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A general calculation of the Knight shift in metals with spin-orbit interaction is presented.
For terms involving the electron-nuclear contact interaction the spin-orbit interaction was in-
cluded to second order and is shown to result in anisotropy of the Knight shift even in cubic
metals. Our formalism for electron-nuclear dipole interaction with spin-orbit coupling also
yields anisotropy in cubic metals and reduces in the tight-binding limit to the result previous-
ly obtained by Boon. Nuclear-magnetic-resonance measurements on single crystals of the
cubic metals lead and platinum have shown the anisotropy in our samples to be less than, re-
spectively, 3.4 and 1.5&& 10 of the isotropic shifts. The upper limit for lead is half the
anisotropy in lead reported by Schratter and Williams.

I. INTRODUCTION

The Knight shift is normally taken to be mag-
netic shielding of a nucleus in a metal by the sur-
rounding electronic magnetic moments and their
orbital currents. If bB is the internal field seen
by the nucleus, and the external field Bp is applied
in the g direction, then the Knight shift K is

K= 6 B,/Bo .
In a (hypothetical) noncrystalline, isotropic sub-

stance, the direction of the internal field hB is the
same as the direction of the applied field Bp. In

a real metal the nature of the electronic wave func-
tions is determined by the periodic crystalline po-
tential; the orbital currents and, if there is spin-
orbit coupling, the spin direction are sensitive to
the nature of the crystal potential, and cor.sequent-
ly, in general, AB is not parallel to Bp. The con-
sequences are familiar in noncubic metals, where
the Knight shift has long been known to be aniso-
tropic. It is less obvious that the Knight shift can
be anisotropic in cubic metals as well. That it
can was first (to our knowledge) pointed out by
Boon, ' who displayed a formula for the anisotropic
part of the shift due to the combined effects of
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spin-orbit coupling, which allows the spin to sense
the lattice symmetry, and the nucleus-electron
dipole- dipole interaction.

In this paper we investigate the problem theo-
retically in rather more general terms than Boon,
including the contact as well as the dipole-dipole
part of the nuclear-electron-spin interaction, and
derive a general formula for the Knight shift in the
presence of spin-orbit, dipole-dipole, and elec-
tron-nuclear contact interactions. We verify that
our expression involving the dipole-dipole part of
the electron-nuclear interaction reduces to Boon's
in the tight-binding limit, and confirm the formula
derived phenomenologically by Weinert and Schu-
macher for the anisotropy of the Knight shift from
the spin-orbit and contact interactions for non-
cubic metals. We have also conducted a careful
search for Knight- shif t anisotropy in single crys-
tals of the heavy cubic nuclear-spin- —,

' metals
lead and platinum. In both cases no anisotropy
was observed, and an experimental upper limit of
ff'~ ~ (3.4 x 10 4)K„, for lead and K„~(1.5 x 10 ')A„,
for platinum. The result for lead is in disagree-
ment with the recent experiment of Schratter and
Williams.

For readers who wish to grasp the essential
physical nature of the theoretical result without
contemplating the details of the calculations, we
conclude this introduction with a summary of the
theoretical calculation, Sec. II, from which it is
hoped the reader can perceive the origins of the
possible anisotropy. The normal derivation of the
Knight shift passes fairly rapidly to the stage
where one can write the electron-nuclear interac-
tion between a nucleus and an electron in Bloch
state P„), , where n is the band index and k the elec-
tron wave vector, in terms of the direction cosines

(o=x, y, z) of the internal field b,B produced by
the electrons at the nucleus:

s/a
os„=-,'~u, '„Ial~„(».~, o.,(n, e )o„;(o)l'

(1.1)
The only aspect of (1.1) that is unfamiliar from the
completely elementary treatment is the radical,
which is

1/2

~(n, k) = Z &.~,G.,(n, k)

the g factor for the Bloch electronic state P„„".
That C, a symmetric second-rank tensor, is im-
portant for our final results. It can be written

G,2(n, k) = 5 2+ 6,q(n, k) + ~ ~ ~ (1.3)

where & 2(n, k) is a symmetric second-rank tensor
which depends on the spin-orbit and orbit-field in-
teractions, and is very similar in form to the un-
familiar expression for the g shift in paramagnetic

x

The nuclear- spin Hamiltonian is

X)y = —P)y Zgy(By + 6By )

where

=- p,„/B/Z, I„A„[1+SC ().)],

I1., (X) =-'2)1q,2Z
~

q„;(0) ~2
nk ~ „(k)

1/2
x l+ A. A.~Q ~ yg, k

is the Knight shift. We have explicitly indicated
its dependence on the direction of the applied field
with direction cosines A.„,X,, , and A, with respect
to the (arbitrary) coordinate system fixed in the
laboratory.

It remains to be seen that K„(X) leads, even in
principle, to anisotropy in a cubic metal. To
show that it does, expand the radical so that (1.6)
may be written

K~, (X) =A+ZB~2X X2+ Z C 2~X~ X X2Ay„+ ~ ~ ~,
0;8 0'Bm

(1.7)
where

x=—,'~„.'Z(„) ~
o„;)o) ~'

is the ordinary isotropic Knight shift,

B.,=,'~l,'Z „~y„„-(0)~'~., (n, k)
ffk 6 E (kj

(1.9)

is a term which vanishes in cubic symmetry since
p 2 is a second-rank tensor, and

C., =--,'~&,2Z „~q„;(0) ~2~., (nk)~ (nk)
yak.

~ Eft( k)

(l. 10)
is a fourth-rank tensor whose components do not
all vanish in cubic symmetry. In fact, three non-
vanishing components of C ~,„are allowed, just
as in elasticity theory (for the same reasons, of

Cxxxx C11 CxxYY C12 a d CxrxY C44
where the subscripts refer now to the cubic axes.
In cubic symmetry, then, (l. 7) reduces to

ions. The pth component of the field produced by
all the electrons is obtained from (1.1) by summing
over the band index n and the wave vector k, after
introducing the thermal average via the Fermi
function f (e):

) ~
o')o) I~

n) «Z&))
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K, (i) = Q+ C„+2C„)+(~'+ ~'„+ ~', )

&& (C„—C,2
—2C4, ) . (1.11)

The angular dependence in (1.11) is the expected
dependence in cubic symmetry based on lowest-
order Kubic harmonics. Higher-order terms in
the expansion of the square root mould give tensors
of sixth, eighth, etc. , rank, with angular depen-
dence given by higher-order Kubic harmonics.

