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The dynamical properties of a uniform-coupling Ising-model ferromagnet in contact with a
thermal reservoir are studied using density-operator methods. We proceed from the rever-
sible microscopic dynamics of the system reservoir to an irreversible equation of motion for
the macroscopic magnetization probability density. The temporal evolution of the spin system
is seen to depend upon details of the reservoir system, while the steady-state results yield the
correct magnetic free energy and equation of state, independent of such details.

I. INTRODUCTION

The equilibrium properties of a ferromagnet have
been extensively studied experimentally and vari-
ous theoretical models have been suggested to
account for the data. For a dielectric crystal
whose magnetic properties do not involve the or-
bital degrees of freedom of the magnetic ions, just
the spin moments of the electrons contributing to
the magnetic ordering, the Heisenberg model has
served usefully by providing a Hamiltonian upon
which many theoretical studies have been based.
This model of the magnetic interactions of localized
moments describes the interaction energy of the
system as the sum of pair interactions each of
which is proportional, through a single spatially
varying exchange parameter, to the scalar product
of the spin vectors of the two moments. Thus, in
the isotropic Heisenberg model the different com-
ponents of the spins of the two magnetic ions have
equal interaction energies. This situation may be
generalized somewhat by introducing different
exchange parameters to couple the three components
of each spin pair. An extreme limit of this exten-
sion of the Heisenberg model is the Ising model in
which the two transverse coupling constants are
made to vanish identically, thus leaving the inter-
action energy of each pair of spins proportional to
a single spatially varying exchange parameter which
couples only one component of the spin vectors of
the pair.

The Ising model affords a significant simplifica-
tion from the full Heisenberg-model Hamiltonian
in the study of the equilibrium properties of the
magnetic system in that all of the operators appear-
ing in the Ising Hamiltonian commute with each
other, thus allowing one to neglect the quantum-
mechanical aspects of the problem and treat the
system as though it were entirely classical. This
simplification has, in fact, resulted in exact solu-
tions of aspects of the equilibrium statistical me-
chanics of this model for particular spatial lattices.

Thus, although a great amount is known about the
equilibrium properties of the Ising model, the non-
equilibrium properties of this magnetic system
have not been as thoroughly explored. In this pa-
per we shall give a treatment of the nonequilibri-
um statistical dynamical properties of this system
which yields the correct thermal equilibrium be-
havior as its steady-state (time-independent) solu-
tion. Our approach differs from that of Glauber,
whose well-known model has formed the principal
basis for several studies' of dynamical properties
of an Ising system, in that we proceed from re-
versible microscopic dynamics to an irreversible
equation of motion for the magnetization probability
density. This approach is also in contrast to re-
cent studies' of critical phenomena which proceed
to derive expressions for various moments of the
probability distribution (e. g., correlation func-
tions). Although there have been previous studies
of the distribution function itself3' based on as-
sumed master equations of motion with associated
transition probabilities, here we derive the equa-
tion of motion of the probability density from
microscopic theory.

We shall make use of density-operator techniques
similar to those that have previously been applied
to study fluctuation phenomena in lasers. Qur
general approach will be to consider the ferromag-
netic spin system to be in contact with a second
system which serves as a constant-temperature
thermal reservoir. We shall obtain the equation
of motion of the combined reservoir-ferromagnet-
system density operator and then trace over reser-
voir states to obtain an equation of motion for the
reduced density operator of the spin system. The
latter operator contains all of the information
needed for the calculation of the dynamical and
fluctuation properties of the ferromagnet.

In Sec. II we present the model and derive the
equation of motion for the reduced density operator
of the spin system. We find it convenient to intro-
duce an operator-ordering scheme and translate
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this density-operator equation of motion into a @-

number differential-difference equation for the c-
number magnetization quasiprobabi. lity density. In
Sec. III we study the dynamical properties of the
system near the ferromagnetic transition tempera-
ture and obtain a Fokker-Planck type of equation
for the magnetization probability density. We show
in Sec. IV that the exact equation of motion may be
solved at steady state for all temperatures and that
it yields the Bragg-Williams free energy. The
results obtained are further discussed in Sec. V. ,

II. MODEL AND EQUATIONS OF MOTION

are the usual spin raising (+) and lowering (-) op-
erators for the jth spin. For simplicity, we con-
sider only a single effective coupling constant Z (j)
which couples the eth reservoir mode to the spin
operators located at the various sites r&. The spin
system may exchange energy with the reservoir
system by means of this interaction. We are ne-
glecting here spin- spin interactions, so that the
processes considered here will contribute only to
the longitudinal relaxation time T1 of the ferromag-
net.

Having specified our total system, we proceed
to consider an equation of motion for its density
operator p(t) in the interaction picture:

We take as our total Hamiltonian H the sum of the
ferromagnetic-, system Hamiltonian Hs, the reser-
voir-system Hamiltonian H&, and an interaction V: where

(2. 7)

H=Hs+Hz+ V (2. 1) V(t) th ((HS+HR)t V th )(HS+HR)t (2. 8)

We choose the Ising model for our magnetic system:
N

Hs = —2 J)~ Sg S~ —2Ho 8~, (2. 2)

[St, Sh] = i 5th St (2 3)

(5» is the Kronecker 5 function) and the two simi-
lar relations obtained from (2, 3) by cyclically
permitting the spacial indices x, y, and z.

We shall imagine that the spin system is in ther-
mal contact with another system (such as the
phonons in the crystal, or spin impurities) which
forms the reservoir. The specific nature of the
reservoir will be shown to be important in deter-
mining the dynamical behavior of the spin system.
This will be clarified when particular examples are
considered below. For now we shall take the
reservoir Hamiltonian to represent a set of un-

coupled boson modes:

[0, Os]=0, [0, Ost]=5, s .
(2. 4)

We take the following general form for the sys-
tem- reservoir interaction V..

