence of the d functions. The orbital
exponents used in defining these functions were
the same as used by Wachters., 8

This choice of basis functions leads to a 38x 38
matrix problem at a general point of the Brillouin
zone, The d-d portion is 25X 25, the p-p portion
9X9, and the s~-s portion 4x4, With matrices of
this size it is possible to obtain energy levels at
a reasonably large number of points in the zone,
Two such matrices, which refer to 4 and ¥ spin,
are obtained at each point.

The energy levels and wave functions from our
previous non-self-consistent calculation' were
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TABLE I. Some Fourier coefficients of potential. (a)
V¢ (K) is the Fourier coefficient of the Coulomb potential,
(b) AV, is the change in V obtained during the iterations
of the self-consistent calculations, (c) V,, is the total
Kohn—Sham—Gaspar exchange potential for electrons of
t spin, (d) AV,, is the change in this quantity found in the
self-consistent calculation, (e) V,, and A, are the cor-
responding quantities for electrons of ¢ spin.

K Vel&)  Ave Vi AV, Vi AV,
[000] —1.6871 —0.0796 —1.4091 —0.0917 —1,4000 —0.1093
[111] =0.9690 —0.0955 —0.2630 +0.0150 —0.2532  0.0188
[200] —0.8560 —0.0687 —0.1328  0.0210 —0.1246  0.0261
[220] —0.6043 —0.0205 —0.0350 0.0062 —0.0334  0.0082
[311] =0.5033 —0.0095 —0.0626 —0.0052 —0.0634 —0.0058
[222] =0.4775 —0.0076 —0.0666 —0.0068 —0.0677 ~0.0079
[400] —0.3964 —0.0027 —0.0501 —0.0055 —0,0510 —0.0067
[331] —-0.3528 —0.0021 —0.0228 —0,0013 —0.0231 —0.0017
[420] —0.3399 —0.0015 —0.0145 0.0000 —0.0146 —0.0001
[422] —0.2972 —0.0008  0.0062  0.0030  0.0065 0.0035
[333] =0.2715 —0.0006  0.0076  0.0029  0.0079  0.0034
[511] —0.2710 —0.0001  0.0076  0.0029  0.0079  0.0034
[440] —0.2368 —0.0001 —0.0048  0.0004 —0.0048  0,0005

used as input material for the first iteration of the
self-consistent procedure. The procedure for
calculating the change in the exchange potential de-
scribed in Ref. 2 was modified as follows. The
change in the Fourier coefficients of charge den-
sity was averaged over directions of K and the
resulting Fourier series was summed to determine
the change in charge density in an atomic cell for
each spin direction, This was added to the starting
charge density, the cube root was extracted, and

a corrected exchange potential was formed. At
first, our calculation employed a value of the ex-
change parameter ¢ close to unity (a=0.972),
which had been found to give the most satisfactory
results. The charge density was sampled at 20
points in Z-th of the Brillouin zone. Reasonably
self-consistent results were obtained after about
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eight iterations., The resulting energy bands ap-
peared to be unsatisfactory, both in regard to the
relation of the p and d bands, and in regard to the
magneton number, Estimates were made which
indicated that the exchange parameter o should be
decreased. It appeared that o =% should be em-
ployed and the self-consistent calculations were
repeated with this value. The results obtained in
this case appeared to be in substantially better
agreement with experiment,

Our experience with the effect of exchange on the
band structure is similar to that reported by Con-
nolly.? We found, in agreement with Connolly,
that if the full Slater exchange is used, the energy
of the state Lj, for both spin directions, is above
the Fermi energy. Hence there would be no Fermi
surface neck at L. The reduction of the exchange
potential produced by use of the Kohn-Sham-Gas~
par value of the parameter ¢ raises the d levels
substantially more than those of p symmetry, The
L; levels are then below the Fermi surface, while
the large spin splitting of the L, states forces Lj,
above the surface. The criterion employed to de-
fine an adequate degree of self-consistency was
that the Fourier coefficients of Coulomb potential
should be stable to 0. 002 Ry. For the case o =%,
eight iterations were made using 20 points in 7 th
of the Brillouin zone, followed by three iterations
using 89 points, It was sufficient to consider only
Fourier coefficients of potential for the 50 shortest
reciprocal-lattice vectors inthe iterative procedure
to achieve self-consistency. Higher coefficients
describe the charge density deep inside the core
of an atom, and do not change appreciably. The
convergence of the exchange potential is somewhat
more rapid than that for the Coulomb potential.
This is expected since the exchange potential varies
only as the cube root of the charge density. Nu-
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TABLE II. Energy differences for selected states (inRy).