Expressions for all of the above quantities mill
be derived in Sec. II. However, to help the reader
fix in his mind the magnitudes of the quantities in-
volved, me note that the ordinary g shift 5g, de-
tected in conduction-electron spin resonance
(CESR), is [from (1.2) and (1.3}],

bg„-= Z ~„(nk),

az
Xg a +zay

a, —ia,
)—a,

and the eigenvalues are + E, with E given by

+2 B B B„K „„I„+~ ~, (2. 1)
0lby f)

where B are components of a static magnetic
field, the A's are sets of quantities transforming
as tensors under certain restricted circumstances
to be discussed later, I, are (nuclear) spin oper-
ators, and p, ~= y„5 is the nuclear magnetic mo-
ment. The coordinate system is arbitrary but
fixed in the laboratory.

For I=-,' (the only case of interest for us), 3C„
is a 2 &&2 matrix,

where the sum over n and k provides in effect an
average of bg(n, k) over the Fermi surface, the
CESR-measured quantity. The sum in (1.10) is
similar to the sum in (1.8), the expression for the
isotropic shift, with the additional weighting pro-
portional to [bg(n, k)] . If one makes the guess
that the average over the Fermi surface of the
product of I g„f(0) I [bg(n, k)] is similar in magni-
tude to the product of the averages of I g„~(0) I and

bg(n, k}, then we crudely estimate the amplitude
of the angular dependence, K„, to be

K,.= -', X(bg)' . (1.12)

Hence the ratio of the anisotropic to the isotropic
Knight shift might well be (bg) . The heaviest
metals for which 5g has been observed are Cu and
Cs, for both of which kg=0. 02. Hence we expect
the anisotropic shift to be about 10 times the
isotropic shift. Although this number is somewhat
smaller than the upper limit that we were able to
place onK, it does not seem apso~i undetectable
since we also used metals with larger spin-orbit
coupling than Cu or Cs, namely, lead and plati-
num, and the estimate (1.12) is very crude.

In Appendix 8 we rederive Boon's result for the
anisotropy from the spin-orbit dipole-dipole mech-
anism. A crude estimate in the same spirit as
above of the size of the anisotropy leads to
K,„=10'A„, for a metal, such as lead and plati-
num, for which the conduction electrons at the
Fermi surface have substantial p character. The
reported result of Schratter and Williams for lead
falls within the order of magnitude of these esti-
mates.

n. THaolv

A. Introduction

We intend to show that it is possible to write an
effective nuclear Hamiltonian in the form

E =a„+a,+a,

E=+ ps' B
i

1+ Z X~XsK ~
I N alp

+Z XXX„X„K „„+ i
. (2. 4)

The terms in K„s, K z», . .. in (2. 1) have the
significance of internal fields that add to the ap-
plied external field B. The fractional shift K„(A)
in the Zeeman energy is

(g) = ( Q A XsK~s
k ns

+ Z ~.~,~„g~5~'rc.,„,+ ) (2. 5)

and will in general be anisotropic. The quantities
K &, A~&~, . . . do not transform as tensors under
rotations of the crystalline frame with respect to
the magnetic field B, but it will be shown that
K (X) is expressible, to zero order in I BI, in
terms of the direction cosines X of B and certain
tensors of even rank:

K~(X) =A+K X~ XgB„s+ ZX~ Xs X~X„C„s~+
18 eggs

(2. 6)
The symmetry properties of B z and Q ~,„can

a, = Ij,s B&+ZB, K,z+ ~ B,B&B„K,&„z+ ~ ~ ~

n eely

(2. 3)
The E's mill be interpreted as contributions to

the various NMR shifts, and experimentally they
are found to be small, of order 10 or less. Ne-
glecting all but the contributions linear in K, the
energies can be written
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CN»& = ~ R Ott Ryder R&&.eR&& C inc& e&e ~

fItl gl yl ql
(2. 7)

These relations show, for example, that in cubic
symmetry B z=b5 ~, while there are only three
independent coefficients C~»„.

B. Derivation of X& in Independent-Electron Approximation

The Hamiltonian for a system of independent
electrons interacting with just one nuclear spin can
be written

$C))(
—-EX,~(), + p)(EB I , + p.NZD I, (2. 8)

where j runs over the electrons, X,'j~,', is the Ham-
iltonian for the jth electron (including spin-orbit
coupling and interactions with an applied magnetic
field B), I are (nuclear) spin operators, p„ is the
nuclear magnetic moment, and D are the com-
ponents of an "internal field" operator originating
in the "contact" and dipolar interactions between
nuclear and electronic spins. They are given by

(( =L(()(r'".)g. +!p,,Eo,0),"J),
8f( j) [8 y(j) y(/) g (/(j))a]/( (j))5

(2. 9)

,
Here r'" is the vector joining the nucleus to the jth
electron, and o are the Pauli matrices.