N

V = Q Q g (t't) [St0„+St Ot j, (2. 5)

where

S) —8~ a iSI (2. 6)

that is, we imagine N spin-~ angular momenta,
localized at fixed lattice sites and each having mag-
netic moment p, , to interact ferromagnetically
(J(& & 0) with each other and also with an externally
applied uniform magnetic field Ho which is taken
to define the s direction of the system. The angu-
lar momentum operators obey the usual commuta-
tion relations (for a spin-2 total angular momentum):

~(t)= —h'Tr f dt'[V(t), [V(t'), p(t')j].
(2. 11)

We shall assume that the reservoir remains for all
time in thermal equilibrium and thus write

(2. 12)

where

fR= &R'e

P= (&RT') ',
ZR= TrR(e ),

(2. 13)

(2. 14)

(2. 15)

and thus obtain

o(t)= —8 f dt'TrR[V(t), [V(t'); (J(t')e fR]]
(2. 16)

(() signifies direct product).
We note, recalling the interaction (2. 9), that

(2. 16) is an expression involving spin operators
and time correlation functions of reservoir opera-
tors. We shall assume that the time correlation
functions of reservoir variables are nonvanishing
only for time intervals much shorter than the

Using the interaction (2. 5) and the reservoir
Hamiltonian (2. 4), we obtain

N

V(t) =g g g (t'&) [S&(t)0 e '"~t + St(t) Ot et "~'] .
(2 9)

We shall use the interaction in this form in the
density-operator equation of motion (2. 7). We note
that an equivalent form of (2. 7) is the integral
equation

p(t) = p(- ~) —i@ f dt' [V(t'), p(t')], (2. 10)

so that, substituting (2. 10) into (2. 7) and tracing
over the reservoir variables, we obtain an equation
for the reduced density operator o(t), where o(t)
—= TrRp(t), of the spin system:
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characteristic times over which the spin system
[and hence o(t)] evolves appreciably. This will in-
deed turn out to be the case when the reservoir
time correlation functions will be explicitly calcu-
lated below for two types of reservoir systems and
will be shown to be 5 functions in t —t'. Thus, we
may rewrite (2. 16) by replacing o(t') by o(t)—thus
making the master equation Markovian:

N
S+ Q S+

7

)ag

s;-=-:(II,j&&I, jl- l2, j&&2, jl),
N

Ss PSe
&=i

~ -=Il, i&&l, i I+12, j&&2, il .

(2. 25)

(2. 26)

(2. 27)

(2. 28)

(t)=-h-'f' «'T" [I (t), [~(t'); (t).f 1].
(2. 17)

Using the interaction (2. 9) in (2. 17), we obtain
the following equation for the reduced-system den-
sity operator:

o(t)= —2 «'~ (~g(t)Sj(t')o(t)P1(t, t')
$~1

The two states of a single spin are taken to be
normalized to unity and orthogonal to each other,
while states of different spins are also taken to be
orthogonal. We define operators N, and N2 corre-
sponding to the total populations of each of the two
possible spin orientations by

(2. 29)

p, ((, (') g'( Q o~(()Z o,(('))

z,(((').(."'(Z o, .(OE o,'(('))

(2. 19)

(2. 20)

In deriving (2. 18) we have assumed that a second-
order perturbation treatment of the system-reser-
voir coupling is adequate and also that each spin
interacts with the reservoir independently of all
the others; that is, we take

Qg (x )g (s„)Trs[0 0 f 1

= Q g.(~,)g.(~,) &o. oL&,

+ S& (t) SJ(t') o(t) P.(t, t') S&(t)&(t—) S~(t') P~(t', t)

—S (t')0'(t)S,'(t')E (t', t)]', (2. 18)
where

Ni+N2 ——N . (2. 31)

Instead of working directly with the reduced-
system density operator o'(t), we find it convenient
to use a representation in which only e-number
(not operator) e(luations appear. To this end, we
next define a c-number quasiprobability distribu-
tion function "of e-number variables s, n2, and

by

P(s, n„s~, t) = Tr[a (t) 6(s —S ) 6(n2- Nz)

x6(s*-S')], (2. 32)

(2. 30)

and note that because the total number of spins in
the crystal is fixed to be N, one must have

~g 6(&g —&a), (2. 21)

where the 5 functions are defined formally by in-
tegral representations

s~ -=I2, j& &I, j I, (2. 22)

S —= Q8~,
9=1

sl =-
I I, j& &2, j I,

(2. 23)

(2. 24)

where g =g, (0).
We wish to focus our attention on the dynamical

behavior of the z component of the total spin. It
is convenient to introduce a c-number quasiproba-
bility distribution function "for this quantity. We
shall also introduce a transformation from spin
operators to "atomic" operators associated with
the two levels of each spin- & system. We shall
denote the two states of the jth spin by )1, j& and
[ 2, j&, these being the state of higher energy (but
lower s component of spin, &1, j )St[1, j)= —~) and
the state of lower energy (but higher s component
of spin, &2, j (S&)2, j)=+ &), respectively. We note
the following relations:

6(n2-N, ) = (2s) ' f dxe'"~"2 "2', (2. 33)

and similarly, for the other two.
We note again that the quantities s, n~, and s*

are not operators, but rather are c numbers, so
that the distribution function P(s, n2, s, t) is also
a c-number function. The significant point is
that in (2. 32) we have chosen to order the (non-
commuting) operators S, Nz, and S' in a particu-
lar way; that is, in every term of (2. 32) obtained
by using the expansions of the 5 functions, all of
the 8 operators are to the left of all the N2 opera-
tors, which in turn are to the left of the S' opera-
tors. We have chosen this order arbitrarily;
choosing a different order neither changes the final
form of the equation that we solve nor simplifies
the calculation noticeably.