Majority spin Minority spin

CALLAWAY AND C.
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TABLE III. Exchange splitting of certain states at
symmetry points (in Ry), according to the present (self-
consistent) calculation, and as previously reported
(Ref, 1).

Present Ref. 9 Present Ref. 9
T4 — T 0.483 0.478 0. 534 0. 542
Ty—T4 0.091 0. 095
Xs=X; 0. 300 0. 330 0. 323 0,362
X5=X, 0. 009 0.010
X;—X; 0.177 0.118
X;-T 0.639 0.625 0.698 0.698
X -y 0.816 0.841 0.816 0.842

d bandwidth: X;,—X;,=0.360 Ry (4.9 eV)

merical values are presented for some Fourier
coefficients in Table 1.

After the self-consistent calculations had been
completed, energies were computed at 505 points
within #-th of the Brillouin zone. The density of
states was computed from the energies by the
Gilat—Raubenheimer method.!® Additional calcula-
tions of energy levels were made at a number of
points close to the Fermi surface.

III. RESULTS: BAND PROPERTIES

The calculated band structure is shown in Figs.
1 and 2 for electrons of majority (4) and minority
spins (¥) along some symmetry directions. The
bands have the expected shape, showing hybridiza-
tion between the relatively narrow d band complex
and a broad s-p band, Certain characteristic ener-
gy differences are listed in Table II, There is a
substantial degree of agreement between our values
for some of these separations and the correspond-
ing results obtained by Connolly.® Table II con-
tains the results of Ref. 9 for those states for which
energies are given in that reference, These energy-

Present Ref. 1
State E,-E, E,-E,
Iy 0. 001 0. 022
'y 0. 052 0. 060
Ty 0 057 0.063
X4 0.038 0. 049
X3 0. 044 0. 054
X, 0. 060 0. 065
X; 0. 060 0. 066
X} 0. 001 0.023
Ly 0. 030 0. 044
Lsy) 0.052 0. 060
Ly 0. 060 0. 065
Ly 0. 000 0.020

differences are also in fair agreement with the re-
sults of Wakoh, !! however, this author uses the
full Slater exchange (@ =1).

Exchange splittings of certain states are given in
Table III, Results from the non-self-consistent
calculation of I (¢ =0.972) are shown for compari-
son, It is seen that the splitting of states of pre-
dominately d symmetry has decreased slightly but

not by as much as woulc have been expected in view
of the decrease in v, There is significant varia-
tion in the amount of splitting from band to band.

A striking result is that the splitting of states of
predominately s-p symmetry is nearly zero.

These results can be qualitatively explained in
terms of the redistribution of spin density which
will be discussed in Sec, IV. The spin polariza-
tion becomes negative (minority spin predominates)
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L3 K X5
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g K FIG. 2. Band structure
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g o along certain symmetry
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FIG. 3. Density of states for majority
spin.
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in the outer portions of the atomic cell, Highly
extended states (s-p) experience cancellation of
positive and negative exchange potentials, The
more extended d states near the bottom of the band
are also located on the average in a region of
weaker exchange potential.

The densities of states for the majority and
minority spins and their combination are shown in
Figs. 3-5. These curves have the same general
appearance as those presented in Ref. 1 except
that the singularity structure is sharper, as a re-
sult of use of an improved method of calculation,
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The Fermi energy was determined from the
density of states., The magneton number, which
is the difference between the number of occupied
states of majority and minority spins, was found
to be 0.58. This is reasonably close to the ex-
perimental value of 0.56.'%2 The present result is
a significant improvement over that obtained in
the non-self-consistent calculation in which a value
of 0.69 was reported. The total density of states
at the Fermi energy is 23. 5 electrons/atom Ry.

Determination of the Fermi energy makes possi-
ble investigation of the Fermi surface., Certain

FIG. 4. Density of states for minority
spin.
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FIG. 5. Total density of states.
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cross sections of the predicted Fermi surface are
shown in Figs, 6 and 7 which refer to majority
and minority spins, respectively. Some proper-
ties of the Fermi surface are listed in Table IV,
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FIG. 6. Fermi-surface contours for states of majority
spin in certain planes.

'

3

B 50.00}
~

(2]

3

e 40.00}
[=

[&]

]

w 30.00f
(2]

[

T 2000}
-

w

w

] 10.00}
>

E

m L A A 1 1 - A . 1 J
§-o.:o 000 0.0 020 030 040 050 060 070 080 090 10O

The majority-spin portion of the Fermi surface
lies entirely in the upper s-p band (band 6), The
surface is in contact with the Brillouin zone near
the points L. A neck of roughly circular cross

X S3 Sa U
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FIG. 7. Fermi-surface contours for states of minority
spin in certain planes.
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TABLE IV. Some properties of the Fermi sux_'_face.
. The area of the t spin s-p-band neck and linear k-space
dimensions of the X;5, d-band hole pocket are given in a.u.