The two last terms in (2. 8) lead to a correction
in the energy levels of the electronic system of
order E„,/E~, where E„, and Ez are the hyperfine
and Fermi energies, respectively. It is an excel-
lent approximation to consider the nuclear system
as "driven" by the electronic motions. Thus we
compute the expectation value of the hyperfine cou-
pling terms in the eigenstates of JC„„. and take
the thermal average. For a system of fermions
the result is given in terms of the Fermi function.
The effective nuclear Hamiltonian resulting from
the thermal averaging of the hyperfine coupling
terms is

be studied by using the law for transformation of
tensors under change of coordinate axes and the
following formal relations, ' valid for any operation
R belonging to the symmetry group of the electronic
Hamiltonian:

B0(() 2/R(( 0(IB()()l B(((l ()I
0|i gl

The nature of the eigenstates lqp) and eigen-
values E„for an electron subject to a uniform mag-
netic field 5 and a periodic electrostatic potential
has been investigated by many researchers. The
result emerging from the work of Kohn, 6 Blount, '

and Both' on Bloch electrons in a magnetic field is
that both Iqp) and s«can be developed in power
series of IB I. It has been proved that those series
are convergent in the limit IB I - 0; it is found that
in practice even for moderately large values of IB I

they are useful. In particular, the splitting of the
Kramers degeneracy is described by ag-factor
tensor G„() (n, k) which has been reviewed by
Yafet, ' and more recently by de Graaf and Qver-
hauser. " The electronic energies to first order in
13 I are

&/a

E,+p, B=~(Z x, x~G„(n, () (2. 12)

where E, is complicated but does not depend on the
spin index p; f = k+ (8/%)X(R), X(%) is the vector
potential, and 0 is a lattice vector

We will need the expansion of G ()(n, f) to first
order in spin-orbit coupling; an expression has
been given by Both, valid for Ge and Si. We show
in Appendix A that it is possible to write for the
symmetric part 6'z of |"

z ~

G~~() = 6„g+ I), () (n, k), (2. 13)

where ~ z is first order in spin-orbit coupling.
Ignoring the delicate question of just where the

power-series expansions in IB I for Iqp) and e„
converge, it is seen that the large parentheses in
(2. 11) enclose a power series in IBI. If this is
to be invariant under spatial rotations (applied to
both the magnetic field and the crystal), the form
given in (2. 1) is required. Furthermore, all K's
with an odd number of indices will be missing, as
(2. 1) describes a reversible microscopic process,
and must therefore be invariant under the opera-
tion of time reversal. This concludes our justi-
fication for the structure of (2. 1).

We will now restrict ourselves to the calculation
of the contributions to K~()() independent of IB I,
which require knowledge of the contributions linear
in IB I to the thermal average of D„.

The quantity needed is

(2. 14)
OP

From the definition (2. 9), D is linear in the
spin operators Oo; thus

where K,&„ lqp)= s„lqp), p is a spin index, and q
stands for any other indices required to specify
the state. f(s)—= (e(' ~)t s + 1) ~ is the Fermi func-
tion.

(2. iS)

as a consequence of the angular momentum opera-
tors being traceless, quite independently of the
detailed nature of lqp).
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Expanding f(s„) about E„(/2) and using (2. 15), we
obtain, to first order in I g I,

~ !(.(,(»t l&~„(((„.~2P)) . (a. ((((

Z&qp I&. Iqp&f(e. ,):—IBI~«p I&- Iq»
ep ep

x(+) y. +~„x„G„„(nf)
Y0 d& )~„())

(2. 16)

We calculate the contributions to (2. 18) arising
from the dipolar electron-nucleus interactions in
Appendix B.

C. Calculation of Contribution of Contact Interaction to

It', af1( g)
This is already first order in IB I; so we can re-

place f with k and Iqp) with Inkp&, where we un-

derstand that Ink p ) = lim I q p ) as 8 0.
The thermal average is now written in terms of

zero- order quantities only:

~ «p ID. Iqp&f(s:) =- I& l~&nkp ID. Inkp&
t9P nkp

1/2

x(+) p, , Zx„x„G (nk) . (2. 1V)
yn Sn(f)

Inserting (2. 17) in (2. 11) and comparing with
(2. 1), we get

1/2 dfZ &Q„= Z (+ )y,, Z X„t„G„„(nk)
J3 nkp yg dg g (f)

xl »&nk l~(r)~-lnkp&

We take

8(r) = &5(r) = —
2m p, ,5(r) . (2. 19)

It is not possible to proceed without separating
the spin and spatial degrees of freedom. Thus we
write

X„„nkp&=Z„(k) lnkp),

z '„„
I
ps ) = e, lps ),

g 1~
eiec= &e~ec+ ~o' ' N,

X'„„=p'/Rrn+ U(r),

N= (82/22n2c2)Otr(r) xp .

(2. 20)

The indexP specifies both n and k, and, of course,
I ps)= Ip)Is), s being a spin index.

The state I nkp) is given, to second order in
spin-orbit coupling N, by

(0'~' ' N pp) (p'~' 1' po'((po ' N (p)
)Plgl 2(dppe 4QPppe

(p's' Io N I
p"s"&(p's" I(1 NI pp)

~ pe 02I ~ 0 4(d»s QPpper

e',a"e

(2. 21)

with

(d»s -=6@—6'ps . (2. 22)
'Ey +2 Ey ~ I2IXyt3C»t~as' (2. 23)

Examining the second-order wave function, Eq.
(2. 21), we see that there is one term involving

(pp I(1 N Ipp). This vanishes because N2 is Hermi-
tian for Bloch states, and purely imaginary. Thus

Ng». = 0. Also, we observe that Nz, is diagonal
in k owing to the translational invariance of N.

The choice of spin states Ip) is not completely
arbitrary. We defined Ink p) as limIqp) as $-0;
if 54 0, the spin is quantized along the field in the
absence of spin-orbit coupling, and thus (s Io' Is&
= + X~ depending on whether s = 0 or 4. By using
o'p'„= zo, plus cyclic permutations, we. can express
the matrix element (n k p I 6 (r)o' In k p) as

The result for

If'~(X) = Z X~ &2K~2
O'N Ng

is

df 1/2

K~(X)=—22' i1ep — Z X„X„G„q (p)d~ g, ~n

~
l

l(4(o) l

+ + (~as —&s &s ) 3"es ), (2.24)3

88

where x'8&. is given by

N22P q~~ (0)(2(0) —(11/*(0)(/ i(0)N2(,.1,
k l~~y gf)f Py~

yB
&d

gpss

x», (p) = Z (4~».~»„) '[q,'(o)q;(0-)N2, „,N;,
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+Ngp&eNBl~gpt tjJp t(0)g~(0)], (2. 25)