The quasiprobability distribution function intro-
duced here is closely related to the Glauber P(o()
distribution' which was introduced in order to
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study statistical properties of the electromagnetic
field. The mathematical properties of P(o. ) have
been extensively studied. The system being
studied here requires three operators, so the dis-
tribution function (2. 32) is a generalization of the
P(n) function. The utility of introducing such a
distribution comes from the fact that since we are
dealing with a system involving the set (8, Nz, S')
of noncommuting operators, we may use their
commutation relations to put every product of op-
erators which may occur into a particular chosen
order (namely, every S to the left of every Nz,
which in turn is to the left of every 8'). Having
thus chosen a conventional ordering, we may as-
sociate with an arbitrary operator y(8, N2, S')
(we envisage jt to be sums of products of the three
basic operators) a c-number function jt

" (s, n2,
s*) of the c-number variables s, n2, and s*,

jt(S, N2, S') = C y
~'~ (s, n 2, s*) (2. 34)

or

y(S, N„S') = fdsdnads*y ' (s, n2, s*)5(s —8 )

x5(n2- N2) 5(s*—S'), (2. 35)

where the 5 functions are defined by (2. 33). The
operator C instructs one to replace in g

~'~ (s, na,
s*) each of the variables s, n„and s* by the
corresponding operators S, H2, and S'—keeping
the operators in the chosen order by doing the in-
tegrations in (2. 35) in sequence. One can similar-
ly define a e-number distribution function associ-
ated with the density operator o'(t) by (2. 32) so that
in order to calculate the average value of the op-
erator jt(S, N2, S ) we need

x5(s —S ) 5(n, N-, ) 5(s~ —8')]

= f ds dnads*jt"' (s, n2, s*)

x Tr[o(t) 5(s —S ) 5(n2-N2) 5(s*—S')]

P(n~, t) —= Tr[v(t) 5(n, -N, )] (2. 37)

and note that the equation of motion of this quantity
is clearly

= f ds dn2ds*x~'~ (s, n2, s*)P(s, n2, s*, t) .
(2. 36)

The interpretation of the P(s, n„s*, t) as a classi-
cal probability distribution may not always be
justified. Studies' of the Glauber P(o.) distribu-
tion have shown that it may possess singularities
as weO as take on negative values for some range
of its arguments. However, we shall use (2. 32)
in expressions of the type (2. 36) and shall see that
in certain cases it does indeed have the properties
of a classical distribution function.

We shall focus our attention only on the z com-
ponent of the magnetization and therefore we need
not use a distribution of the three .components of
the magnetization, as defined by (2. 32). Although
the Ising Hamiltonian does not involve transverse
components of spin operators, the interaction V
with the reservoir does. It is not apparent that
the density-operator equation may be fully repre-
sented only in terms of the z component of mag-
netization; a more general equation of motion for
P(s, n~, s*, t) has been derived as noted below.
We thus define

X(S N S )) P(n2, t) = Tr[o'(t) 5(n2 N2)] . — (2. 38)

= Tr[o(t) X(S-, N„S')]
= Tr[o'(t) fdsdnzds~X"'(s, n„s~)

We may use (2. 18) for the ratio of change of the
reduced-system density operator and thus obtain
the following equation:

't t N

P(na, t) = —2 dt' Z Tr(o'(t) [E,(t, t') 5(nz-Na)8&(t)8&(t') + Ez(t, V) 5(n2-N2)8&(t)SJ(t')
)I1

—E2(t', t)8~(t') 5(n2 —N2)8)(t) —E,(t', t)sg(t') 5(n2- N2)sg(t)]]. (2. 39)

To evaluate the time dependence of the spin opera-
tors in (2. 39) we shall consider here only the case
of the uniform-coupling Ising model in which each
spin interacts with the same strength with every
other spin in the system. That is, we set J&&=J
for all i, j in the system Hamiltonian (2. 2), which
then may be written

results for the spin operators:

S~(t) = e '" ~ '8)(0)

8+(0) $ h

S,(t) = e'" ' Sq(0)

(2. 41a)

Hs ——2J(8') —2p, Ho 8', (2. 40) = 8 (0) (2. 41b)

From (2. 8) and (2. 40) we then obtain the following where
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=—4JS'- 2J+ 2pHO

n' =- 4JS' + 2J+ 2pIIO

(2. 42a)

(2. 42b)

Using these results and writing the equation in
terms of the atomic operators (2. 22)-(2. 26), Eq.
(2. 39) becomes

t P

P(n2, f)= —2 dt'Tr o'(t)~ E~(t, t')e '" e"~ ) 5(nz-N2)N, y E2(f, t') e (' ' ~5(n2-N2)Nz

N
—ZF2(t', f)e'" '

2, j)&1,j ~5(n2-N2) l, j)&2, j e"
/=1

N- ZP, (f, f)e-'" ""1, j&&2, j 5(n, -N, )~2, j&&1, j~e-'""
9=1

(2. 43)

Further reduction of (2. 43) is carried out in the
Appendix. The final result is the following equation
of motion for the magnetization distribution func-
tion, which we write in terms of the variable m
defined byI =- —,'N-n2. (2. 44)

P(m, f)={2N[(e ~~~"——1) rz(m)+ (e~~e" 1) I', (-m)j

+ [(e" —1)ri(m) —(e "'"-1)
x r,(m)]m]P(m, f) . (2. 45)

Here the exponentials of the differential operators

imply that (2. 45) is an infinite-order differential
equation. The two damping functions I', (m) and

r, (m) are defined by Eqs. (A5) and (A6) of the Ap-
pendix in general terms. We shall consider specif-
ic models of reservoir systems for which these
functions will be explicitly calculated. We note, as
is shown in the Appendix, that these two quantities
obey a detailed balance relation in general.

Equation (2. 45) is a special case of a somewhat
more general equation obtained by one of the authors
in his thesis. The full distribution function
P(s, n2, s*, f), defined by (2. 32), we found to
satisfy the following equation of motion:

P(s, n„s", t)=
S „[-,(I',+I',)s*j ~ [-,'(r, ~I',) s]+(e ' '"2-1)I',n, + (e' '"2-1)I',n,

82 -aj 8 83 83

8s

84
+ 8 & „,e ~ "2r,nz P(s, n„s*, f) .8s s*

We may obtain (2. 45) from this equation by inte-
grating over the transverse variables, that is,

P(nz, f)= jdsds*P(s, n2, s*, f),
and then. changing to the variable nz.