Ly, neck extremal area Theory Expt.
0. 068 0.072

xrs 0.201 0. 207

s 0.078 0.099

Exus 0.079 0. 087

_®Reference 13.

section is formed at each such point. We have com-
puted the cross-sectional area of this neck in the
hexagonal face of the zone. Our result (Table IV)
is in good agreement with the measurements of
Tsui., 13

The minority-spin portion of the Fermi surface
is considerably more -complicated. It is predicted
to contain components in four bands, There is
strong mixing between the s-p band and the upper
d bands of predominately £,, symmetry. The sim-
plest parts of the minority-spin surface are small
hole pockets centered about X. These pockets
have been observed in the de Haas—van Alphen
effect.'®* QOur results for the size of these pockets
are in moderately good agreement with experiment.

The rest of minority spin Fermi surface has not
been observed. Other hole pockets should be
found around X, Two large pieces are predicted.
One is associated with the I'j, level, This passes
well in the interior of the zone. The wave functions
associated with this piece have e, symmetry on the
(1, 0,0) and (1, 1, 1) axes, but contain s-p com-
ponents along the (1, 1, 0) axis, The other is
doubly connected, containing the majority of the
d band holes responsible for the ferromagnetism
of nickel. The latter is associated with the nearly
flat upper d band of ¢,, symmetry along the X-W
line. In other directions, mixing with s and p
orbitals is important. Changes in the symmetry
of wave functions occur along the Fermi surface
between symmetry points, sothat a straightforward
classification of large sheets in terms of a single
symmetry is not possible. Additional complica-
tions arise when spin orbit coupling is considered,
as pointed out by Zornberg.'* Further experimen-
tal investigation of the Fermi surface of nickel is
important as atest of the predictions of band theory.

IV. SPIN DENSITY

The distribution of spin density in nickel has
been investigated by Mook through neutron diffrac-
tion.!® This experiment determines a magnetic
form factor, f(k), which is the ratio of the mag-
netic scattering amplitude for a scattering vector

1101

K, to that for k=0. This function has been com-
puted by Hodges, Ehrenreich, and Lang using their
combined tight-binding and pseudopotential inter-
polation method. ! It is customary to express

f(%) as the sum of three terms

AR) = g“fspin (@) + (gg; 2 Fors(®) + fooro(®) ,

in which g is the spectroscopic splitting factor,

The quantity f,;, is the form factor for the unpaired
(mainly d) electrons, and is normalized so that
fspin (0)=1:

Fopta® = )72 [ & FE [ ph(B) - pb(P) o7,

in which v is the magneton number, Although the
core has a net spin of zero, exchange effects pro-
duce a slight difference in the radial distributions
of 4 and ¥ spin core electrons, and so, lead to a
small contribution f,,,. Finally, there is a con-
tribution, f,, from the possible unquenched orbital
angular momentum of the d electrons, This term
has been studied by Blume.!” However, the as-
sumptions of his calculation are not in accord with

0-8 LR o= T T T L]
° e MEASURED FORM FACTOR
o7k .2 (MOOK ) i
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FIG. 8. Comparison of calculated and observed magnetic
scattering form factors.
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FIG. 9. Spherically averaged spin density in an atomic
cell.

the band picture described here,

We have calculated the spin and core contribu-
tions to f(X), using the wave functions obtained
from our band calculation. The formulas are ob-
~ tained immediately from Ref. 2. The results are
shown in Fig, 8, where they are compared with
the experimental values of Mook, A satisfactory,
although not perfect degree of agreement is ob-
tained, It will be noted that there can be consider-
able departures from spherical symmetry: f(k) is
not simply a function of [%[, in agreement with ex-
periment,

It is also of interest to examine the position
dependence of the spin density. The spherically
averaged spin density pt(7) — p¥(») is shown in Fig.
9. It will be noted that this quantity is negative
at large values of 7, indicating that there is a net
negative spin polarization in the outer portion of the
atomic cell. This result is also in agreement with
observation,

CALLAWAY AND C. S.
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TABLE V. Atomic scattering factors for nickel. The
‘present results are compared with experimental observa-
tions reported in Ref. 18.