The Q-factor tensor is shown in Appendix A to
have the form

coupling,

X (l&) = @& '+Z A., XB &9 g,
0|g

where

(2. 30)

G «(P)=8 8+~ g(P)+-" &(P)+ (2. 26)

where 4
& is first order in spin-orbit coupling and

& is second order. Expanding the parenthesis
containing the g-factor tensor in 2. 24 to second
order in spin-orbit coupling, we obtain for K (X)
the following result:

KN {X)=A+K &~XgB~g+ Z X~X&&X„X„C„g„„,
e8 yn

& =—&"u'&(q, ) (~l4(o) l'+& xss&P) ),

8 2~ &ff'l
&op= 3~Pe~

p 6 p (2. 2'I)

{-&.(P)+ li~, (0) I'[~.,(p).=-..(p)]],

C.,„„=-', m P,,'+ d ~q, (0) ~'~.,(P)~„„(P).gy e y& P et3

C~, (Xx + Xr + yz) + 2(C gp+ 2C,4)(l&x l&r + Arl&g+ Azyx),

where C»= C and

z., (~) = &t&o'+ &"'(~,'+ ~', + ~',),
with

&t&0& 8 2+ df
~ y (0) ~8

dE g

Cll C12 2C44 '(2)

(2. 28)

(2. 29)

Again, the superscript indicates the order in spin-
orbit coupling. The isotropic contribution to
K (A) is dominated by ft& ', which is zero order in
N, and thus we omit the isotropic terms of higher
order. ~' ' is identical to the expression obtained
by Townes, Herring, and Knight. '3

If the symmetry is lower than cubic, the're are
anisotropic terms to first order in spin-orbit cou-
pling. Then we have, to lowest order in spin-orbit

The discussion up to now has been for an arbi-
trary frame XFZ. Now we choose for XFZ the set
of principal axes for the surfaces U(r) = const. In
cubic symmetry 8 t3=b5 & and does not contribute
an anisotropy. C»„, on the other hand, has many
vanishing elements, the ones that do not vanish
being of form C or C~««&&, where by P(nc&pp)
we mean any of the six permutations of the four in-
dices nnPP. Since 4 « is symmetric, C44= C z «
=C z& -Cz z-C8 8, and C»=Co z& =C&z„
Thus the 81 terms in the sum g„z „„l& X«X„X„C ~ „„
reduce to

I (&(0) ~'&.&(p) (2 31)
p &fe s~

The simplest case is that of tetragonal symmetry;
one can show using (2. 7) that . , rx = &9„„, &9,~= 0 for
c&0 P, if Z is chosen as the axis of maximum sym-
metry.

K„(A) can be written as

(~) = s ~~!~(~z(») I tnt(0)
~
'&F..., s„,&„.p(Ez),

n

(2. 32)
where gz(n, I&) is given by

g, (») = I+-.'[(~,'+ ~,')~,(»)+ X,'~„(»)].
(2. 33)

Expression (2. 32) was first given by Weinert and
Schumacher, who pointed out, in connection with
their work on the anisotropic Knight shift in Hg,
that the contact interaction should contribute an
anisotropy via the anisotropic g-factor tensor. The
effect in noncubic metals is first order in spin-
orbit coupling because the g factor is isotropic re-
gardless of crystal symmetry if the spatial and
spin degrees of freedom for the electrons are sep-
arable.

III. EXPERIMENT

A. Samples

a. Lead. All lead samples were spark cut
from an approximately cylindrical single crystal
obtained from Research Crystals, Richmond, Va.
The quoted purity was 99. 999/p. All samples were
cut to cylindrical shape, —,

' in. long, —,
' in. in di-

ameter, with the cylindrical axis along the crys-
talline [100]direction. Orientation was accom-
plished by etching and observing flash planes.
Three samples were used. The first was cut and
wound with sample coil wire several years ago for
preliminary investigations. Knight-shift and line-
width data were taken on it. Sample 2 was pre-
pared in order to study the effect on linewidth of
working with a freshly cleaned and etched surface.
Since the angular anisotropy of the linewidth
seemed not to be quite identical to sample 1, a
third sample was prepared by "peeling off" the
outer shell of sample 1 with a hollow cylindrical
tool in the spark cutter. The new surface was
chemically polished and lacquered with two thin lay-
ers of QE 7031 low-temperature varnish before the
sample coil was wound on it.

b. P/atinum. The platinum data were taken on
two samples, both approximately cylindrical in
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shape, —,
' in. long, 4 in. in diameter. Sample 1

was oriented with the cylindrical axis along the
[110]direction. It had a resistivity ratio of about
200. The second sample was similar in shape and
size, but was not oriented. Its resistivity ratio
was 1000, and de Haas -van Alphen signals had
been observed in this sample. All Knight-shift data
were obtained with sample 1; sample 2 was in-
vestigated in the hopes of clarifying the cause of the
anomalously large linewidth observed in sample 1.

B. Measurements

All samples were tightly wound with approxi-
mately 150 turns of No. 38 enameled copper wire
which formed the inductance of the tank circuit of a
Robinson oscillator. The magnetic field at the sam-
ple was measured by monitoring the NMR fre-
quency of Al in a reference sample consisting of
Epoxy mixed with aluminum powder machined to
the form of a hollow cylinder, and mounted co-
axially with the lead or platinum sample. The ref-
erence -sample tank coil was wound coaxially
around the outside of the reference sample and con-
nected to a second Robinson oscillator. Because
their frequencies were different by several mega-
hertz, the reference and sample Robinson oscilla-
tors were unaffected by each other as long as their
oscillation levels were comparable.

All data were taken at 1 ~ 2 ' K in fields up to 18
kQ provided by a Varian 3900 magnet. Field mod-
ulation and lock-in detection was used in the stan-
dard fashion, and signals were recorded either on
a strip chart or in a Fabritek 1072 signal averager
if extensive line -shape analysis was desired.