ID. CRITICAL FLUCTUATIONS

A useful approximation to the full equation of
motion (2. 45) for the longitudinal component of the
magnetization may be formulated: There is ample
evidence"' that large fluctuations exist in the
magnetization for temperatures near the Curie
temperature 7."&, above which the system is para-
magnetic. This means that near T& the function
P(m) of (2. 45) should be a relatively slowly varying
function of m so as to increase the fluctuations, of
which the mean square fluctuation

is one measure. Therefore, in this region we ex-
pect that the higher-order derivatives, obtained
by expanding the exponential operators in (2. 45),
will rapidly become smaller then the lowest-order
terms. It is thus reasonable to approximate the
complete equation by retaining only the lowest-or-
der terms.

Expanding the exponential factors up to second
derivatives only, we obtain from (2. 45)

)'(, ~)=(, 9&l)',( )-)'( ))+()',( )+)'( ))

8 Pi

+ — T {-,'N[r, (m)+ r, (m)]

+f" ( )-"( )) ))~(, &) (S. W

o„' = &m') &m)'- (3. 1) Equations of the form
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a Q Q2
P{c, t) = — 2 + c tt) P(c, t)8x &x (3. 3)

are referred to as Fokker-Planck equations with
drift coefficient A and diffusion coefficient B. It
is seen that our equation is of this general type,
but with nonconstant drift and diffusion caefficients.
From the definition

(m(t)) = fdmmP(m, t), (3.4)

we obtain from E{l. (3. 2) the e{luation of motion for
the average magnetization,

(m (t)) = (~N[l'z(m) —I'i(m)]) —([I',(m)+ I'z(m)]m).
(3. 5)

Here we have integrated by parts and assumed that
the distribution function and its derivative vanish
at the extreme limits of integration.

To proceed further we must know what the func-
tions I', and I'2 are. Although, as stated in (A7),
the ratio of these quantities is known from the
general forms (A5) and (A6), their explicit forms
depend upon the details of the reservoir chosen to
represent the thermal bath to which the ferromag-
netic spin system is coupled. We therefore intro-
duce two specific reservoir models and study the
dynamical properties of the spin system as it in-
teracts with each one in turn.

n({d&) = (e~" & —1) ' (3. 9)

is the average thermal occupation number of pho-
nons in the jth mode. We assume that the number
of degrees of freedom (modes) of the reservoir is
large enough to enable us to convert the sum in
(3. 8) into an integral by means of a density-of-
states function A(u&&):

2 I'2({d) = g2Re f dt' f d{t)& Q({tp&)

x [n(~,)+ 1] e'&" "t'-" "'
= g Re f dt' f (-du)A(v —u)

x [n({tp —u)+ 1]e™p p

=g Ref dt' f duQ(&o —u)

x[n(~-u)+ Ije™[p-~l.(3. 10)

Arguing that the density-of-states function and the
thermal occupation number are slowly varying
functions of their arguments compared to the ex-
ponential function in (3. 10), we approximately cal-
culate the integral by extracting those two functions
from under the integral sign-evaluated at the
point of least rapid variation of the exponential,
which occurs for u= 0—and thus obtain

Oscillator-Reservoir Case I', ({d)= y['i [n(&u)+ 1], (3. 11)

We first consider the reservoir to be composed
of an infinite array of harmonic oscillators of a
broad distribution of frequencies whose density op-
erator is the canonical-ensemble thermal equilibri-
um density operator. Thus, we identify the reser-
voir operators 0, Ooi of (2. 4) with the boson ab-
sorption and creation operators b&, b&~ which obey
the commutation relations

[bg, bop] = 5tp, [b~, bpj = [bJ, bJp]=0. (3.6)

Thus the reservoir Hamiltonian is

where we denote by y' the spontaneous emission
rate.

We obtain j.", in a similar calculation from its
defining relation (A5):

I', (v) = y["n({d) . (3. 12)

We may now return to the equation of motion for
the magnetization distribution function. However,
first we note the following connection between the
two-level energy separation S~ and the magnetiza-
tion which follows from the Hamiltonian (2. 40):

H„= Q S{)~b Jtb~ . (3. 7) Kv = 2p(HO+ XM), . (3. 13)

Taking the thermal equilibrium reservoir density
operator (2. 14) and the general formula (A6) for
~2, we have

where JIO is the uniform external field, X is the
Weiss internal-field constant, and M is the (cor-
rectly dimensioned) magnetization given by

21',(v) =g Re

where

t
n (o, +1 e""-"&'""'

(3. 8)

M = 2ttV'm, (3. 14)

where p, is the magnetic moment of each spin and
V is the volume of the system. Using these rela-
tions in (3.2), we obtain

t NP t(M, t) = y 't — + Mcoth[P(NHo+hM)[ +—,yht( ecto[Pc(Ho+ hM)[ —M) P(M, t) .
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We have used (3. 9) to obtain

I'&((t)) —I'2((h)) = —y
~~,

I',(~)+ I', (&u) = y"' coth(-,' Ph~) .
(3. 16)

where we have neglected fluctuation effects in this
equation by writing the average of a product of
M(t) factors as the product of the average value
(.'d(t)). We note at once that the steady-state
(time-independent) solution of (3. 17) yields the
molecular-field equation of state:

0 =N p/V —(M) coth [Pt](HO+ X(M))]

(M) = (N/V) tanh[Pp(HO+ X(M&)] . (3. 18)

We define a dimensionless magnetization x(t) by

x(t) -=M(t) (Nt]/V) ' (3. 19)

We may similarly define a dimensionless magnetic
field and inverse temperature by

It =- H [X0(Nt/VL)] ', v = T,T ', (3. 20)

where the transition temperatures T~ is given by

Z, Z", = m~2y-~. (3. 21)

Returning to (3. 15), which we write in terms of
the dimensionless variables (3. 19) and (3. 20) as