(a/2m%k f (theory) f (expt.)
[111] 20.38 20.10+0.16
[200] 19.03 18.55+0.16
[220] 15.36 15.34+0.12
[311] 13.54
[222] 13.03
[400] 11.44 11.18+0.11
[331] 10. 50
[420] 10. 26
[422] 9.38
[333] 8.87 8.74+0.09
[511] 8.91 8.73+0.09
[400] 8.23
[5631] 7.92
[600] 7.86
[442] 7.81

V. CHARGE DENSITY

The Kohn-Sham-Gaspar exchange prescription
is based on a variational calculation of the total
energy, regarded as a functional of the charge
density. It is therefore particularly interesting to
examine the results of our calculation with respect
to the charge density. In this case, the theoretical
results for the Fourier coefficients of the charge
density can be compared with experimental ob-
servations of the x-ray atomic scattering factor
by Diana, Mazzone, and De Marco.'® The results
are presented in Table V. The small differences
between the theoretical values for K ~[333] and
K ~[511] and between K ~[600] and K ~[442] indi-
cate slight departures of the charge distribution
from spherical symmetry. Although there are de-
viations between theory and experiment which are
outside the quoted experimental error, we feel
that the agreement is fairly good. In the case of
the [111], [200], and [220] vectors, our results
are significantly closer to experiment than are
values calculated from free atom Hartree-Fock
charge densities for either d®s? or d'® configura-
tions and reported by Diana et al. 18
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The superparamagnetic relaxation time is calculated for spherical particles with cubic magnetocrystalline
anistropy, whose easy axis is either [100] or [111] in zero applied field. Results are reported for relatively
small particles only, in which no anomaly is found. It is concluded that the experimentally observed
anomaly in this size region must be due to incoherent magnetization reversals.

I. INTRODUCTION

A magnetized ferromagnetic particle has to over-
come an energy barrier before the direction of its
magnetization can be changed. Since this barrier
is proportional to the volume of the particle, the
probability of a spontaneous flip of direction, by
thermal agitation, is negligibly small for relatively
large particles. However, if the particles are
very small, thermal agitation can cause many
changes in the direction of the magnetization in
each particle during the time of measurement. An
assembly of such particles will therefore reach a
thermal equilibrium for the statistical distribution
of magnetization orientations, and its measured
magnetic properties will be similar to those of an
ensemble of paramagnetic atoms. This phenomenon
is called “superparamagnetism’” and has been ob-
served by many workers. !

The usual theoretical study of the relaxation time
associated with these thermal fluctuations! is based
on the assumption that the magnetic moments of
the particles are always in one of the two energy
minima, and do not spend any time in between.
Such a discrete orientation model leads to a re-
laxation time  which can be approximated by

r=f;! eBB/*T, 1)

where T is the temperature, % is Boltzmann’s con-
stant, and E y is the barrier energy. Different
authors use different values for the parameter f,
but it is just taken as a constant, which varies
roughly between 10'° and 10° sec™.

This vague approach has been put on a much
sounder basis by Brown, 2 who considered the mag-
netization vector in each particle as changing its
direction continuously, in response to some random
forces. Brown still kept the conventional assump-
tion that each particle is a “single domain, ”

namely, that the magnetization vector is constant
within each particle during all the stages of its re-
versal. But he did not use any other arbitrary
assumption. By using the theory of stochastic
processes for a white spectrum of agitation forces,
he wrote a rigorous Fokker—Planck-type differential
equation which yields the relaxation time as its
eigenvalue. He also showed that for the case of a
uniaxial anisotropy in zero applied field, the as-
ymptotic value of the relaxation time (in the limit
of a very large barrier compared to £7T) is given
by Eq. (1) in which fj is not a constant. Rather,

fo=2Kyy(a/m' %/ My, @

where K is the anisotropy constant, ¥, is the gyro-
magnetic ratio, M, is the saturation magnetization,
and

a=KV/kT, (3)

where V is the volume of the particle. This as-
ymptotic formula was later shown to be a very good
approximation to the actual eigenvalue in uniaxial
ferromagnets, down to a of the order of 1, without, ®
or even with* an applied magnetic field. This re-
sult is often quoted as a proof for the constancy of
fo, which is not quite the case, although the dif-
ference is not always very significant.®

For materials with cubic anisotropy, no rigorous
computations of the relaxation time have ever been
tried; this seems necessary after many experimen-
tal studies of superparamagnetism in cubic mate-
rials have been publishéd in recent years, in which
the results are still analyzed by (1) with a constant
fo- Moreover, in a recent experiment® a case was
found in which 7 is not a monotonically increasing
function of the particle radius. This effect was ex-
plained as resulting from incoherent rotation of the
magnetization in the particle, ® which might or
might not be an adequate explanation, but its theory