The initial value of the magnetic field just before
initiating the field sweep of the magnetic field was
measured with the reference Al l NMR to + 20 mQ;
the frequency of the sample oscillator at the center
of the lead or platinum resonances was measured
with a precision of + 10 Hz and was reproducible
to + 40 Hz from one field sweep to the next. The
linearity and repr oduc ibility of the fie ld sweep
was checked in separate experiments. A typical
field sweep took 5 min. A reasonable estimate
of our nonsystematic errors in determining the
sample line center is + 50 mQ.

C. Data Analysis

The principal object of the experiment may be
described to be a measurement of the first mo-
ment of the NMR line as a function of the angle be-
tween the magnetic field and the crystal axis. If
the line shape and the second moment are indepen-
dent of that angle, it is sufficient to record the
magnetic field at which some characteristic feature
of the line occurs. Such was the case for platinum
for which the line shape was observed always to be
of the form

X+bX ) (3. 1)

where X and X are Lorentzian functions indepen-
dent of angle, as was the admixture fraction a/b
which is caused by the sample being large com-
pared to the skin depth.

In general, however, the linewidth and line shape
will not be independent of the crystal-magnetic-
field relative orientation; nor can one expect in a
high-purity sample at low temperatures that a/b
will be angularly independent, since that ratio de-
pends in real metals on the surface impedance,
which is not in general isotropic in high magnetic
fields. The problem, then, is to determine for
every field orientation the center of the line, i.e. ,
the field for which X (&u) = 0 and X' (~) is maximum,
for unknown absorption line shape X and unknown
ratio a/b To.do this the data in derivative form
were first integrated using the Fabritek internal,
"hard -wired" integration routine; they are then in
the form

u((o) = aX'(&u) + bX" (&u) .
Next we evaluate the integral

( )
1 ~' Q((d)d(d
lT „.„(d

(3. 2)

(3.3)

Since X and y are the real and imaginary parts
of a complex susceptibility function y, they obey
the Kramers -Kronig dispersion relations. Con-
seque ntly,

v'((u) = bX'((u) —aX"((o) . (3.4)

Since X is symmetric and X antisymmetric about
the resonance frequency, we can integrate (3.2)
and (3.4) to find

a f &((u) d(o

b f V (co) d&d

In our experiments the Kramers -Kronig trans-
form of the integrated experimental data was done
by a Digital Equipment Corp. PDP-8I computer
attached to the signal averager. Figure 1 shows
(1) the integrated NMR signal for Pt, (2) the
Kramers-Kronig transform of (1), and (3) the
symmetric and antisymmetric parts of (1), Figure
2 shows the same quantities for lead. Both figures
represent a single sweep recorded in 512 channels
of the signal average r. The line center, as deter-
mined by the maximum of X and/or the zero
crossing of X, could reproducibly be determined
to +1 channel (+ 50 mG) by this procedure.

IV. RESULTS AND DISCUSSION

A. Knight Shifts

a. Lead. The isotropic Knight shift for lead
was measured to be K...= (1.1894+O. OOO3)% at
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FIG. l. (1) Integrated NMR signal for Pt. (2)
Kramers-Kronig transform of (1). (3) Symmetric and

ant:isymmetric parts of (1). Total sweep 35 G.

18 ko and 1.2'K. The implied accuracy of the
measurement is relative, not absolute, and the
numbers were obtained using the following con-
stants:

(~/2t )„=0.6699 mz/6,

(y/2tr)„, = 1.1094x (1+0. 0016) kHz/G.

FIG. 2. (1) Integrated NMR signal for Pb. (2)
Kramers-Kronig transform of (1). (3) Symmetric and
antisymmetric parts of (1). Total sweep 25 G.

The effective moment of Al~~ was corrected as-
suming a 0. 16% Knight shift in Al metal. Figure
3 shows the measured Knight shift as a function
of magnetic field orientation for 19 angles in the
(100)plane. The rms deviation of the 19 points

l.20l0—

l.2000—
FIG. 3. Measured

Knight shift in lead as
a function of magnetic
field orientation in the
(100) plane.
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-4.0060—

-4.0050— FIG. 4. Measured
Knight shift in platinum
as a function of mag-
netic field orientation
in the (1l0) plane.
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from their mean is (4x 10 ')/0, or (3.4x10~)K„„
which we quote as our result for an upper bound on
the anisotropic Knight shift:

K~, ~ (3.4x 10 )K„, .
In addition, we computed the rms deviation of the
data from an angular function of the form expected
from (1.11) for cubic symmetry in the (100) plane:

K„sin(48+ g),
where 8 is the angle between the field and a cubic
axis, and p an angle which was varied to allow for
the possibility that our identification of the [100]
axis from flash planes and linewidth variation was
somehow in error. The minimum rms deviation
occurred for P = 0, K = 0 and was, of course,
(3.4x10 )K„„asabove. Thus the data, which
to the eye might seem barely to reveal an anisot-
ropy, do not in fact conceal an anisotropy with the
correct angular dependence. If one takes E
= (Vx10 ')/o, the value measured by Schratter and
Williams in the (100) plane, one finds a minimum
rms deviation of (5.4 x 10 4)%%uo occurring when
/=0.

b. Platinum. The isotropic Knight shift was
measured to be K„,= (4.0046 s 0. 0003)% by the
same method as described above for lead. The
magnetic resonance frequency for platinum was
assumed to be 0. 9155 kHz/G. The rms deviation
of the Knight shift from isotropy in the (110)plane,
for 22 data points (Fig. 4), was 6x10 6, which we
use to determine the following upper bound:
K ~(1.4x10 )K„,.

We note that our experimental determination of
the upper limit of the coefficient K = Czz —Cz&
—2C« in Eg. (1.11) is comparable in magnitude to
our very crude guess about the possible size of the
effect in the Introduction. It is clear that a further
search requires the initial promise of at least an
order of magnitude greater stability of field and
electronics than is presently available in our lab-
oratory. The search should also check with a
variety of samples in case there is a sample-de-
pendent effect. Unstrained and undamaged sur-
faces of lead are difficult to obtain, and in both the
lead and platinum linewidth data (see below) there
are anomalies and evidence of sample dependences.
If we accept the present level of precision, our
results, if nothing else, rule out the anisotropic
Knight shift as a measurable contribution to the
measured width of powdered samples in lead.