P '(x, t)=( y' {xcoth[t'(h+x)] —t]

82+N', yt" {coth[t'(6+x)]—x])

x P"'(x, t), (3. 22)

we may easily obtain its steady-state (time-inde-
pendent) solution. Calling the drift and diffusion
coefficients of (3. 22) A and B, respectively, as
in (3. 3), we see that the steady-state solution
P@~(x) satisfies

From (3. 15) we see that the mean magnetization
satisfies the equation of motion

8
{a) st R(t)& =Nt]/V- &M(t)&

xcoth{pp[HO+ X (M(t))]}, (3. 17)

J= 0 in order not to violate this general conserva-
tion requirement. Thus, the integration constant
from (3. 23) must vanish, and we obtain the steady-
state solution

P"(x)=CB '(x) exp[ f dx'A(x')B '(x')] (3. 25)
0

NC[y )
coth [~(h+x)]—x

, x' coth[~(h+x')] —1

coth z 8+x' -x'
(3. 26)

where C is a normalization constant (depending
upon N, h, and v). We note that we may write
(2. 26) in the form

, x' coth[r(h+x)] —1

coth[r(5+x')] —x'
"0

ln(y "{coth[a(h +x)]—x} )N

(3. 27)

Since N is an extremely large number (N-10 ), it
is a reasonable approximation to neglect the sec-
ond term in (3. 27) in comparison with the first, so
we take the steady-state solution of (3. 22) to be

I'*&, x' coth[y(h +x')] —t
)J coth[v(h +x') ]—x'

0

(3. 28)
We note that the first derivative of this function

vanishes at points x = x0, where x0 satisfies the
molecular-field equation of state (3. 18). Because
of the great numerical value of N, the peak of the
maximum is extremely sharp for low temperatures.
However, since we neglected higher derivatives in
obtaining our Fokker-Planck equation, this solution
is not expected to have any validity in that region
where it is so sharply peaked. However, for tem-
peratures near Tc(7-1), we may expand the solu-
tion (2. 13) for small x (since the peak of the dis-
tribution occurs at the molecular-field value of x
which will be small near Tc) to obtain

P ['~(x) = c exp(-N f dx' {(1—7')x'
0

O = —XXot(x) t)S'x'(x))8x ~x (3. 23) + [r(l —r)+ —,
' v' ] (x') })

We note that the Fokker —Planck equation in gen-
eral has the form of a conservation probability
law.

where

= c exp{- (KsT) [c(T —Tc) zm

+d'T —', m ] ), (3. 29)

(3. 24)

Here J is a probability current. At steady state,
provided we are restricted to a finite range of the
variable (in our case Ix I

~ 1), we must choose

c = Ks(Np ), d' = [7 + 3w(1 —7')]d,

d=Ks(3N iJ. )
(3. 30)

The thermodynamic theory of fluctuations' ' pre-
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diets that the probability density for the fluctuations
of a thermodynamic variable g is given by

P(~) G e I e)) t»s T) (3.31)

where Q())) is the appropriate thermodynamic po-
tential for the situation considered. Besides having
this general form, (3. 29) also has the form for
the free energy which the Landau theory of a sec-
ond-order phase transition' predicts; namely,
Landau theory predicts that near such a phase tran-
sition Q(q) is of the form

4()i) = &o+ o)(T —Tc)n'+ t)n', (3. 32)

Spin-Reservoir Case

where g is the order parameter of the transition.
That is, g is a thermodyn. amic variable which is
assumed to vanish above the transition temperature
Tc (corresponding to the disordered state) and be
nonzero below Tc (in the ordered state). In the
case of a ferromagnet the order paramet r is the
magnetic moment M. The precise values of the
constants o. and & (n is independent of temperature,
while & may be a function of temperature) are not
predicted by the Landau theory. However, in fact
the constants e and d are precisely those which
come from expanding the free energy, which leads
one to the molecular-field equation of state. The
appropriate free energy is that obtained from the
Bragg- Williams approximation, which corre-
sponds to making a mean-field approximation. Thus
the solution of the Fokker Planck -equation (3. 15),
or (3. 22), for the distribution function of the mag-
netization yields the correct free energy of the
system as its steady-state value in the region where
this approximation to the exact equation (2. 45) is
expected to be valid.

e2(K) —e)(E) = f)o)» ~ 0 . (3. 38)

We thus identify the reservoir operators 0, O~

of (2. 4) with S», S» and take the reservoir density
operator fo(Hs) to be

fo(as) = e '"s (Tr, e""s)

= Q —expI- p [s,(K)
I I, K&

1

K ~K

where

x (1, K
I

+ e,(K)
I
2, If& (2, K

I j), (3. 39)

~ 0 )I') ~ beg&)
K

Thus, from (l. 6) we may calculate I"2..
I'o(o)) = 2goRe f dt'

x J do)»Q(o)»)n, (o)»)e'

where

(3.40)

(3.41)

= (I+eo""») '. (3. 42)

where y "is the spontaneous decay rate.
In a similar fashion we may obtain I') from (l. 5):

I', (&u) = 2goRe f dt'

xf do)»Q(&u»)n, (o)K)e""&"'""',

Qnce again assuming that the reservoir density of
states Q(&u») and n, (&u») are slowly varying in com-
parison with the exponential function in (3, 41), we
obtain

(3.43)

where (3.44)
We turn next to a different model for the thermal

reservoir with which the ferromagnetic system is
in contact. For the reservoir we take an assembly
of two-level systems possessing a broad distribu-
tion of energy-level splittings Sv&. The reservoir
Hamiltonian && now becomes

Hs =Z Ab) K g K )
K

(3. 33)

where the spin-& angular momentum operators of
the reservoir obey the usual commutation relations

[sK h s»h j 5»»h 6 K h

[s„S'„]= 6 .S, ,
X ~ 3)S~—$E'+ zS~.

(3.34)

(3. 35)

(3. 36)

Once again it is convenient to relate these to atomic
operators via

s» = ( I
2& (I

I )», s» = ( I I& &2
I )»,

where the energies of the two states obey

n (o) )
—e& 2 ) (e 8 )(K) + e I)lot»)) ) (1 e oo») )

(3. 45)
Thus we obtain, from (3, 44),

I', (o)) = 2»g Q(&u)no(&u) = y 'n2(z) . (3. 46)

Returning to the general equation of motion for
the magnetization distribution function (3.2), we
obtain for this spin reservoir, using (3. 43) and

(3. 46) and the molecular-field-like form (3. 13) for
1(d,

I h~(M t)= yh~ M — thhh[Pllllf +hM)j)M V

I e)
V &M'~

x —M tanh p, JIO+ XM

(3. 47)
where we have used (3. 14) to define the magnetiza-
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tion M and the results for this reservoir

r, ([d) —r,(~) = —y"'tanh(-, ' pk&v),

ri(~)+ r~(~) = v'"'.
(3.48)

(3. 49)

We see at once from (3. 4V) that the equation of
motion for the average magnetization is given for
this case by

The steady-state solution, from (3. 25), is there-
fore

PP]( NC[P ]
1-xtanh[g (0+x)j

(M(t)) = tanhgp [HO+ ][.Pf (t))]j

—(M (t)), (3. »)
where we have neglected fluctuation effects in this
mean equation of motion by writing the average of
a product of factors of M(t) as the product of the
average value (M(t)). We see immediately that
the steady-state solution of (3. 50) is the molecular-
field equation of state (3. 18). Therefore, although
the equation of motion for the average magnetiza-
tion for this thermal reservoir is different from
the corresponding equation of motion for the phonon
reservoir, Eq. (3. 1V), both equations have the
same steady-state solution.

In terms of the dimensionless variables x, h, and
7 defined by (3. 19) and (3. 20), the Fokker-Planck
equation (3.4V) may be written

) "'[x, t) (, ~"'@-=)anh[~[a+x)]]

92
+—,y+'[)-xtanh[v(h+x)]])

XPs'( tx) . (3. 51)

x' —tanh[v(h+ x')]P[ ~(x)=C exp —N
' dx'
~p

(3. 54)

We note that, although the equations of motion
for the magnetization distribution function are dif-
ferent for the two types of reservoirs, the steady-
state solutions are in fact the same, as comparison
of (3. 54) with (3. 28) immediately shows. Thus,
although the time-dependent properties of the
ferromagnetic spin system depend upon the detailed
nature of the thermal reservoir with which it is in

contact, the steady-state properties are the same.
The mean magnetization at steady state for both

types of reservoirs satisfies the molecular-field
equation of state, and the steady-state magnetiza-
tion distributions agree with the Landau form of
the magnetic free energy for temperatures near
the Curie temperature, and identically with the
Bragg-Williams free energy when it is approxima-
ted near the transition temperature.

IV. DISCRETE REPRESENTATION AND BRAGG-WILLIAMS

FREE ENERGY

As we have noted earlier, exponential operators
such as those found in the full equation. of motion
for the magnetization distribution function, Eq.
(2. 45), are in effect displacement operators acting
on the functions of the variable m that are placed
on their right-hand side. Noting that these in-
clude the damping functions r, (m) and r2(m), and

the factor m itself as well as P(m, t), we carry
out the displacements to get

p(m, t) = r, (m —1) [-,'N (m —1)] p(m——1, f)

—r, (m) [-,'N-~]p(m, t)

—rq(m) [qN+mjp(m, t)

x exp
Jp

x' —tanh [7 (h+ x') ]
1 —x' tanh[v(h+ x')]

(3. 52)
where C is a normalization constant. We write
(3. 52) in the form

x' —tanh[v(h+ x')]P x C exp N dx
1 t h[ (h )]

—»(& &'& (1—x tanh[~(j +x)]f)

(3. 53)

Since N is such an enormous number (- 10~'), we

may neglect the second term in comparison to the
first one in (3. 53). Thus we take as the steady-
state solution to the equation of motion of the mag-
netization distribution function, Eq. (3. 4'7) or
(3. 51),

p(m) r, (m —1) g N (m - 1)
p(m —1) r, (m) g N+ m (4. 2a)

p(~+ 1) r,(~) —,'N - m
P(~) r, (m+ 1) —,

' N+ m+ 1 (4. 2b)

where (4. 2a) corresponds to the balance of the first
and third terms of (4. 1) and (4. 2b) to the balance

+ r~(m+ 1) [2N+m + l]P(m+ 1, t) .
(4. 1)

We have indicated explicitly that X'~ and 1 ~ depend
on the variable m, since from their definitions
(A5) and (A6) they are shown to depend on this
quantity as well as the external field Hp. The dis-
placement operators in (2. 45) thus act on r, and
I'2 also and yield (4. 1).

The solution of (4. 1) corresponding to steady-
state [P(m) independent of time] may be easily
found to be
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——,N &m c+-,N .1 1 (4. 3)

We first consider the case m &0. Thus, (4. 2a)
gives

P(m ) e@ &2Jm+mtlp-g) [ &IN m 1][IN+ m] g

of the second and fourth terms. It is seen that
(4. 2a) and (4. 2b) are identical, in fact.