B. Linewidths and Line Shapes

In both metals the lines were Lorentzian, at
least near the center. Signal-to-noise limitations
precluded effective investigation of the tails. The
lead results for full width at half-maximum as a
function of field orientation are shown in Fig. 5,
where the solid line is given by AB(8) = 3. 10(1
—0.103cos48) G, where 8 is the angle between the
field and a [100j axis in the (100) plane. The rms
deviation of the data from the above expression is
0. 15 G. The observed anisotropy is anomalously
small. If one assumes, as the Lorentz lines shape
leads one to assume, that the nuclei interact via
a very large isotropic exchange interaction, then
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the Anderson-Weiss model of exchange narrowing
yle lds

n.a(8) = (n/a)M, (8),
where M~ is the Van Vleck second moment and g
the isotropic exchange. If the angular dependence
were caused by pure dipole-dipole interactions,
in the (100) plane of an fcc crystal one would ex-
pect

~a(e) = ~a, (1 —0. 178 cos4 e) .
However, DBO would be about 200 mo, less than a
tenth of the observed width. If the principal an-
isotropic internuclear interaction is pseudo-di-
polar between nearest neighbors, AB(e) = b,Bo
&&(1 —0. 278 cos48). Both of these results show
considerably more anisotropy than we observe.
It should be noted that Schratter and Williams'
have also observed a linewidth anisotropy of 0.1V

in lead (to be compared to our 0. 108), a discrep-
ancy which lends support to speculation that our
results for the Knight-shift anisotropy might be
sample dependent. However, we did not take the
care to correct for possible modulation broadening
that Schratter and Williams took; so the differences
in the linewidth and its anisotropy may reflect
smaller sample dependences than the data seem
to show.

The width of the I,orentz line that we mea-
sured in platinum was anomalous in several re-
spects: It was angularly independent, 3.4 +0.3 6
broad (full width at half-maximum) at 18. 5 kG.
These results were sample independent. Walstedt
et gl. and Butterworth measured Tz by pulse
techniques, and from their results we expect a
full width at half-maximum of 0. 30+0.05 G. Other

workers [Walstedt (private communication)] have
found anomalously broad platinum lines, but at
least in one case the extra width has been field de-
pendent, and extrapolates to the Walstedt-Butter-
worth value as Bo approaches zero. Our measured
width was not only field independent, as mentioned
above, but also independent of the magnitude of
the modulation field (although modulation large
enough to broaden the line could be used), its fre-
tluency (18-920 Hz), and the rf voltage (5-70 mV
peak to peak) at the input of the Robinson oscillator.
We have no explanation of this phenomenon, but we
do note that if a Pt single crystal could be found
with a high-field linewidth of 0. 3 6, an order of
magnitude improvement in the upper limit of the
anisotropic Knight shift would immediately result.

V. CONCLUSIONS

We have investigated the angular dependence of
the Knight shift in cubic metals theoretically and
experimentally for lead and platinum. The theo-
retical investigation has shown that the Knight shift
is not isotropic in cubic metals if the calculation
involves the contact interaction and is second order
in the spin-orbit interaction, or if it is first order
in spin-orbit and involves the electron-nuclear
dipole interaction. In the latter case we have dem-
onstrated a formula (Appendix B) which reduces
to one previously found by Boon' in the tight-bind-
ing limit. The magnitude of the anisotropy is in
any event not expected to be large. A very crude
estimate is 10 -10 times the isotropic Knight
shift, but no numerical calculation using our for-
mulas has been undertaken.

We have investigated the nuclear magnetic reso-
nance in single crystals of the spin--,' heavy metals
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FIG. 5. Full width
at half-maximum for
Pb as a function of
magnetic field orienta-
tion in the (100) plane.
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lead and platinum, and found the position of the
NMR line to be independent of angle to (3.4
x 10~)K„,for lead and (1.5 x 10 4)K„, for platinum.
Some anomalies in the linewidths in both metals
lead us to fear that existing anisotropy could be
obscured by crystal imperfections. In lead, par-
ticularly, the crystal surface is easily damaged.
If the local cubic symmetry for nuclei near the sur-
face were lifted by small, randomly oriented dis-
tortions, the normal first-order dipolar interaction
could produce small local anisotropy fields that
would not hove to be large to obscure an effect as
small as 0. 05/o of the isotropic Knight shift. Ran-
domly oriented axial Knight shifts as small as, say,
0. 2% of the isotropic shift would not show up as a.

troublesome, or even measurable, contribution to
the total linewidth (about 400 mG at 18 kG), the
origins of which are not well understood in any
event. z Axial shifts as large as 10% of the isotropic
shift are not uncommon in noncubic metals. It is
certainly possible that sample dependence is re-
sponsible for the difference between our experi-
mental results on lead and those of Schratter and
Williams.

Finally, we wish to emphasize that me have been
investigating anisotropies in the term of the Ham-
iltonian (2. 1) which is linear in B. It is perhaps
worth pointing out that anisotropies originating in
terms of the third and higher order in B have al-
ready been implicitly, if not explicitly, observed
in the cubic metal aluminum. Khan et g/. " have
observed an oscillation in the magnitude of the
Knight shift which is periodic in I/8, and which
originates in the fluctuations of the density of
states at the Fermi surface when the electron
mean free path is longer than the circumference
of the cyclotron orbit. Since the amplitude, phase,
and frequency (in 1/8) of these oscillations de-
pend on the orientation of the field, it is clear that
a reorientation of the field produces a different
shift. This anisotropy is strongly dependent on
field magnitude and sample purity and is quite
distinct from the anisotropy that we have been in-
vestigating. Its undeniable existence should help
comfort any who, in common with one of the au-.

thors at one time, find anisotropy of the nuclear
shielding in cubic metals a difficult concept to ac-
cept.