We imagine that m is a discrete variable which,
by (2. 44) and the fixed total number of spine, obeys
the inequality

where the energy of the system E(m) is found for
the uniform coupling version (2. 40) of the Ising
Hamiltonian to be

E(m) = —2' —2y,H8m .
Thus, using (4. 4) repeatedly, we obtain

(4. 6)

x P(m —1), (4. 4)

where we have used the detailed balance relation
(A7) connecting F~ and F8:

F (m —1) [F (m)] ' = e8~ ""s ~ '~, (4. 5)

P(m) e8l4J'm+2gH8 2J3 e8[4T(m ])+2gH -8J'1 2N (m 1) 2~~

p N+m qN+ 1

where P8 is the value of P(m = 0). Thus

8(gj/8 J/8)m (8N)i (8N) (8N —1) ~ ~ [—,N (m —1-)j [8N —m]l
[8N+m] ~ [8N+ l](8N) l[8N —m]1

Using

n"-f
n = 8m(m+1),

M to its saturation value N p, V ', we obtain, from
(4. 10),

F(x) = —8 JN x pH8Nx—+NKsT {8(I+x)
we thus obtain

P(m) = e8 8'"8" [(-,'N) I]'[(-,'N+m) I] '

Using the solution (4. 7), if we compute

E(m) —E8= —P
~ lnP(m), (4. 9)

we find that E(m) is exactly the free energy of an
Ising-model ferromagnet as computed from the
Bragg-Williams method' (we include all terms
independent of m in E8):

E(m) = 2Zm8- 2p,H8m+NKsT

x {8(1+2mN ') in[8(1+ 2mN ')]

+ 8(I —2mN ') in[&(l —2mN )]} . (4. 10)

Noting that our variable m still corresponds to a
spin-& system, we may change variables to model
a two-level system with arbitrary value p, of
magnetic moment by defining

M = 2pmV ' = pV '(n~-n8) . (4. 11)

Defining a dimensionless variable x as the ratio of

x [(8N —m) ) ] ' P8 . (4. 7)

Thus we have the complete solution. The constant
P8 (which is independent of m but will depend on the
external field H8 and the temperature p) can be
obtained from the normalization requirement

+N 2

P(m)= 1. (4. 6)
e=~N/2

x ln[-,'(1+x)]+ —,'(1-x) ln[-,'(1 —x)]}, (4. 12)

x = M(Np) ' = 2N'm . (4. 13)

(4. 15)

using the definition (4. 13) for x. If we make the
identification

T'c =& (4. 16)

which in view of the definition (3. 21) of To relates
the Weiss internal-field constant ~ to the exchange
energy J via

XV p, =J, (4. 17)

we see that the Bragg-Williams free energy be-
comes, near Tc,

Minimizing the free energy E(x) with respect to x
and solving for x, we obtain the conventional
molecular-field equation of state

x = (N p/V) ' M

= tanh{(KsT) ' [pH, + N J(N p/V) 'M ]) .
(4. 14)~

Referring to (4. 16), if we set H8= 0 and assume
that x «1, we may expand the logarithmic factors
in order to approximate the expression. Thus,
keeping terms up to the fourth degree, we get

E(x) = 8 (NKsT —JN ) x + (12) NKsT x

= NKs (Np, )"' (T —Ks'NJ) 8M
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Z(m) = [Z, (Nt ') '](T —T,) —,'M'

+[K&& (3N g ) ]T—,'M

=c(T —T ) ,'M —+dT—,'M (4. 18)

which is exactly like the expression found by ex-
panding the solutions of the Fokker-Planck equa-
tions near Tc, Eq. (3.29) [the constant d differs
negligibly from the constant d of (3. 30) for ~- 1].

Although we have not obtained the complete time-
dependent solution of the equation of motion of the
magnetization distribution function, Eq. (4. 1), we

may consider the equation for the mean magnetiza-
tion,

+N /2

(m(t)) = Z ma(m, t) .
m= N/2

(4. 19)

Using the equation of motion (4. 1), we may easily
evaluate the various terms implied by (4. 19).

Hence, we obtain from (4. 19)

(m(t) ) = -,' N(r, (m) —r, (m) )

V. CONCLUSION

We have treated the problem of a uniform-cou-
pling Ising-model ferromagnet coupled to a ther-
mal reservoir using methods previously applied to
problems in laser physics. Beginning with a re-
versible density-operator equation of motion, me
have derived an irreversible master equation for
the reduced-system density operator. The opera-
tor master equation was then transformed into a c-
number differential-difference equation for the
magnetization quasiprobability distribution func-
tion. For temperatures near the ferromagnetic
transition temperature, this equation reduced to an
equation of the Fokker-Planck type with drift and
diffusion terms which depended upon the details of
the reservoir system to which the ferromagnetic
spin system was coupled. The steady-state solu-

- (m[r, (m)+ r, (m)]) . (4. 20)

Thus we see that the equation of motion (3. 5) of the
average magnetization deduced from the Fokker-
Planck equation for the distribution function agrees
exactly with the equation for the mean motion
(4. 20) which followed from the complete equation
of motion for the distribution function.

We have therefore shown that the steady-state
solution of the full equation of motion for the mag-
netization distribution function, Eq. (2.45), yields
the same free energy (for all temperatures) as the
Bragg-Williams approximation. We note that no-
where in our equation-of-motion method did we
have to use any of the statistical counting proce-
dures usually employed in the derivation of the
Bragg-Williams free energy.

APPENDIX

We shall give here details of the manipulation
used in obtaining Eq. (2. 45) from (2.43). First
we examine the operator part of the first term of
(2. 43):

t, =Tr[o{t)e '" "'" '"2'" t'&5(n -N, )(N-n, )].
(Al)

We rewrite the 5 function as

6(n2-N2)=e 2' "2'5(n, ) (A2)

and replace the operator N2 by the c number n,
and a 5 function:

1' d
& Tr ( (t) -i&& 2z(i»-2n2& (t t'&-

' a/ax«e """'"2'5(n2) (N- n2) 5(n2 —N2)j

j dn& e-i&& 2J(N-2n2&(t t' & 5(
~ ') (N I-)

x Tr [o(t) 5(n2 -N2)] . (A3)

Evidently the last term yields P(n2, t) by definition,
and doing the n2 integration yields

(A4)

We now define the damping function I', by

tion of the Fokker-Planck equation was shown to
yield the Landau form of the magnetic free energy,
while the difference equation was then shown to
yield the Bragg-Williams free energy at all tern-
peratures below T~. Thus, the steady-state re-
sults-which were shown to be independent of the
details of the reservoir —yielded the molecular-
field magnetic equation of state, a result known to
be correct for the uniform-coupling Ising model.