APPENDIX A: ELECTRONIC 6-FACTOR TENSOR

Our starting point will be the spin-dependent
part of the effective Hamiltonian obtained by
Blount and Roth; following Yafet, we define an
effective magnetic moment p„„»,(k) given by

p (k)=o' ~ (jp) + ~ p q ~xg~
P pl lnt I gn

~ —y„„xy„„„,. (Al)

The matrix elements of 0 and the velocity opera-
tor V= [r; 3C„„]are calculated between two-com-
ponent Bloch states Inkp), and X.„„,», (k) is defined
as fd &u„'»i&~u„.„~, the volume integral extending
over a unit cell,

Then, the electronic effective Hamiltonian de-
scribing the splitting of the Kramers degeneracy
ls simply

Z„„=—B ~ p„„,& (k)

and its eigenvalues are
1/2

,=~P~ B
~

ZX.X,G„,(n, k

where

G, (n, k) = p „„„(k)ua„„„(k)+ p. „„„(k)p,a„„„(k).
(A4)

Use was made of the relation ]U, „= —p. +„.' It is
obvious that only the symmetric part of G„z(n, k)
contributes to g ~X,A. ~G ~(n, k). It can be written
conveniently as

(A5)z&~ng+ ~ye) ~+0 2~ t 0'nnw' I"f nnp'a
op'

Now we use the first-order part of (2. 19) to
evaluate G,~(nk) to first order in spin-orbit cou-
pling. We obtain
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2+nn" Bk„

+ [terms obtained from last two by interchange of indices n and g], (Ae)



A. R. B. deCASTRO AND R. T. SCHUMACHEB,

APPENDIX 8: CALCULATION OF CONTRIBUTION OF
DIPOLAR INTERACTION TO E~„(F)TO FIRST ORDER

IN SPINARBIT COUPLING

This is the problem that Boon' solved. It is
shown here that (2. 1) leads to the same results as
Boon's and, in addition, the explicit angular de-
pendence of E is obtained, as well as expressions
for all the coefficients which do not vanish in cubic
symmetry.

The contribution of the dipolar coupling to the
internal field $0XpK'0„ is, according to (2. 18),

i/2
2 Z~~,.= Z (~)lo,,' i „Z ~., ~,, G. , (nk)

8 non e'S'

df iI
)g„ty)

& nkp IZo„6t„, Inkp&

(B1)

(s2)R „„=(3r„r, —5„,r )/r' .
The matrix element gives, using the first-order

part of P„(,p(r) defined in (2. 21),

&nrp I
z, o„gt„.Inrun&

where
(m

~ny'
I @

~ vn((' ~ ~ n'((" ~

I 8

and 8„„=0 owing to quenching. '
It was assumed in the foregoing that g.„„=0. de

Qraaf and Overhauser ' point out that the eigen-
values (AS) are phase dependent (although their
average over a cyclotron oribit is not) owing to the
transformation properties of g;„„«(k). If, as in the
present calculation, use is made of perturbation
theory to separate the spin and spatial degrees of
freedom of the Bloch states I nkp&, it is .y „„(k)
rather than g „„».(k) that appears in the results.
There is a choice of phases for the Bloch states
P„„(r)which corresponds to minimum spread of
the localized Wannier states, which is equivalent
to the requirement V j„„(k)=0. If there is in-
version symmetry, then V g:„„(k)= 0 is also satis-
fied. Thus, it is possible to set X:„„(k)= 0 every-
where, provided that there are no degeneracies.
We assume for simplicity that this is the case.

Taking for I nk) a tight-binding function, it has
been shown" that 8~„„,(k) = L „„,(k) + (surface in-
tegrals), where now hL=pxr. Thus, if one takes
the limit of large distance between atoms, then

I x a Y . ~eaa'+&a'a+ ~&aa'+ea'a
~ephor )—&eg + ~

a' Aa 4)aa p

(Av)
where g and a denote bound-state orbitals, All
other terms of (A6) vanish, since it can be easily
seen that both E„(k) and N((„„(k)/(d„„, become in-
dependent of k if overlap integrals are negligible.

The result (AV) is the well-known ionic g-factor
tensor.

=&Ps l~ .&.. I pa&+ ~ (2
p'& p

x&pi I ~opNpIP ~ &(P& I+o„6t„.I pe&

+&ppl~ o.~». l

p'~'&&p'~'
I
~opNp Ip»

or

&nkpIE o„&„.Inkp&

=+ZXq 6l|(mpp +i + fypq Xy

X~ ¹Jppp Rtl epl p %peppy ¹ppp

p'&p 2(Upped
(B4)

¹pp.IIt00(pe p+ $0npp. Npp. p (B6)
p'&n 2(dppp

giving, for

K~(X) = Z A.~X0K~0,
I N eg

Z„(~)=Z ~.X„(q(0.'+ W„"J)+ Z ~.X, ~„~„T".,'„„,
et'

egypt

(0) 2Y df )Qe0 = Ps ~
d I

It~epp g

p 6 jap

ppl df @p ((y

+gppp ~ pep' p ~ 'pep' ¹ ps'X-

(i& 1 av df
~earq =—&0 ~ & pppny, (p)2 p

dC' zp
(B6)

4 (((p) is defined in (A6).
We now discuss the tensors Q(00', W'iJ, and

T~z',„. Boon defines a function

y(y) = ~!& („, ,I l 6(~)
l

', (BV)

in terms of which the tensor Q'~' takes the form

Q„= ' ~
—E(r)(3cos'e, —1),

The plus sign goes with p= 1, the minus sign with
p=2,

Inserting (B4) in (Bl) and expanding the stluare
root to first order in N using (A6), we get

Ea~l4 =u„g, E d l

&+—El, l, a„(P()df) 1

p ~ i&p

&& Z X„R|(((pp+i Z ey00A. y
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Q,„=Q„,=
z E(r)3 sin 8 cosQ sin)j),~ 2

(Q + Q ) = —
~

F(r) P (cos8) sin2)j)
1

i

d r
al

Q„= Q„=~, E(r)3 sin8 eos8 sin)t), (B8)
1

Cz= 8(Q„„—Q»)= 6, E(r)P,'(cos8}cos2)I)) .

Q,„=Q„,=~ s E(r)3sin8cos8cosg .

Here 8 is the angle between r and the mth axis;
8 and Q are just the polar angles of r. Equations
(B8) can be rewritten in terms of Legendre poly-
nomials; the X's can be written in terms of the
polar angles 0~ and 4 of B. Considering that,
owing to the relation g cosz8 =1, TrQ=O, one

finds, to zeroth order in N,

It~(A) = Z X,XBQ '8'

= A Pg (cosO) +By Pp(eosOH) slnC

+ B,P', (cosO) sin24 + C& P', (cosa) cos4

Expressions (B9) and (B10) agree with Boon's
equations (11a)and (11b)if his equations are rewritten
in terms of normalized Legendre polynomials.

This discussion was independent of the choice of
a particular coordinate frame and crystal sym-
metry. We now specialize by considering only
cubic symmetry and choosing as coordinate axes
the set of principal axes of the equipotential sur-
faces ET(r) = const. Going back to expressions (B6),
we have Q t)

= 0 for n x P and Qxx = Qrr = Qzz, which,

combined with the traceless property of Q,z, gives

Q 8 =0 for all n, p. Also

~XXXX ~YFFF

(Bll)

where

D= TrQ=O,

+ Cz Pz(cos8) cos24+D,
(B9)

~&&»») —~p(»zz &

—7 p (zzxx»

Z X„Az A,„Aq T~z„q = (T —T) (Xx + Xr + ))z ) + T,
egypt

A= Q„=2 I, E(r) Pz(cosO),

&q = —r(Q„+Q„)= ——,F(r)P z(cos8}sing,1

(B10)
2 d

Cg= —3 (Q„g+ Qg„}= —— —

g E(r) Pz(cos8}cosp,

T =~ Ts &xxrr) ~

P

Although it is not immediately apparent, 5 z can
also be shown to vanish in cubic symmetry. Thus
the only contribution to (B6) comes from the terms
involving T, and is in general anisotropic, with
an angular dependence identical to (2. 28).

By choosing B along Z, (B6) gives for arbitrary symmetry

3

=Qzz+~'zz+Tzzzz = s W~ ~
d I 4))(r)

I
(3cos 8 —1)

p d6 zp

z Q f
~ ( & ~

z zest zP P zest zP 0 (3 eosz8 1)

" d'r, ~-, df (iNx~, , ) (3yz) —(i1Vr„,) (3 xz)
+ I, 3 P~~'V, pp~ dE .g Ep —&pz

+ (terms which vanish in limit of large distance between atoms), (B12)

which can also be written with

d
3 Fz z (r) Pa(eos 8) + &x(r)

x P~z (cos8) sing —6„(r)Pz (cos8) cosp
(B13)

X 2 + Zpp Zpz&p + Zpp~ Zpz&p r 2

pl gp
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2 pcs dt" )zp 6
g

—&p~

. (B14)
Equations (Bls) and (B14) reduce to Boon's equa-

tions (A4)-(A6) in the tight-binding limit when
1V

To estimate the magnitude of the dipolar effect
in cubic symmetry from typical experimental mag-
nitudes in metals, we proceed in the spirit of the
Introduction to replace the average of products by
the product of averages. Thus the expression for

T in (B6) is in effect the average of the dipolar in-
teraction weighted by the g shift for an electron
with wave vector p. In noncubic metals, where
the dipolar term does not vanish because of sym-
metry, anisotropic shifts as large as 10% of the
isotropic shift have been observed. Thus in the
spirit of the estimate in the Introduction,

I T I
~ (K„)(6g)=0. 1K„,(6g) = 10 'K„,. This result,

in common with the estimate is Sec. I, must be
regarded as anupper limit. The anisotropy van-
ishes, for example, if b. 8(p) is independent of p.

Research supported in part by a grant from the Na-
tional Science Foundation.

TFrom a thesis submitted by A. R. B. deCastro in par-
tial fulfillment of the requirements for the Ph. D. degree,
Carnegie-Mellon University.

present address: Instituto de Fisica, UEC, CP1170,
Campinas, Brazil.

~M. H. Boon, Physica 30, 1326 (1964).
R, W. Weinert and R. T. Schumacher, Phys. Rev.

172, 711 (1968).
Z. Schratter and D. L. Williams, Phys. Rev. B 5,

4302 (1972).
4The exposition by C. P. Slichter IPrieciPles of Mag-

netic Resonance (Harper and Row, New York, 1963)] is
appropriate in the context of this paper.

5A. R. B. deCastro, thesis (Carnegie-Mellon Uni-
versity, 1972) (unpublished).

W. Kohn, Phys. Rev. 115, 1460 (1959).

7E. I. Blount, Phys. Rev. 126, 1636 (1962).
E. I. Blount, in Solid State Physics, edited by F.

Seitz and D. Turnbull (Academic, New York, 1962), Vol.
13, p. 305ff.

9L. Roth, Phys. Chem. Solids 23, 433 (1962).
~ Y. Yafet, in Ref. 8, Vol. 14, p. 15ff.
' A. M. de Graaf and A. W. Overhauser, Phys. Rev.

180, 701 (1969).
~~L. Roth, Phys. Rev. 118, 1534 (1960).
'3C. H. Townes, C. Herring, and W. D. Knight, Phys.

Rev. 77, 852 (1950).
~4R. E. Walstedt, M. W. Dowley, E. L. Hahn, and C.

Froidevaux, Phys. Rev. Letters 8, 406 (1962).
~~J. Butterworth, Phys. Rev. Letters 8, 423 (1962).
~6H. R. Khan, J. M. Reynolds, and R. G. Goodrich,

Phys. Rev. B 2, 4796 (1970).
'Y. Yafet, Phys. Rev. 106, 679 (1957).