The dynamical evolution of the system was found
to depend upon the details of the reservoir sys-
tern with which it is in thermal contact. The damp-
ing functions reflect this reservoir dependence.
Two general reservoir models were studied in
which these functions were explicitly found, aside
from zero-temperature transition rates which de-
pend upon such specific reservoir details as den-
sity-of-states functions. In particular, it may be
seen from Eqs. (3.17) and (3. 50) that the zero-
temperature transition rates y'" and y"' must be,
respectively, odd and even functions of the mag-
netization (for Ho= 0); other—wise the equations do
not have the correct symmetry properties under
reflections through the xy plane (M - -M). The
dependence of the damping functions upon the in-
stantaneous magnetization of the system leads to
nonlinear equations for the time evolution of the
mean magnetization.
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—a'I"& [2J(N —2na) —2J+2t&Hp]=Re dt Fi(t~ t ) exp(-ih ' [2J(N —2na) —2J+2t&H&&] (t —t )]

t

=g aReJ dt Z 0 (t) Z Oat(t ) exp(-ipt [2J(N —2na)-2J+2t&H&&](t —t )) . (A5)
e g g

Evidently the reduction of the second term in (2. 43) proceeds analogously and leads to definition of the fol-
lowing damping fg.nction:

—'Fa[2J(N —2na)+2J+2p, Ha] =Re dt F,(t, t') exp(ih a [2J(N —2na)+2J+2t&H&&] (t —t )].
oo

t

=g Re dt' Z O&(t) Z Oat(t') exp(itf [2J'(N —2n )a+2J +2t&H&]&(t —t')) . (At&)
~00 u P g

These damping functions are functions of the total
z component of the magnetization m= ~N -~z.
From the general definitions one can easily show
that the following detailed balance relation holds:

Since the operators for different spins commute,
we may write (A10) as

t =II T.~I2, j&&I jlT ll, j&&2 jl«n)
I (m) [I (m I)]-i—es&s&~&-s&-i&& (A7)

where, from the uniform-coupling Ising Hamilto-
nian (2. 40),

E(m) = —2Jm —2t&Ha m . (AB)

To treat the third term of Eq. (2. 43) we consider
the following object:

= g T, X;(l2&(lie-'""'"""a'
l
1)

EPj j

x(2 le~a&&a&&a&a~a&~ e&a, y&&a, y&&atana&a&na& (A12)

Expanding the exponential factors in (A12), one has

ea& 2&&a~ &at a&a& I +
l

2& & 2
l

(e~&at ana& I ) (A13)

j=1

Using (A2), we have
Carrying out these operations, one finally ob-

tains

ta=e "aNa5(na Na) . - (A14)

where

e-I a, &&t'2, & I(a/ an&)sc- e (A11)

=Q l2, ')&1,jig T ll, j)(2,jl5( ), (A10)
The remaining part of the third term of (2. 43) is
simple, since only the operator N~ is involved.
Proceeding as in t& above, we easily obtain this
term as well as the fourth term. Collecting these
results, we obtain Eq. (2.45) of the text.
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A self-consistent calculation of energy bands in ferromagnetic nickel has been made using
the tight-binding method. Eighty-nine points in yth of the Brillouin zone were used to deter-
mine the charge density in the final stages of an iterative procedure. The Kohn-Sham-Gaspar
exchange was employed. The approximately self-consistent potential was used to compute
energy levels at 505 regularly spaced points in

48
th of the Brillouin zone plus certain extra

points close to the Fermi surface. Results are given for the density of states, the Fermi
surface, the charge density, and the spin density. A magneton number of 0.58 was deter-
mined.

I. INTRODUCTION

This paper is an extension of a previous cal.cula-
tion of energy bands in ferromagnetic nickel using
the tight-binding method' (Paper 1). The work de-
scribed in I was based on a crystal potential. con-
structed from a superposition of overlapping neu-
tral-atom charge densities, the atoms being in the
d s' configuration. The present calculation ob-
tains an approximately self-consistent potential
based on a sampling of the charge density at 89
points in 48 th of the Brillouin zone. The procedure
for achieving self-consistency has been described
elsewhere. 2 Exchange has been included accord-
ing to the X~ method of Slater, Wil. son, and Wood, 3

however, it was found that the Kohn-Sham-Gas-
par4' value of the coefficient o(—,') appearedtoyield
the most satisfactory results for the Fermi sur-
face and other properties. This result is in marked
contrast to the non-self-consistent calcul. ation, in
which it was found that a value of ~ close to that
proposed by Slater (o =1) ' was more satisfactory.

Separate exchange potentials are obtained for
electrons of majority and minority (& and 4) spins
and energy bands are computed separately for the
two spin states. This calculation is a test of the
ability of such a procedure (the spin-polarized
method) to account for the magnetic and electronic
properties of a ferromagnetic metal. The results

are found to be in reasonable agreement with a
variety of different experiments.

II. METHOD

The calculation employed the tight-binding
method as reformul. ated by Lafon and Lin. ' The
following set of basis functions was used: Atomic
wave functions for all states except Sd (e. g. , 1s,
2s, Ss, 4s, 2P, SP, and 4P) were represented by
the l.inear combinations of Gaussian-type orbital. s
(GTO) determined by Wachters from a self-con-
sistent-field calculation for the free nickel atom.
It appears to be important to allow the d wave func-
tions sufficient freedom to distort in the crystal. -
l.ine environment. To accompl. ish this, we used a
set of five separate radial, GTO for each type of
angular dependence of the d functions. The orbital
exponents used in defining these functions were
the same as used by Wachters.

This choice of basis functions leads to a 38&&38
matrix problem at a general point of the Brillouin
zone. The d-d portion is 25&&25, the p-p portion
9&9, and the s-s portion 4&4. With matrices of
this size it is possible to obtain energy levels at
a reasonably large number of points in the zone.
Two such matrices, which refer to 4 and 4 spin,
are obtained at each point.

The energy level. s and wave functions from our
previous non-self- consistent calculation' were


